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Abstract: Signal peptidase I (SPase I) is critical for the release of translocated preproteins from the

membrane as they are transported from a cytoplasmic site of synthesis to extracytoplasmic

locations. These proteins are synthesized with an amino-terminal extension, the signal sequence,
which directs the preprotein to the Sec- or Tat-translocation pathway. Recent evidence indicates

that the SPase I cleaves preproteins as they emerge from either pathway, though the steps

involved are unclear. Now that the structure of many translocation pathway components has been
elucidated, it is critical to determine how these components work in concert to support protein

translocation and cleavage. Molecular modeling and NMR studies have provided insight on how

the preprotein docks on SPase I in preparation for cleavage. This is a key area for future work
since SPase I enzymes in a variety of species have now been identified and the inhibition of these

enzymes by antibiotics is being pursued. The eubacterial SPase I is essential for cell viability and

belongs to a unique group of serine endoproteases which utilize a Ser-Lys catalytic dyad instead
of the prototypical Ser-His-Asp triad used by eukaryotes. As such, SPase I is a desirable

antimicrobial target. Advances in our understanding of how the preprotein interfaces with SPase I

during the final stages of translocation will facilitate future development of inhibitors that display a
high efficacy against SPase I function.
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Introduction
Nearly a third of all proteins function outside of the

cytosol and, therefore, need to be translocated through

or into the cytoplasmic membrane. To accomplish this

feat, they are synthesized as preproteins, consisting of

a short amino-terminal extension sequence, called the

signal peptide region, followed by the mature region of

the protein (see Fig. 1). The signal peptide acts as zip-

code marking it as a protein destined to reside in an

extracytoplasmic location and directing it to a specific

secretion pathway. Once the majority of the preprotein

is translocated, the signal peptidase (SPase) enzyme is

responsible for cleavage of the signal peptide from the

preprotein, allowing release from the membrane and

correct folding of the mature protein. Accumulation of

preproteins at the membrane has been shown to be

deleterious for growth.2 Therefore, the SPase enzymes

are vital for cell survival.3–9
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lum; Sec pathway, general secretory pathway; Tat pathway, twin-
arginine translocation pathway; SRP, signal recognition particle.
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SPases have been identified in all orders of life.

In eukaryotes, SPase systems are located in the endo-

plasmic reticulum (ER), the mitochondria, and chloro-

plasts. In prokaryotes, SPases are classified into

three groups: SPase I, II, and IV. SPase II and IV are

required for cleaving signal peptides from lipopro-

teins and prepilin proteins, respectively. This review

focuses on SPase I which is responsible for generat-

ing mature non-lipoproteins, transported in bacteria

by the general secretion (Sec) pathway (see Ref. 10).

Recent evidence also indicates transport via the twin-

arginine translocation (Tat) pathway.11 Some bacte-

rial species possess only one essential SPase I enzyme

(Escherichia coli), while others contain multiple

enzymes. Take for example, Bacillus subtilis, which

has seven closely related SPase I enzymes.12–14

SPases have long been recognized as potential

antibacterial targets. Recently, there has been a

renewed interest in SPase I inhibitors and a number

of new studies have identified SPase I in common

pathogens15–17 and tested their inhibition against

various antibiotics.18–25 The bacterial SPase I is part

of the SF serine protease clan, for which there is an

evolutionary relationship,26 and belongs to the prote-

ase family S26 that utilizes a Ser-Lys catalytic dyad

mechanism.27 It differs from its eukaryotic ER coun-

terparts which belong to the S27 serine protease fam-

ily and generally use a Ser-His-Asp triad catalytic

mechanism. As SPase I exhibits a catalytic mecha-

nism unlike most serine proteases, it is feasible to in-

hibit the bacterial enzyme without harming the host.

At the same time, common serine protease inhibitors

are ineffective28–32 making the development of appro-

priate inhibitors for this novel target all the more

pressing in the face of multidrug resistance.

Protein Secretion Pathways Associated

with SPase I
The two most widely used secretion pathways in

bacteria, Sec and Tat, are thought to use SPase I at

the end stage of translocation. The SPase I enzyme

is an essential part of these protein transport path-

ways. SPase I cleaves non-lipoprotein preproteins

Figure 1. The features and alignment of bacterial signal peptides. The tripartite structure of Sec-dependent non-lipoprotein

signal peptides is depicted in (A), where the N-terminus is characterized by the presence of positively-charged residues

