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Abstract

Numerous studies have examined gene expression profiles in post-mortem human brain samples 

from individuals with schizophrenia compared to healthy controls, to gain insight into the 

molecular mechanisms of the disease. While some findings have been replicated across studies, 

there is a general lack of consensus of which genes or pathways are affected. It has been unclear if 

these differences are due to the underlying cohorts, or methodological considerations. Here we 

present the most comprehensive analysis to date of expression patterns in the prefrontal cortex of 

schizophrenic compared to unaffected controls. Using data from seven independent studies, we 

assembled a data set of 153 affected and 153 control individuals. Remarkably, we identified 

expression differences in the brains of schizophrenics that are validated by up to seven 

laboratories using independent cohorts. Our combined analysis revealed a signature of 39 probes 

that are up-regulated in schizophrenia and 86 down-regulated. Some of these genes were 

previously identified in studies that were not included in our analysis, while others are novel to our 

analysis. In particular, we observe gene expression changes associated with various aspects of 

neuronal communication, and alterations of processes affected as a consequence of changes in 

synaptic functioning. A gene network analysis predicted previously unidentified functional 

relationships among the signature genes. Our results provide evidence for a common underlying 

expression signature in this heterogeneous disorder.
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Introduction

Schizophrenia is a severe psychotic disorder that affects approximately one percent of the 

population worldwide (1). Many groups have attempted to identify changes in gene 

expression in the brains of schizophrenics, often focusing on the prefrontal cortex (2–4). 

Such studies have suggested several altered molecular processes including (but not limited 

to) synaptic machinery and mitochondrial-related transcripts (5–8), immune function (9) and 

a reduction in oligodendrocyte and myelination-related genes (10–12). The variety and 

scope of these processes, found in different subject cohorts, raises the question as to whether 

there are underlying commonalities in molecular signatures among schizophrenics. Such 

commonalities are presupposed by most genetic studies, which look for alleles 

overrepresented in large numbers of schizophrenic individuals (13–15). It is important to 

establish if there are any common features of the disease at the molecular level.

The diversity of results in transcriptome studies can be attributed to many sources. Besides 

differences in the sampled cohorts and disease heterogeneity, discrepancies between 

transcriptome studies can be due to methodological differences in sample preparation, 

choice of platform, and data analysis. There are issues that are especially pertinent to the 

analysis of post-mortem human brain tissue. One is the confounding effect of factors such as 

age, gender and medication. Such factors are often associated with relatively large gene 

expression changes (16), while psychiatric illnesses such as schizophrenia are associated 

with small effect sizes. If these factors are not correctly controlled for, they can mask or 

masquerade as expression patterns associated with the disease. Standard practice involves 

minimizing the effects of such factors either in the experimental design by sample matching 

or treating these factors as covariates in regression models. It is also increasingly 

appreciated that technical artifacts such as ‘batch effects’ can result in substantial variability 

(17–20). In addition, post-mortem brain tissue is a limited resource, leading to small sample 

sizes with low statistical power. For this reason, most studies have not applied multiple test 

correction, and perform validation only on the same RNA samples that were used for 

profiling. All of these issues are likely to contribute to the differences in findings across 

studies. We propose that a good way to address these problems is to re-analyze and meta-

analyze the studies in question, a task we undertake in this paper.

The use of meta-analyses to combine high-throughput genomics studies has become 

increasingly used in neuropsychiatry (14, 17, 21–23). Combining datasets across studies 

increases power and facilitates the identification of gene expression changes that are 

consistent and reliable, reducing false positives. In a meta-analysis, multiple studies are 

statistically pooled to provide an overall estimate of significance of an effect, highlighting 

important yet subtle variations. While meta-analysis has been used in the study of gene 

expression data (24–26), to our knowledge only a few studies have done so with post-

mortem human brain data (17, 22, 27, 28). A cross-study analysis of psychosis was 

conducted across seven datasets using samples from the Stanley Medical Research Institute 

(SMRI) post-mortem brain collections (22). Additionally, the SMRI report results from a 

cross-study analysis across schizophrenia datasets in their online genomics database (http://

stanleygenomics.org), computing ‘consensus’ fold changes while adjusting for confounding 

variables. However, the studies used in these analyses use samples from the same two brain 
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collections and are therefore not entirely independent. More recently, a comparative analysis 

was conducted across two independent schizophrenia cohorts; probes were identified as 

differentially expressed within each study and the intersecting probes between the two 

studies were reported (29). Thus while there have been attempts to meta-analyze 

schizophrenia expression profiling data, there has not yet been an integration using the 

primary data of more than two independent microarray studies.