(blue), the core of the peptide is comprised of hydrophobic residues (orange), and the C-terminus is typically neutral, but

polar and contains the cleavage site (green). The red arrow indicates the SPase cleavage site and the amino acid motif

common to the cleavage site is given. The mature region (purple) of the preprotein follows the cleavage site. (B) Sec-

dependent signal peptide sequence alignment. Signal peptide sequences compiled from the SPdb database.1 The -1,-3

residues (red) display sequence conservation of small aliphatic residues among a number of Sec- and Tat-dependent signal

peptides. If present, the conserved proline is in bold. The site of cleavage is carboxy-terminal to the -1 residue. (C) The Tat-

dependent non-lipoprotein signal peptide depicted in the same manner as panel (A). (D) Tat-dependent signal peptide

sequence alignment. Depicted as in panel (B) and the residues highlighted in blue are the required arginine residues that give

the Tat pathway its name.
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that are translocated both post-translationally and

cotranslationally by the Sec pathway and from the

proteins that are translocated through the Tat

pathway.11

In bacteria, proteins secreted by the Sec path-

way typically do so via post-translational transloca-

tion in which the protein traverses the inner mem-

brane after it is fully synthesized by the ribosome

[see Fig. 2(A)]. The major components of this path-

way are an integral membrane translocon complex,

SecYEG, and the mobile cytosolic components, the

SecA ATPase nanomotor and the chaperone SecB.

Preproteins bind directly to SecA in the cytosol of

Gram-positive bacteria, which lack a SecB homolog,

and in Gram-negative bacteria when a preprotein

does not require SecB for secretion. SecB delivers

the preprotein to SecA33–35 and then the SecA-

preprotein complex binds to the SecYEG translocon.

SecA undergoes repetitive cycles of ATP hydrolysis

that provide the energy required for translocation of

the preprotein through the SecYEG translocon chan-

nel. After at least 80% of the preprotein has been

synthesized, SPase I can cleave the preprotein to

give rise to the mature protein.36 The signal peptide

is then degraded by the signal peptide peptidase, a

membrane-bound enzyme with an active site located

in the periplasm that cleaves using a Ser-Lys cata-

lytic dyad mechanism.37,38

Co-translational translocation, concomitant syn-

thesis and translocation of a preprotein, occurs simi-

larly with a few exceptions. Typically, this type of

translocation is used with integral membrane pro-

teins, however, not all membrane proteins are synthe-

sized with a signal peptide39 and, therefore, do not

require SPase I cleavage. (For a review on co-transla-

tional translocation refer to Dalbey and Chen.)39

The Tat pathway is a protein transport system

with the ability to export proteins in a fully folded

Figure 2. Bacterial protein translocation pathways requiring SPase I. (A) The Sec-dependent general secretory pathway for

secretory preproteins via post-translational translocation. Preproteins are bound in the cytosol by SecB or SecA. If bound by

SecB, the SecB-preprotein complex then binds to SecA and transfers the preprotein. SecA carrying the preprotein binds the

SecYEG translocon channel and using the energy from ATP hydrolysis may propel the preprotein through the channel. Once

sufficient preprotein has been translocated to ensure no back-slippage, the SPase I cleaves off the signal peptide, allowing

the mature protein to release from the membrane and undergo folding. (B) The Tat-pathway is a post-translational

translocation pathway used for secretion of fully folded preproteins. The TatBC complex recognizes and binds the signal

sequence of a Tat-dependent preprotein. This causes the recruitment of TatA and the formation of an appropriately sized

TatA translocon. The fully-folded preprotein is then secreted into the periplasm, while the signal sequence remains in the

membrane. The mature protein is released into the periplasm once the SPase I cleaves the signal peptide.
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conformation [see Fig. 2(B)] such as some redox-

cofactor containing enzymes.40 The E. coli Tat path-

way is comprised of three membrane proteins, TatA,

TatB, and TatC,41–44 while the B. subtilis pathway

lacks the TatB protein.45,46 Tat-dependent secretory

proteins are targeted to the pathway via an N-termi-

nal signal peptide containing an almost invariant

twin-arginine motif [Fig. 1(C,D)]47 and are recognized

by a complex of TatB and TatC in the membrane.48,49

Once a signal sequence binds TatBC, TatA is

recruited and forms a large protein-conducting chan-

nel ranging from 450 to 750 kDa in size.50–52 The sig-

nal peptide region is thought to remain in the mem-

brane where it is cleaved from the preprotein by

SPase I, thereby allowing release of the mature pro-

tein into the periplasm. However, the instability of

the Tat channel has made it difficult to study this

pathway and much information is still needed to fully

understand how folded enzymes are translocated

across the inner membrane and where and how

cleavage of the preprotein occurs.

Although the early steps of these pathways

have been well studied, our understanding of the

preprotein-SPase interaction and cleavage is still in

its infancy and a number of questions remain

unanswered. What are the steps linking preprotein

utilization of the Sec and Tat pathways to cleavage

of the signal peptide from preprotein? How does the

enzyme find the signal peptide? Does SPase I inter-

act with the Sec or Tat translocon? It is also

unknown where the signal peptide is located during

cleavage; for example, is it in the periplasm or in

the lipid bilayer? If the signal peptide exits the

membrane for cleavage, how does this occur and

what triggers the cleavage event?

Substrate Specificity

A typical Gram-negative bacterial Sec signal peptide

contains 18–30 amino acid residues, while Gram-pos-

itive bacteria tend to have significantly longer Sec sig-

nal peptides.53–56 Although signal peptides show no con-

servation of sequences, they can be divided into three

distinct domains. A short N-terminal (n) region contain-

ing up to three positively charged residues is followed

by a much longer, central, hydrophobic (h) core region

after which is a C-terminal (c) polar region containing

the consensus cleavage sequence [Fig. 1(A,C)].

The c-region contains crucial residues required

for cleavage. Statistical analysis of the amino acid

residues in the SPase I cleavage site led to the for-

mulation of the (-1,-3) rule; that is, the residues at

the -1 and -3 (also known as P1 and P3) positions,

where -1 is immediately before the processing site,

are typically made up of small, neutral residues,

such as Ala, Gly, Cys, and Ser (Fig. 1).57–59 The

prevalence of Ala in the -1, -3 positions gave rise to

the name of the motif, Ala-X-Ala (Fig. 1). Mutational

studies carried out by substituting the -1 residue

with residues other than those that are preferred at

this site such as Asp, Val, and Asn indicated that

processing no longer occurred C-terminal to the -1

residue. However, cleavage occurred two residues

upstream (at position -3) of the usual site due to the

presence of an alternative processing site containing

another Ala-X-Ala motif.60,61 The length of the

c-region is also thought to determine cleavage effi-

ciency. When the c-region is longer than nine resi-

dues cleavage efficiency decreases and no cleavage is

observed when the c-region is 13 residues long.62

This is likely due to the -1 and -3 residues being too

far away from the active site of the enzyme. Another

commonly observed feature of signal peptides is the

presence of a Pro or Gly residue at the -6 position

(see Fig. 1).63 This small, helix-breaking residue,

located between the h- and c-regions, has been sug-

gested to nucleate a short b-conformation at the -5

to -1 region allowing this region to bind to the SPase

I active site (see review64).65 It has also been sug-

gested that the peptide binds in a extended confor-

mation with a pronounced backbone twist between -

3 and þ1.66 Having a small residue at -6 that halts

the extension of the helix may be more important

than the potential turn-forming properties. Consist-

ent with this, a recent NMR structure of an alkaline

phosphatase peptide bound to SPase I D2-75 shows

the cleavage region of the signal peptide sequence is

unstructured and exposed for cleavage (De Bona

et al., personal communication). This unstructured

region is also observed when the signal peptide is

bound to dodecylphosphocholine micelles (De Bona

et al., personal communication). A small helix in the

core region is also apparent in the micelle structure.

This suggests that the membrane is important in

stabilization of the signal peptide and is consistent

with the idea that the signal peptide is in contact

with lipid and that the enzyme active site functions

at the membrane surface. More structural analysis

is needed to better define the conformation of the

preprotein when bound to SPase I.

The early mature region of a preprotein typi-

cally has a net neutral or negative charge, which

has been shown to be important in protein secre-

tion.67,68 Mutants that have positively-charged resi-

dues inserted immediately after the signal peptide

are not translocated through the membrane.69–71

Modeling a DsbA peptide (residues 13–25) with the

E. coli SPase I crystal structure, reveals 13 subsites

within the SPase I where the signal peptide and

mature portions of the preprotein bind during cleav-

age.66 As þ1 to þ2 in Gram-negative bacteria and

þ1 to þ4 in Gram-positive bacteria display sequence

conservation, it is speculated that those regions are

involved in binding to the SPase I.68

Tat signal peptides tend to be longer (up to 58

amino acids) than Sec signal peptides and they

invariably contain two Arg residues in the n-region,
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adjacent to the h-region [see Fig. 1(C,D)].40 They may

also carry an Arg or Lys residue in the c-region,

which ensures that the preprotein is not translocated

through the Sec pathway.72 The Tat peptides, how-

ever, maintain the -1,-3 rule with small aliphatic resi-

dues found at the -1 and -3 sites thought to be critical

for cleavage by SPase I.11 Does this indicate that the

-1 and -3 residues are all that is important for recog-

nition by SPase I? Or are the modes of recognition of

Sec and Tat signal peptides by SPase I different?

The SPase I substrate binding pockets dictate

the substrate specificity of the enzyme. Two major

substrate-binding subsites in SPase I have been

identified and are named S1 and S3 after the -1 and

-3 regions of the signal peptide [see Fig. 3(A)].65

Recently, an additional 11 subsites have been identi-

fied by a computational modeling strategy using a

peptide containing both signal peptide and mature

protein sequences (Table I).66 These sites named S7,

S6, S5, S4, S3, S2, S1, S1’, S2’, S3’, S4’, S5’, and S6’

suggest that the peptide residues -7 to þ6 are bound

in their respective pockets and that the early mature

region of the preprotein is indeed involved in cleav-

age. Of these sites, six have been identified as hav-

ing smaller clefts (S3, S2, S1, S1’, S3’, and S4’) and

thus play a direct role in the high specificity of the

Figure 3. E. coli SPase I D2-75 apoenzyme crystal structure (PDB ID: 1KN9).73 (A) A solid surface representation of the