In the current study we present a cross-study analysis of seven microarray datasets 

comprising a total of 153 schizophrenia samples and 153 normal controls. We applied a 

linear modeling approach to control for factors such as age, brain pH and batch effects, and 

applied multiple testing corrections to control the false discovery rate. We show that we are 

able to detect small yet consistent and statistically significant changes. Careful control of 

extraneous factors using probe-specific statistical modeling, results in gene expression 

changes associated with the disease effect. Our results confirm some previously reported 

expression changes in schizophrenia in addition to identifying potential new targets 

suggesting alterations in synaptic function.

Materials and Methods

Data pre-processing and quality control

Genome-wide expression data sets were selected on the basis of microarray platform, use of 

prefrontal cortex (BA 9, 10 or 46), the availability of information on covariates such as age, 

and finally the availability of the raw data. Each dataset is comprised of a cohort of 

neuropathologically normal subjects and a cohort of schizophrenia subjects, as diagnosed 

and reported in their respective studies (Table 1). Sources for data include the Stanley 

Medical Research Institute (SMRI), the Harvard Brain Bank, and the Gene Expression 

Omnibus (GEO). GEO studies were identified by extensive manual and keyword searches. 

While the SMRI has additional data sets, these represent repeated runs of the samples from 

the same subjects, so we selected one dataset to represent each of the two SMRI brain 

collections. Two additional studies were obtained from the authors (30, 31). Datasets 

consisted of single-channel intensity data generated from two Affymetrix platforms, but 

only probe sets on the HG-U133A chip from each dataset were used for analysis. Probe sets 

were re-annotated at the sequence level by alignment to the hg19 genome assembly, using 

methods essentially as described in (20), and also cross-referenced with problematic probe 

lists provided by http://masker.nci.nih.gov/ev/. The raw data (“CEL”) files from all the 

datasets were pooled together and expression levels were summarized, log transformed and 

normalized by using the R Bioconductor ‘affy’ package (R Development Core Team, 2005) 

using default settings for the RMA algorithm. Data was also processed using four other pre-

processing methods for evaluating the robustness our meta-signatures (see Supplementary 

Text). We decided to retain standard RMA as the method on which to centre our analysis, 

because RMA has been shown independently to be a high performer on gold standard data 

sets (32–34). Sample outliers were then identified and removed from each dataset based on 

inter-sample correlation analysis (see Supplement), resulting in the removal of 13 samples (2 

of these are the same outliers identified in a previous analysis of SMRI data; http://

stanleygenomics.org). Batch information was obtained using the ‘scan date’ stored in the 
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CEL files; chips run on different days were considered different batches. The final data 

matrix consisted of expression values for 22,215 probes sets and 306 samples. Sample 

characteristics for the subjects were collected and are summarized in Table 2.

Statistical Modeling

Gene expression values for each probe set were modeled using a standard fixed effects 

linear model (FEM) framework. We treated Disease, Age, Brain pH, Batch date and Study 

as fixed effects for which unknown constants are to be estimated from the data. We also 

employed a model selection procedure, in which each probe set was modeled using the full 

model including all five factors, as well as various sub-models (details in Supplemental 

Methods; our approach is similar to that used in (35)). For each probe set, the t-statistic for 

the disease effect was then extracted from the selected model and p-values were computed 

using one-sided tests, preformed independently for the two alternative null hypotheses (i.e. 

gene expression does not increase with schizophrenia and gene expression does not decrease 

with schizophrenia). The resulting p-values for the up- and down-regulated signatures were 

further adjusted for multiple testing using the q-value method (36) to control the false 

discovery rate (FDR).

Literature-derived signatures

Our signatures were compared to probe lists obtained from the original publication for each 

of the datasets used in our analysis. As the two SMRI datasets were unpublished, gene lists 

were compiled from the SMRI online genomics database. For the Mclean dataset we used 

the list of ‘significant probes’ as reported in (29). For the Haroutunian data we chose to use 

probes selected at the ‘low stringency criteria’ described in (31). Details on each of these 

gene sets can be found in Table 4 (probes were excluded if they were not on the HG-U133A 

chip). Additional signatures for comparison were obtained for published schizophrenia 

expression profiling studies, and a list of the top 45 candidate schizophrenia genes reported 

in the SZGene database (13). Agreement of the meta-signature ranking with each validation 

gene set was assessed using receiver operating characteristic (ROC) curve analysis described 

in greater detail in Supplementary Methods.

Functional and network analysis

We analyzed each signature for enrichment of Gene Ontology (GO) terms (37), using the 

gene score re-sampling (GSR) method in ErmineJ (38, 39). We also evaluated the path-

length and node degree (number of associations) properties of the meta-signature genes in a 

large human protein-protein interaction network (PPIN) obtained by aggregating data from 

multiple sources(40–45). The network contains 100,623 unique interactions among 11,697 

genes. Path lengths in the network were measured using Dijkstra’s algorithm (46). Statistical 

significance was assessed by reference to an empirical null distribution obtained by 

randomly sampled 10000 gene sets of similar size and node degree.

Results

Schizophrenia and control groups had no significant differences in age and PMI, and the 

number of males and females between the groups were fairly well matched (Table 2). Brain 
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pH was significantly different (t-test; p = 0.001). P-value distributions for each demographic 

variable were also assessed to help determine the selection of factors used as fixed effects 

for our model. We found it was necessary to correct for “batch effects” (technical artifacts 

caused by running chips on different days or even years (20)), as they contributed the vast 

majority of variance in gene expression (Supplementary Figure 1). Each factor was 

considered in a model selection procedure (see Methods and Supplementary Methods), and a 

final set of linear models were used to identify probe sets that were differential expressed 

between schizophrenic and control samples. After multiple test correction we identified a 

meta-signature of 39 up-regulated and 86 down-regulated probes at an FDR of 0.1 

(Supplementary Table 2, Table 3). If we assess the number of unique genes that appear in 

each signature we obtain a list of 25 up-regulated and 70 down-regulated genes. These 

numbers highlight several cases of a gene which appears in our signature more than once, 

suggesting higher confidence in the finding of expression changes for those genes. Figure 1 

shows the expression levels top down-regulated probe we identified. As expected, 

expression changes were small (~ 15% expression change), and more evident in some 

datasets. As required by our modeling procedure, the direction of expression changes is 

mostly consistent.

To test the robustness of these findings, we used a jackknife procedure, sequentially 

removing one of the seven studies and performing the meta-analysis on the remaining six, 

for each study in turn. We expected that results highly influenced by a single data set would 

not be stable across jackknife runs. Each leave-out iteration resulted in a new meta-

signature, which was then ranked by q-value and compared against the final meta-signature 

(Supplementary Table 3). The range of rank correlations among jackknife iterations (0.87 – 

0.99) illustrates the robustness of our meta-signatures, demonstrating that our results are not 

highly biased by any single dataset. The lowest correlations were observed upon removal of 

the Bahn and GSE21138 datasets (0.88 and 0.87, respectively) suggesting that these datasets 

may be contributing a slightly stronger signal, particularly to the up-regulated signature. The 

lack of significant genes at a q < 0.1 in the signature for those jackknife runs corroborates 

this finding. Finally, the top 100 probes were taken from each jackknife signature and an 

intersection set was retained to form a ‘core signature’ of 16 down-regulated and 14 up-

regulated probes (Table 3). We consider these probes to be the most reliable findings from 

our study as they are relatively insensitive to the choice of data sets used. In Figure 2, we 

have assembled the ‘core signatures’ and plotted expression levels within each dataset with 

samples separated into control and schizophrenia groups. For some studies we observe a 

more obvious gradient between the two groups illustrating expression change, and for others 

the difference is more subtle.