SPase I D2-75 apoenzyme structure with the modeled signal peptide binding subsites labeled.66,73 Subsites are colored as

follows: green S4’, lime green S4’ and S3’ overlap, blue S3’, magenta S1, red S1 and S2 overlap, orange S1, S2, and S3

overlap, purple S2 and S3 overlap, and yellow S3. (B) A ribbon representation of SPase I D2-75. The colored portion of the

protein represents the conserved domain I, while the gray region is the nonconserved domain II as well as the Gram-negative

b-ribbon insertion. Box domains B-D are color coordinated. Box B is shown in red, box C is shown in purple, box D is

colored orange, and box E is in blue. The residues that are important for catalysis (S88, S90, K145, and S278) are labeled,

colored by box domain, and displayed in ball and stick representation. The placement of G272 and K145 are shown to

emphasize the importance of glycine at residue 272. Any other amino acid in that location would result in steric hindrance

with K145. D280, and R282 form a salt bridge that is important for structural stability of the enzyme. The N- and C-termini are

labeled and the structure is lacking residues 107-124, 136, 176-177, 200-202, and 305-312, which were not resolved in the

3D structure. (C) Superimposition of the SPase I D2-75 apoenzyme crystal structure with inhibitor-bound crystal structures to

highlight differences in the position of the W300 and W310 side-chains in the various structures. The structures are colored

as follows: cyan is the apoenzyme 1KN9 molecule A,73 green is the apoenzyme 1KN9 molecule D,73 magenta is the

lipopetide-bound structure 1T7D molecule B,74 orange is the b-lactam-bound structure 1B12 molecule A,65 and blue is the

arylomycin A2 and b-sultam bound structure 3IIQ molecule A.75 (D) As in (C) except displaying positioning differences of the

side chains for residues S88 and K145 within the active site.
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signal peptide and mature residues at those respec-

tive positions.66

Enzyme Architecture and Structure
E. coli SPase I is a membrane-embedded polytopic

serine endopeptidase. It has a short periplasmic

amino-terminal region (residues 1–3), followed by a

transmembrane region (residues 4–28), a cytosolic

loop (residues 29–58), another transmembrane seg-

ment (residues 59–76), and a large C-terminal peri-

plasmic domain carrying the active site (residues

77–323). The two transmembrane helices are packed

in a left-handed supercoil.76 Some variations to this

topology exist. For example, in typical Gram-positive

bacteria there is only a single transmembrane seg-

ment at the N-terminus and a few enzymes are

believed to also have a C-terminal transmembrane

segment.13 The transmembrane segments are

thought to be required for anchoring the enzyme to

the membrane, so that it can position the catalytic

domain appropriately for signal peptide cleavage as

the preprotein emerges from the translocon. How-

ever, the transmembrane domain does not appear to

be involved in the recognition of the correct Ala-X-

Ala cleavage site.77

The periplasmic region (residues 77–323) of

SPase I is divided into two antiparallel b-sheet

domains. One of the domains (domain I) carries the

conserved regions that are found in both Gram-posi-

tive and Gram-negative bacteria, while the other

domain (domain II) is not conserved [Fig. 3(B)].78

The residues crucial for catalysis by the E. coli

enzyme include the nucleophile Ser 9065,79 and the

general base Lys 145.65,80 Both of these residues

reside in the conserved domain [Figs. 3(B) and 4].