To assess the sensitivity of our results to the choice of pre-processing algorithm we re-

analyzed our data with four different methods (see Supplemental Text). We obtained good 

agreement between the results of each method and our final meta-signatures despite 

dramatic changes to the preprocessing procedure (Supplementary Table 4). Additionally, we 

took the intersection of significant probes from each of the different methods to assemble a 

list of probes that are completely insensitive to the choice of preprocessing method. This list 

comprises a total of 5 up-regulated and 8 down-regulated probes, highlighting novel genes 
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and genes that have been previously implicated in independent studies (Table 3; 

Supplementary Table 2).

The set of differentially expressed genes identified from our analysis implicates a variety of 

genes and functional groups, many of which have been previously reported in the literature. 

For example, down-regulation of mu-crystallin (CRYM), potassium channel subfamily K 

member 1 (KCNK1), F-box protein 9 (FBXO9) and up-regulation of lipoprotein lipase 

(LPL) and lysyl hydroxylase 2 (PLOD2) are concordant with findings from previous studies 

(7, 9, 12, 47). We manually evaluated the significant genes in our list (q < 0.1) individually 

according to literature reports and Uniprot definitions for each, to characterize genes into 

high-level functional categories. In the down-regulated signature we found genes to cluster 

into functional groups pertaining to various molecular mechanisms of neuronal 

communication. On the pre-synaptic side we find genes involved in cell adhesion (for 

example, OPCML), and neurotransmitter secretion (for example, APBA2, PCSK2). We also 

find genes involved in signalling pathways that elicit metabotropic effects (for example, 

GNAL, OPN3, CRHR, RGS7, GNB5). Concordant with previous studies, we also identified 

various genes involved in oxidative phosphorylation (for example, CYP26B1, COQ4, 

SLC25A15, ATP5C1, SLC25A12) and ubiquitination (for example, FBXO9, COPS7B, 

USP19, TACC2, DCAF8). From our up-regulated signature we find a number of 

transcription-related genes (for example, BAZ1A, CBFA2T2, BBX, ANP32A) and genes 

involved in translation (for example, EIF3E, EIF2C3, PAIP2B). Other genes include cell 

organization/maintenance factors (for example, PKP4, PLOD2) and various stress response 

genes (for example, SMG1). Additionally for both signatures we find a small group of genes 

with unknown function.

We performed a functional analysis to systematically detect enrichment of biological 

processes, using Gene Ontology (GO) annotations. After multiple test correction, we were 

unable to identify any significant terms using the over-representation method (ORA), but 

significant terms found using the threshold-free GSR algorithm (39) corroborate findings 

from the above manual evaluation. For genes with decreasing expression levels in 

schizophrenia, the top GO categories included those involved in energy metabolism, and 

ubiquitination, neurotransmitter transport and various metabolic processes. The 

schizophrenia up-regulated genes showed enrichment in various immune-related GO 

categories in addition to terms related to cellular localization (full results from this analysis 

can be found in Supplementary Table 5).

Because the genes we identified were functionally diverse, we hypothesized there might be 

additional insight gained at the level of gene networks. In particular we asked whether the 

signature genes had any unusual properties in their protein interaction patterns, compared to 

carefully selected groups of background genes (see Methods). We specifically looked at 

within-group connectivity, node degree (the number of connections) and path lengths 

between genes. Our most striking finding is that the genes within our set were significantly 

closer to one another in the network than expected by chance (p<0.02). This relationship 

suggests a higher likelihood of functional relationships among the signature genes (41, 48).
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In contrast, the signature genes did not possess a particularly high node degree within the 

network (23rd percentile in the whole network), that is, they tend not to be ‘hubs’. We 

illustrate these properties for the up and down-regulated “core” signature genes in 

Supplementary Figure 2.

We also evaluated each meta-signature against modules of co-expressed genes in the human 

cortex as reported in(49). Details on this analysis can be found in the Supplemental 

Methods. Our up- and down-regulated signatures significantly overlap with the “turquoise” 

and “brown” modules (p < 0.01 and p < 0.05 respectively; Supplementary Table 6). These 

are modules of interest as they display a notable extent of preservation across datasets in 

(49), suggesting that differential expression of our signature genes may be disrupting core 

networks in the human brain. This also reinforces the importance of gene network structure 

analysis in determining the basis of this disorder.

To characterize our schizophrenia signatures with respect to cellular organization in the 

cortex we cross-referenced our ranked meta-signatures with published lists of CNS cell type 

markers (50). An ROC analysis of the meta-signatures for astrocytes, oligodendrocytes and 

neurons revealed no preferential association with our ranked meta-signatures. However, 

evaluating only the significant probes (q<0.1) in our signatures, we find an enrichment of 

probes mapping to neuronal markers in the down-regulated signature (Supplementary Table 

2). While our linear modeling approach controlled for the effects of age and brain pH, we 

checked our signatures against gene lists for pH and age from our previous study of normal 

post-mortem human brain (16). The overlap was significant only for our down-regulated 

signature, which contains 33 genes previously identified to be down-regulated by age. 

Because our profiles are age-corrected and our cohorts age-matched, this suggests overlap in 

expression changes in age and schizophrenia rather than a confounding effect. We also 

sought to address factors that were not accounted for in our linear modeling, such as 

medication effects and alcohol and drug abuse. Using gene lists provided from the SMRI 

Online Genomics Database (http://www.stanleygenomics.org), we extracted significant gene 

lists (p < 0.001; FC>1.2) pertaining to the effects of lifetime alcohol use (23 genes), lifetime 

drug use (26 genes), and lifetime antipsychotics (69 genes) in subjects with schizophrenia. A 

comparison of each of these lists to our meta-signatures identified only two overlapping 

genes. We found KCNK1, which is present in our down-regulated signature, also increases 

with lifetime alcohol use. From the up-regulated signature the gene LPL, appears to increase 

with lifetime antipsychotic use and decrease with increased drug use.

Each meta-signature was evaluated against the top 45 candidate schizophrenia genes 

reported in the SZGene database (http://www.szgene.org/). Agreement of the meta-signature 

ranking with the SZGene set was assessed using receiver operating characteristic (ROC) 

curve analysis. The SZGene list appears to be randomly distributed across our ranking. We 

also computed a simple overlap between the 45 candidate genes and our results, identifying 

OPCML as the only common gene.

We were interested in comparing our re-analysis of these seven data sets to the “hit lists” 

provided by the data set providers. We first tested whether our meta-signature gene rankings 

were enriched for genes reported by the original study, using ROC analysis (Table 4; see 
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Supplementary Methods). We observed high AUC scores for most gene sets; however the 

Haroutunian and GSE21138 studies exhibited exceptionally low scores, possibly in part 

because the original studies have an added dimension of variability as gene sets were 

generated for stratified cohorts as opposed to a case versus control comparison. While high 

AUCs suggest some similarity in the results, a more sensitive analysis examines just the 

very top of the rankings. We therefore computed the overlap of each reference gene set with 

the meta-signature of genes collected at q<0.1. This reveals a handful of probes in each 

study that also show up in our significant gene lists (Table 4). We also re-analyzed each 

individual dataset using our linear modeling approach. This allowed a more fair evaluation 

of the contribution of each to the final meta-signatures, since the original studies used a 

variety of methods for gene selection. After correcting for multiple testing, only two of the 

data sets (Altar and Haroutunian) yielded significant genes at q < 0.1. We therefore 

considered the top 100 probes from each dataset, and computed overlaps with our meta-

signatures (Supplementary Table 7). The overlap is highest with the Bahn and GSE21138 

datasets, which is in accord with the finding that these datasets contribute a stronger signal 

to the meta-signature than the others. Despite being the only two data sets which have 

significant differential expression after multiple test correction, the Altar and Haroutunian 

results showed very little overlap with the final meta-signature. We note that considering the 

7 data sets independent of our meta-signature, there was no overlap among their top 100 

probes. Similarly, there was little correlation of the overall rankings of probes among the 

data sets (Supplementary Table 8). Overall these results suggest that our re-analysis is 

concordant with the analysis conducted by the original study authors, subject to important 

differences likely attributable to our analytic approach (for example, correction for batch 

effects), and only revealing commonalities through meta-analysis which contribute weakly 

to the findings of the individual studies.

Discussion

In this study we present expression changes associated with schizophrenia consistent across 

up to seven independent cohorts of subjects. To our knowledge, the degree of validation and 

confirmation inherent in our analysis is unprecedented. Unlike previous studies, which use 

PCR assays to check results on the same RNA samples used for microarrays, or which 

compare at most two cohorts, we identified changes in expression that are shared across 

independent subject cohorts, analyzed by laboratories distributed around the world. Our 

study provides a new window into the molecular changes that might underlie schizophrenia.