Together Ser 90 and Lys 145 form the catalytic

dyad. The conserved domain also contains a large

exposed hydrophobic region that includes the sub-

strate binding site and the catalytic center.65 Since a

SPase I mutant lacking the transmembrane domains

exhibits enhanced in vitro cleavage activity in the

presence of both phospholipids and the detergent

Triton X-100,81 it is thought that the catalytic

domain interacts with the membrane, potentially

facilitating signal peptide processing.65 Additionally,

when Trp 300 and Trp 310 are mutated, catalytic ac-

tivity is reduced [Fig. 3(C)].82 It is unlikely, given

the distance to the active site (>20 Å),65 that these

residues are involved in catalysis; however, they

may play an important role in stabilizing the

enzyme’s structure and its placement at the mem-

brane. In membrane-proteins, aromatic residues are

often located at the membrane protein interface.83 It

has been hypothesized that the transmembrane

domain residues Trp 20 and Trp 59 are located at

the cytoplasmic side of the membrane and Tyr 81 on

the periplasmic side of the membrane and all three

are thought to be positioned next to the phospholipid

headgroups in the membrane.76

The nonconserved domain varies in size in dif-

ferent organisms. Gram-negative bacteria tend to

have a larger domain than Gram-positive bacteria

(see Fig. 4). The physiological role of domain II is

unknown; however, evidence suggests that it is not

directly involved in catalysis but may play a role in

structural stability of the enzyme. For example,

E. coli SPase I has a disulfide bond between Cys 170

and Cys 176 in the nonconserved domain,65 which

when mutated does not disrupt SPase I catalytic

activity.76,79,84

Although the overall sequence identity of SPase

I from various species is relatively low (see Fig. 4),

there are five conserved regions in the catalytic

domain that have been identified and are called

boxes A, B, C, D, and E.78 The location of these box

domains in the crystal structure is shown in Figure

3(B) and an alignment of the box domains is shown

in Figure 4. The transmembrane segments are

referred to as box A, while boxes B–E are all located

within the periplasmic domain and make up the con-

served catalytic domain. Box B consists of residues

88–95 in E. coli and is likely positioned near the

membrane surface on the periplasmic side. Not sur-

prisingly, the conserved catalytic nucleophile Ser 90

is found in this domain and is positioned on a loop

in between two b-strands.65 In the crystal structure

with the bound 5S,6S-b-lactam (penem) inhibitor,

Ser 90 is covalently bonded to the inhibitor.65

Another conserved residue in this region is Ser 88,

which is involved in the formation of the SPase I

oxyanion hole and stabilization of the tetrahedral

oxyanion intermediate state.73 Box C consists of resi-

dues 127–134 and contains a conserved Gly and

Asp. Box D consists of residues 142–153 and con-

tains the general base Lys 145 which is highly con-

served in bacterial and mitochondrial enzymes, but

is replaced with a conserved His in ER and archaeal

Table I. SPase I Residues that Comprise Each Prepro-
tein Binding Subsite

Subsite Residues

S7 Glu 82, Pro 83
S6 Pro 83, Phe 84
S5 Phe 84, Gln 85, Asp 142
S4 Phe 84, Gln 85, Pro 87, Asp 142
S3 Phe 84, Gln 85, Ile 86, Pro 87, Ile 101,

Val 132, Asp 142, Ile 144
S2 Gln 85, Ile 86, Pro 87, Ser 88, Met 91, Ile 144
S1 Ile 86, Pro 87, Ser 88, Ser 90, Met 91,

Leu 95, Tyr 143, Ile 144, Lys 145
S10 Ser 88, Ser 90, Tyr 143, Ala 279
S20 Ser 88, Ser 90, Phe 208, Asn 277, Ala 279
S30 Tyr 50, Met 249, Asp 276, Asn 277, Ala 279,

Arg 282, Tyr 283
S40 Gln 244, Asp 245, Asp 276, Asn 277, Arg 282
S50 Phe 196, Ser 206, Ala 243, Asp 276, Asn 277
S60 Phe 196, Ile 242, Ala 243
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enzymes (Fig. 4).78,85 Boxes C and D contain two

antiparallel b-strands that may form hydrogen

bonds with the signal peptide.85 Box E consists of

residues 272–282 and contains a small 310 helix and

part of a small a-helix.85 Gly 272 is strictly con-

served in nature presumably because any other resi-

due’s side chain would sterically interfere with the

side chain of Lys 145 [Fig. 3(B)].85 The highly con-

served Asp 280 and Arg 282 are involved in a salt

bridge, that is, likely necessary for stabilizing the

enzyme structure [Fig. 3(B)].65,85

Molecular modeling was used to generate a

DsbA peptide in complex with SPase I D2-75 based

on the crystal structure of E. coli SPase I in complex

with b-lactam65 and lipopeptide inhibitors.74 This

method identified 13 subsites (S7–S6’) in SPase I

that are appropriate for the interaction of the resi-

dues -7 to þ6 of the signal peptide and mature pro-

tein.66 The signal peptide binding subsites are

named S1–S7. The -1 residue from the substrate

binds in the S1 subsite formed by residues Ile 86,

Pro 87, Ser 88, Ser 90, Met 91, Leu 95, Tyr 143, Ile

144, and Lys 145 [Fig. 3(A) and Table I].66,73 The S2

subsite has the deepest cavity within the binding

site which can accommodate residues with large side

chains at position -2 and the cavity consists of SPase

I residues Gln 85, Ile 86, Pro 87, Ser 88, Met 91,

and Ile 144 [Fig. 3(A) and Table I].66 This site was

previously identified as S1, due to the overlap of res-

idues between the sites.73,85 Substrate residue -2

was initially thought to be solvent exposed,73 how-

ever, in the recent computational modeling of sub-

strate binding, the -2 signal peptide residue was

completely buried in the SPase I S2 subsite.66 The

S3 subsite is comprised of residues Phe 84, Gln 85,

Ile 86, Pro 87, Ile 101, Val 132, Asp 142, and Ile 144

[Fig. 3(A) and Table I].65,66 Two Ile (86 and 144) are

involved in substrate specificity and when they are

mutated display a relaxed substrate specificity at

the -1 and -3 positions in the signal peptide.86,87

Subsite S4 is defined by residues Phe 84, Gln 85,

Pro 87, and Asp 142, while subsite S5 includes resi-

dues Phe 84, Gln 85, and Asp 142.66 The S6 and S7

subsites consist of Pro 83 and Phe 84, and Glu 82

and Pro 83, respectively.66 The early mature region

of the substrate binds within subsites S1’ to S6’ on

the SPase I where S1’ is formed by Ser 88, Ser 90,

Tyr 143, and Ala 279 and subsite S2’ is fashioned

from residues Ser 88, Ser 90, Phe 208, Asn 277, and

Ala 279.66 Ser 88 and Ser 90 are key residues for ca-

talysis and it is noteworthy that they are positioned

within the subsites for the substrate -1 residue and

the very early mature region. Subsite S3’ is com-

posed of residues Tyr 50, Met 249, Asp 276, Asn 277,

Ala 279, Arg 282, and Tyr 283 [Fig. 3(A) and Table

I].66 The S4’ subsite includes residues Gln 244, Asp

Figure 4. Alignment of the conserved box domains for signal peptidase I from different species. The molecular weight (Mw) is

given for each protein in g/mol. The % sequence identity is relative to the entire E. coli SPase I protein sequence. Box domains

B–E are located in the catalytic domain. The serine nucleophile and lysine/histidine general base residues that are involved in

signal peptide cleavage are indicated with an asterisk. Box A comprises the transmembrane segments and is not shown.
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245, Asp 276, Asn 277, and Arg 282 [Fig. 3(A) and

Table I], while S5’ and S6’ are composed of Phe 196,

Ser 206, Ala 243, Asp 276, and Asn 277, and Phe

196, Ile 242, and Ala 243, respectively.66

Another salient feature of the enzyme structure

is the burial of the side chain of Lys 145 in a hydro-

phobic environment formed by several hydrophobic

residues (Tyr 143, Phe 133, Met 270, Met 271, Gly

272, and Ala 279) of the conserved domain.65 This is

perhaps why the pKa of Lys 145 is approximately

8.7;80,88 nearly two units less than the solvent-

exposed pKa (10.5) of a Lys side chain.88,89 The side

chain is therefore deprotonated and is now capable

of acting as a general base for the cleavage reaction.

Ser 278 is highly conserved and hydrogen bonds to

Lys 145, thereby positioning it correctly relative to

Ser 90 [Fig. 3(B,D)].65,90 The Oc atom of Ser 90 is

�2.9 Å apart from Lys 145,65 which is ideal for the

formation of a hydrogen bond.

A common characteristic of detergent solubilized

SPase I is that it undergoes autocatalysis C-terminal

to the sequence Ala38-X-Ala (E. coli nomenclature)

normally located in the cytoplasm and thus is inac-

cessible to the catalytic domain in vivo.28 Much of

our current understanding of SPase I comes from a

soluble form of SPase I that lacks the transmem-

brane segments. This mutant, D2-75, was produced

in the early 1990s by Kuo et al.29 and was found to

be enzymatically active in vitro although it has a

specificity constant approximately one-twentieth

that of the wild-type enzyme.81 This mutant is more

amenable to classical purification procedures as it is

not a membrane protein. It has, therefore, become

the ideal candidate for signal peptidase characteriza-

tion studies, such as crystallization and activity

assays. Although this form of the enzyme has helped

to elucidate the catalytic mechanism in vitro, we

still have much to learn about how the enzyme func-

tions in its native in vivo membrane environment.

With the advent of new technologies that readily

enable the study of membrane proteins in a lipid

environment, our knowledge of this enzyme and the

importance of the transmembrane domain is set for

further development in the next few years.

Much of our current knowledge of the structure

of SPase I comes from crystal structures of the D2-

75 mutant apoenzyme [Fig. 3(A,B)],73 as well as

from the D2-75 mutant enzyme bound to synthetic

inhibitors.65,74,75 The subtle changes observed

between the apoenzyme and inhibitor-bound enzyme

have enabled researchers to examine the conforma-

tional alterations that take place at the enzyme

active site, as it interacts with an inhibitor, and

infer from this potential features of the interaction

with substrate. A large rotation of the Trp residues,

300 and 310, located at the suspected membrane

interface is observed [Fig. 3(C)]. For Trp 300 there

appears to be two positions that the side chain may

take. The area around Trp 310 is only resolved in the

two structures that were solved in the presence of the

lipopeptide inhibitor arylomycin A2;
74,75 however, they

display a large change in the orientation of the Trp

side chain. Slight changes are also observed in the

active site residues Ser 88 and Lys 145 with some

inhibitor-bound structures as compared to the apoen-

zyme structure [Fig. 3(D)]. Residue Ser 88 points in

towards residue Ser 90, however, in the b-lactam-

bound structure65 this residue points away from the

active site. The Lys 145 side chain is sterically dis-

placed when bound to an arylomycin A2 inhibitor

[Fig. 3(D)] and is no longer able to make a hydrogen

bond with Ser 278.74 These structures have also

helped to explain why common serine protease inhibi-

tors do not inhibit SPase I. Typical serine proteases

are inhibited by 5R b-lactam stereoisomers, while

SPase I inhibitors bind with an opposite stereochemis-

try (5S).65 Although these structures have provided a

starting point for the prediction of how preprotein sub-

strates bind and interact with SPase I, to fully under-

stand the interaction we await the breakthrough of a

cocrystal structure of substrate-bound SPase I.

Proposed Proteolytic Mechanism

Once the preprotein substrate binds to the active

site, it positions itself such that the -1 and -3 resi-

dues of the signal peptide become buried inside the

SPase I S1 and S3 hydrophobic subsites. The amino

group of Lys 145 acts as the general base and

deprotonates the hydroxyl group of Ser 90 (Fig. 5).