The larger number of down-regulated probes (86 vs. 39) is in agreement with previous 

reports (2, 8, 9). Many of the genes we have identified have been previously reported to be 

expressed in the brain, with some genes showing neuronal specificity. Some of the genes we 

report as differentially expressed have been previously implicated in schizophrenia, either 

through expression profiling studies of schizophrenia (KCNK1, CRYM, FBXO9), or genetic 

association studies (OPCML (15)). We also identify three genes in our signature (up-

regulated genes WNK1 and ABCA1 and down-regulated gene SNN) that overlap with 

results from a comparative analysis of two of the studies we used (29). Additionally, we 

found functional gene groups discussed in previous expression studies of schizophrenia. 

Many of the same metabolic processes were observed in a study of 71 different metabolic 
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genes groups in schizophrenia (7). Also in agreement, various energy pathway genes were 

found previously in DLPFC studies of schizophrenia (47, 51). Over-expression of immune 

responses from our GSR analysis is also concordant with recent findings of over-expression 

in genes related to immune function in schizophrenia (9, 52, 53).Thus, our results are 

supportive of at least some previous findings and reveal a previously unrecognized 

similarity across studies.

Our meta-signatures contain a number of interesting new candidate genes, particularly our 

down-regulated meta-signature which potentially reflects alterations in neuronal 

communication. NOVA1 is a regulator of RNA splicing recently found to inhibit splicing of 

exon6 from the dopamine receptor D2 gene resulting in D2L, the long isoform of the 

receptor (54). With NOVA1 decreasing in expression in schizophrenia, inhibition may be 

repressed leading to higher than normal levels of the spliced D2S isoform which is involved 

in neuron firing and dopamine release. The DLGAP1 gene encodes a protein interacting 

with PSD-95 and a complex of other proteins in the postsynaptic density. Decreased 

expression of this scaffold protein may have consequences for anchoring and organizing 

receptors and signalling molecules on the postsynaptic side. Moreover, we have identified 

several genes associated with calcium signalling (CACNB3), binding (SLC25A12, 

NECAB3) and homeostasis (CCL3, ATP2B2), processes of likely relevance to 

schizophrenia (55). We have also identified genes that associate with the G-protein coupled 

receptor (GPCR) signalling pathway. One example is GNAL, a gene encoding for the alpha 

subunit of the G-protein Golf, expressed in many regions of the brain. Given the critical 

roles of G-proteins it is plausible that GNAL (and other GPCR related genes) may have a 

role in the pathophysiology of schizophrenia (56). GNAL expression has not been 

previously shown to be affected by schizophrenia, but it is located in a chromosomal region 

(18p.2) that has been linked to schizophrenia and bipolar disorder. More specifically, a di-

nucleotide repeat in intron 5 of the GNAL gene has been linked to schizophrenia in some 

families (57). These expression changes concerning synaptic function may reduce neuronal 

energy demand in the brains of affected patients thus providing explanation for the down-

regulation of various oxidative phosphorylation and energy metabolism genes that we 

observe.

We also sought to examine whether our signature genes could be inferred to share some 

previously unknown function, making use of gene network analysis. One way to do this is 

by the principle of “guilt by association”, which states that genes with shared function are 

more likely to interact (58). However, the meta-signature genes have a fairly low number of 

interaction partners, making “guilt” difficult to ascertain. Another property to examine is 

path length in the network, where genes that have short paths between them might be more 

functionally related. In general, low node degrees would imply higher path lengths among 

the genes, but was not the case for our gene set. That is, the signature genes are linked by 

unusually short paths in the network. Additionally, we found each of our meta-signatures 

revealed a significant overlap with previously identified gene co-expression modules in the 

human cortex (49). This suggests a relationship among the genes that is not reflected in 

current annotations and a network analysis of these schizophrenia genes will need to be 

investigated in greater detail in future studies.
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We found that some of the down-regulated schizophrenia genes overlap with genes that 

decrease in expression with age. Many of the biological processes affected by age also tend 

to appear as affected processes in schizophrenia, both in this study and existing profiling 

studies (7, 9, 12, 47, 51). These findings suggest that many genes affected by age are also 

affected by schizophrenia, but also raise the possibility of confounding effects. As these 

effects could be confounded, one could filter the list of schizophrenia candidate genes from 

our results by simply removing known age- and pH-affected genes from the final signature 

(leaving 31 up- and 51 down-regulated probes) to investigate these effects more thoroughly.