The Ser 90 Oc atom now acts as the nucleophile,

and attacks the substrate P1 residue carbonyl group

on the si-face of the scissile peptide bond to form the

tetrahedral intermediate I. This shift of electrons

results in the formation of an oxyanion hole, involv-

ing the main chain amide group of Ser 90 and the

side chain hydroxyl group of Ser 88,65,73 which

results in the stabilization of the substrate tetrahe-

dral intermediate I (Fig. 5). Lys 145 donates a proton

to the amino group of the N-terminus of the mature

protein, allowing its release from the enzyme, and

generates a signal peptide acyl-enzyme intermediate

(Fig. 5). The deacylating water molecule now comes

into play, with the loss of one of its protons to the

amino group of Lys 145 and the attack of its oxygen

atom on the peptide carbonyl group, forming another

tetrahedral intermediate (Fig. 5). Again, Ser 88 and

Ser 90 serve to stabilize the intermediate via hydro-

gen bonding. Finally, the amide group of Lys 145

donates a proton to the Oc atom of Ser 90, leading to

the breakdown of the tetrahedral intermediate,

release of the signal peptide, and the restoration of

the active site to its apoenzyme form.

SPase I as an Antimicrobial Target
SPase I is critical to study because of its potential as

a target for novel antibacterial agents. SPase I has
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been shown to be an essential enzyme for the viabil-

ity of most bacteria.3,4,7,17,23 A couple of exceptions

are known to exist in bacteria that possess more

than one SPase I gene such as Streptomyces livid-

ans, where all four SPase I proteins do not appear to

be essential,91 and B. subtilis, where at least three

SPase I proteins are not essential.13,92–94 Genarally,

when SPase I is inhibited, it leads to an accumula-

tion of secretory preproteins in the inner membrane

and eventually cell death.9,95 Although SPase I is

ubiquitous, found in all forms of life from humans to

E. coli, there are a few key differences between the

eukaryotic ER and eubacterial enzymes. Thus, there

is the potential to impede bacterial viability without

affecting the host. Some key differences are the SPase

I cleavage mechanism and oligomeric state; eubacte-

rial SPase I is believed to be monomeric and cleaves

using a Ser-Lys dyad, while eukaryotic ER SPase I is

multimeric and employs a Ser-His-Asp triad for catal-

ysis. The development of antibiotics against the bacte-

rial SPase I must account for the eukaryotic mito-

chondrial inner membrane peptidases, Imp1 and

Imp2, as they are part of the S26 family. It is unlikely

that antibiotics developed for bacterial SPases would

affect the Imp proteins as small changes in the SPase

I substrate binding site have been shown to greatly

reduce the efficacy of an antibiotic. As such, an antibi-

otic designed for one SPase I may not display a signif-

icant inhibition of another SPase I.

Although other proteins involved in protein secre-

tion could also be targets for antibacterial agents,

they present the challenge of getting the antibiotics

into the inner membrane or cytosol. The catalytic

domain of the SPase I enzyme on the other hand is

located in the periplasm, making it a much easier tar-

get. This is especially true in Gram-positive bacteria

which lack an outer membrane. As more pathogens

become resistant to our currently employed antibiot-

ics, it is imperative that more work be done to dis-

cover new antibiotics to help fight infections.

A number of b-lactam compounds96–98 and lipo-

peptides99 were found to inhibit SPase I. b-lactam

compounds have been used to prepare 5S penems,

which have the appropriate stereochemistry to

inhibit SPase I. The most interesting of these com-

pounds are the 6-substituted penems with 5S,6S,

1’R stereochemistry.100 The penem derivative,

(5S,6S)-6-[(R)-acetoxyethyl]-penem-3-carboxylate,

has been shown to moderately inhibit SPase I activ-

ity of E. coli LepB,97 Staphylococcus aureus SpsB,85

S. lividans SipW, SipX, SipY, and SipZ,101 Legionella

pneumophila LepB,17 and cyanobacteria and chloro-

plast thylakoid SPases.102 More potent inhibitors of

S. aureus SpsB have been developed in the form of

non-cleavable lipopeptides, based on substrate

sequences, but these contain a proline at the -1 posi-

tion, that result in an IC50 of 0.6 lM.103 In the same

manner, a linear peptide based inhibitor has been

designed with a proline in the þ1 position relative to

the signal peptide cleavage site, which allows bind-

ing of the peptide, but not cleavage.104,105 This pep-

tide was shown to inhibit S. aureus SpsB activity in

a dose-dependent manner, but millimolar concentra-

tions were needed for significant inhibition and thus

Figure 5. Proposed mechanism for SPase I cleavage of preproteins using a Ser-Lys catalytic dyad. The preprotein substrate

(where P1 is the amino acid at the -1 position of the signal peptide and P1’ is the amino acid in the þ1 position of the mature

protein) binds to the enzyme active site. The amino group of Lys 145 acts as the general base and deprotonates the hydroxyl

group of Ser 90 (Michaelis complex). The Ser 90 Oc atom now acts as the nucleophile, and attacks the substrate P1 residue

carbonyl group to form a tetrahedral intermediate I. This shift of electrons results in the formation of an oxyanion hole,

involving the main chain amide group of Ser 90 and the side chain hydroxyl group of Ser 88,65,73 which results in the

stabilization of the substrate tetrahedral intermediate. Lys 145 donates a proton to the amino group of the N-terminus of the

mature protein, allowing its release from the enzyme, and generates a signal peptide acyl-enzyme intermediate. The

deacylating water molecule now comes into play, with the loss of one of its protons to the amino group of Lys 145, and the

attack of its oxygen atom on the peptide carbonyl group, forming another tetrahedral intermediate. Again, Ser 88 and Ser 90

serve to stabilize the intermediate via hydrogen bonding. Finally, the amide group of Lys 145 donates a proton to the Oc
atom of Ser 90, leading to the breakdown of the tetrahedral intermediate and release of the signal peptide.
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is not potent enough to be useful.105 Recently,

another substrate-based peptide aldehyde was

shown to inhibit S. aureus SpsB with an IC50 value

of 0.09 lM.25

The antibiotic arylomycin lipohexapeptides and

lipoglycopeptides initially seemed to inhibit only a few

Gram-positive bacteria.106,107 However, recently it was

discovered that arylomycin A2 (MIC ¼ 1 lg/mL) and a

synthetic derivative, C16, (MIC ¼ 0.25 lg/mL) are

potent inhibitors of Staphylococcus epidermidis,19,22,108

a Gram-positive bacteria responsible for infections

among people with compromised immune systems,

as well as Staphylococcus haemolyticus, Staphylococ-

cus hominis, and Staphylococcus lugdunensis.109

Arylomycin A2 displays only moderate antibacterial

activity against E. coli, Streptococcus pneumoniae,

S. aureus, and Haemophilus influenzae.19 The

inability of these antibiotics to efficaciously inhibit

E. coli, S. aureus, and Pseudomonas aeruginosa

SPase I is due in part to the presence of a proline

residue in the substrate binding site on SPase I (res-

idue 29 in S. aureus, and residue 84 in E. coli and P.

aeruginosa) which seems to confer resistance to ary-

lomycins.106 The resistance may be due to the inabil-

ity of the proline residue to form a hydrogen bond

with the inhibitor. It has also been suggested that

the outer membrane of Gram-negative bacteria pre-

vents the arylomycins from reaching the SPase I.20

Recently, the derivative arylomycin B-C16 was devel-

oped and tested for its ability to inhibit growth of a

broad range of bacteria.108 It was found to have

nearly identical activities against most bacteria as

arylomycin C16, except that the B-C16 derivative dis-

plays activity against the important pathogen Strep-

tococcus agalactiae.18 As protein secretion is essen-

tial in many bacteria for virulence, there is the

potential for an arylomycin class or lipopeptide-type

antibiotic to inhibit virulence and viability of some

Gram-positive bacteria, but these compounds are

less likely to be effective, even upon modification, in

Gram-negative bacteria.

Structural variations in the active site of

enzymes from different species may well explain dif-

ferences in the specificity of the antimicrobial agents

tested. This can be readily observed in the case of the

inability of arylomycin to inhibit SPase I in bacteria

with a proline residue located in the substrate binding

site. These small structural variations may diminish

the likelihood for development of broad spectrum anti-

biotics that treat a number of bacterial infections;

however, the selectivity of antibiotics for a particular

SPase I can be valuable in specifically treating one

type of infection versus another.

Concluding Remarks

The SPase I is a unique serine endoprotease that is

essential for bacterial viability. A number of critical

features differentiate the bacterial and eukaryotic

ER SPase I and, therefore, make the bacterial SPase

I a tantalizing target for the development of antibac-

terial agents. Although SPase I is not inhibited by

serine peptidase inhibitors, a number of inhibitors

have been identified such as the penem-type inhibi-

tors and lipopeptides. With the development of high-

throughput inhibitor screening assays,22 a number

of new potent inhibitors will likely be discovered in

the coming years.

Several important questions still remain unan-

swered about how and where SPase I functions.

Does SPase I bind SecYEG and/or TatA in the

membrane or is it laterally mobile in the mem-

brane? How does the cleaved signal peptide spa-

tially transition from the SPase I and be presented

for degradation by the signal peptide peptidase?

Does SPase I interact with the signal peptide pepti-

dase to transfer the signal peptide? What role does

the membrane anchor of SPase I play in signal pep-

tide cleavage? Does it bind to the h-region of the

signal peptide? Does cleavage of the signal peptide

occur in the inner membrane, in the periplasm, or

in the translocon? Why do some species have multi-

ple type I signal peptidases? While the three-

dimensional structure of the E. coli SPase I D2-75

has been solved, the structure of the full-length

SPase I and a substrate-bound SPase would help

resolve these questions. Answers to these questions

will be an important step to help with the develop-

ment of SPase I inhibitors.
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