Our results should be interpreted in the context of several caveats. First, our approach is 

specifically designed to find concordant results across studies, and does not detract from the 

potential novel findings that might be found in any single data set. We do suggest that genes 

found to be commonly differentially expressed by multiple studies are of particularly high 

value in identifying underlying etiological influences in schizophrenia. As is the case for all 

postmortem brain studies, we also cannot be sure that the expression changes we have 

identified are direct effects of the illness or are secondary to an underlying pathology. An 

additional caveat is that because we were unable to obtain medication or illicit drug use 

information for all subjects, we were not able to incorporate this information into our 

analysis. To help address this we compared our signatures against gene lists derived from a 

recent review on convergent antipsychotic mechanisms(59). We observed no overlap with 

our signatures. In addition to antipsychotics, the use and abuse of other recreational drugs 

and smoking are also compounds that can confound the study of disease-related gene 

expression. Due to a lack of sufficient information on these factors we were unable to 

strictly control for them in our analysis. However, using gene lists provided from the SMRI 

Online Genomics Database (http://www.stanleygenomics.org) we were able to make 

comparisons to address some of these factors and identified two overlapping genes. While 

the small number of overlapping genes is suggestive that we have identified genes in our 

signature that are not affected by such extraneous factors; we acknowledge that we cannot 

entirely exclude the possibility that the gene expression changes we have identified are still 

in some way influenced.

In conclusion, we have contributed the most comprehensive meta-analysis of schizophrenia 

expression profiling studies to date. Our most striking finding is that despite the 

heterogeneity of the disorder, we were able to detect a common signature of schizophrenia. 

Additionally, we have elaborated on the biological relevance of our gene list, illustrating a 

need for further genetic study to fully enhance our understanding of the direct implication of 

these changes in expression with the illness. The signatures we identified are consistent with 

current hypotheses of molecular dysfunction in schizophrenia, including alterations in 

synaptic transmission and energy metabolism. However, the diversity of genes we found 

suggests that systems biology approaches, exemplified by the analysis of gene network 

structure, will be of value in determining the basis of this disorder. The approaches used in 

our study should be applicable to other neuropsychiatric disorders if sufficient data are 

available.
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Figure 1. Example of consistent expression changes for a gene across data sets
Expression data within each dataset after covariate correction is presented for the top down-

regulated gene NECAB3. Plots are labelled with the associated dataset. Samples were 

separated into disease and control cohorts and expression was plotted as a boxplot. 

Individual sample values were overlaid on with red squares representing control individuals 

and blue triangles representing schizophrenics.
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Figure 2. Expression changes in the ‘core signatures’
For each probe in the core signatures (meaning they are retained as significant even after the 

removal of any single study), the corresponding data from each study was extracted and 

converted to a heat map. Expression values were normalized across all samples within each 

dataset, and as in Figure 1 the data are corrected for the covariates such as batch and age. 

Rows represent probes and are labeled with its unique gene mapping if one exists. Columns 

represent samples. Grey bars represent the control brain samples, and the black bar 

represents the schizophrenia samples. Light values in the heat map indicate higher 

expression values.
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Table 1

Schizophrenia Datasets

Dataset Reference Microarray Platform Brain region(s) No. of Subjects
CTL:SZ

Stanley Bahn SMRI database HG-U133A Frontal BA46 31 : 34

Stanley AltarC SMRI database HG-U133A Frontal BA46/10 11 : 9

Mclean HBTRC HG-U133A Prefrontal cortex
(BA9)

26 : 19

Mirnics Garbett K. et al, 2008 (30) HG-U133A/B Prefrontal cortex
(BA46)

6 : 9

Haroutunian Katsel P. et al, 2005 (31) HG-U133A/B Frontal
(BA10/46)

29 : 31

GSE17612 Maycox P. et al, 2009 (29) HG-U133 Plus 2.0 Anterior
prefrontal cortex
(BA10)

21: 26

GSE21138 Narayan S. et al, 2008 (52) HG-U133 Plus 2.0 Frontal (BA46) 29 : 25

SMRI, Stanley Medical Research Institute; HBTRC, Harvard Brain Tissue Resource Centre (Mclean66 collection)
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Table 2

Summary of demographic variables across combined cohort

Control Schizophrenia P-value

Number of Subjects 153 153

Age 56.25 ± 20 55.27 ± 19 p = 0.67

Sex 101M : 52F 113M : 40F p = 0.1

Brain pH 6.5 ± 0.28 6.39 ± 0.29 p = 0.001

PMI 21.95 ± 15.3 22.65 ± 15.2 p = 0.69

F, female; M, male; PMI, post-mortem interval. There were 319 samples collected across seven datasets of which 306 passed quality control 
analysis. The summary demographics (mean ± standard deviation) and t- test p-values for group differences are shown for those subjects used in 
the analysis. For sex we report the p-value generated from a chi-squared test for equality of proportions.
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Table 3

Core signatures retained after jackknife validation

A: Up-regulated in schizophrenia

Probe Gene Symbol Gene Description Fold Change Q-value

210057_at SMG1g SMG1 homolog,
phosphatidylinositol 3-kinase-
related kinase

1.04 0.009

202619_s_at PLOD2▲ procollagen-lysine, 2-oxoglutarate
5-dioxygenase 2

1.12 0.05

203548_s_at LPL▲ lipoprotein lipase 1.11 0.009

*202975_s_at RHOBTB3 b Rho-related BTB domain containing 1.16 0.063

*216048_s_at 3 1.11 0.02

*213015_at BBX b bobby sox homolog (Drosophila) 1.05 0.082

213016_at 1.11 0.086

219426_at EIF2C3 b

213187_x_at FTL ferritin, light polypeptide 1.11 0.022

207543_s_at P4HA1g prolyl 4-hydroxylase, alpha
polypeptide I

1.12 0.074

218345_at TMEM176A transmembrane protein 176A 1.10 0.071

221503_s_at KPNA3 karyopherin alpha 3 (importin alpha
4)

1.02 0.072

209069_s_at LOC440093b, m

H3F3B

multiple gene mappings 1.11 0.020

209747_at BCYRN1b, g

TGFB3

Multiple gene mappings 1.11 0.072

B: Down-regulated in schizophrenia

Probe Gene Symbol Gene Description Fold Change Q-value

210720_s_at NECAB3 N-terminal EF-hand calcium binding
protein

0.92 0.006

212646_at RFTN1 raftlin, lipid raft linker 1 0.91 0.006

220807_at HBQ1 hemoglobin, theta 1 0.91 0.007

*206355_at
206356_s_at

GNAL guanine nucleotide binding protein
G(olf) subunit alpha

0.91
0.90

0.007
0.048

220741_s_at PPA2a, g pyrophosphatase (inorganic) 2 0.92 0.009

204679_at KCNK1▲ potassium channel, subfamily K, member 1 0.88 0.087

206215_at OPCML opiate binding cell adhesion molecule 0.94 0.074

*219032_x_at OPN3m opsin 3 0.89 0.027

*212987_at FBXO9▲ a, b, g F-box protein 9 0.88 0.033

206290_s_at RGS7 regulator of G-protein signaling 7 0.89 0.043

203719_at ERCC1 DNA excision repair protein 0.94 0.042

202688_at TNFSF10b tumor necrosis factor (ligand) superfamily, member 10 0.83 0.075

218653_at SLC25A15 solute carrier family 25 (mitochondrial
carrier; ornithine transporter) member
15

0.94 0.042
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B: Down-regulated in schizophrenia

Probe Gene Symbol Gene Description Fold Change Q-value

205510_s_at GABPB1 b, g

FLJ10038

multiple gene mappings 0.93 0.027

*213924_at Unknowna Unknown 0.89 0.006

*
insensitive to pre-processing method;

▲
identified in previous expression profiling study;

a
Altar study finding;

b
Bahn study finding;

g
GSE17612 study finding;

m
Mclean study finding.

Q-value is an FDR adjusted p-value, see (36)
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