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Statistical iterative methods are a widely used method of image reconstruction in emission tomography. Traditionally, the image
space is modelled as a combination of cubic voxels as a matter of simplicity. After reconstruction, images are routinely filtered to
reduce statistical noise at the cost of spatial resolution degradation. An alternative to produce lower noise during reconstruction
is to model the image space with spherical basis functions. These basis functions overlap in space producing a significantly large
number of non-zero elements in the system response matrix (SRM) to store, which additionally leads to long reconstruction times.
These two problems are partly overcome by exploiting spherical symmetries, although computation time is still slower compared
to non-overlapping basis functions. In this work, we have implemented the reconstruction algorithm using Graphical Processing
Unit (GPU) technology for speed and a precomputed Monte-Carlo-calculated SRM for accuracy. The reconstruction time achieved
using spherical basis functions on a GPU was 4.3 times faster than the Central Processing Unit (CPU) and 2.5 times faster than
a CPU-multi-core parallel implementation using eight cores. Overwriting hazards are minimized by combining a random line of

response ordering and constrained atomic writing. Small differences in image quality were observed between implementations.

1. Introduction

Iterative statistical methods are the preferred reconstruc-
tion algorithms in emission tomography. Image quality
greatly depends on how accurately physical phenomena
are modelled in the system, which is represented as the
system response matrix (SRM) [1, 2]. The SRM models the
probability of detection, of an annihilation produced in voxel
b, in a detector element or crystal pair d, p4p. The size of the
SRM is imposed by the number of voxels N that comprises
the field of view (FOV) and by the number of detector
elements of the scanner, J. The size of the SRM, N X J, is
significant due to the large number of crystals used by high
resolution scanners and the fine granularity of the FOV [3].
Fortunately, most elements py in an SRM are typically zero,
which means that the number of nonzero SRM elements to
store is significantly lower than N x J.

The SRM can be directly obtained by taking measure-
ments where a point source is placed in different positions
over the FOV, interpolating intermediate positions when

needed. This produces a highly accurate SRM at the cost of
long acquisition times [4, 5]. To greatly reduce acquisition
time, a single scan of an array of point sources can be
simultaneously acquired [6]. However, rather than directly
measuring the system matrix such methods are used only
to estimate the shift-variant point spread function. Alterna-
tively, the SRM can be calculated using analytical methods.
The speed of these methods outperforms others, at the
expense of limited precision [7, 8]. Finally, the SRM can
be calculated using Monte Carlo methods [9-11]. These
methods produce a more accurate SRM than analytical
methods, but do not include the physical phenomena that
are only found by measuring the SRM. Regarding the time
necessary to calculate the SRM, a simulation is longer than
analytical computations, but less time consuming than that
necessary to obtain measurements experimentally.

The high granularity of current PET scanners, used to
obtain the best possible spatial resolution, makes the calcu-
lation of the SRM elements a cumbersome process. The use
of cylindrical symmetries, taking advantage of the polygonal
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architecture of PET scanners, is a common approach to
reduce the number of SRM elements required [9-15]. In the
specific case of a Monte Carlo-based SRM, the simulation
time and storage required can be greatly reduced.

Although the most common model used to represent the
image space is the cubic voxel, there exists a number of
alternative basis functions. The use of polar voxels provides
a convenient model to exploit scanner symmetries, which
significantly reduces the simulation time and space necessary
to store the SRM only modelling a small portion of the
FOV [16]. Alternatively, spherical basis functions (blobs)
have been shown to represent a more suitable basis to model
the continuous radiotracer distribution [17]. Improved noise
performance has been demonstrated, compared to cubic and
polar voxels [18-20]. Moreover, better spatial resolution can
be obtained with spherical basis functions, compared to
postreconstruction filtered cubic and polar voxels [15].

Spherical basis functions overlap in space. Therefore, the
number of basis functions intersected by any given line of
response (LOR) is higher using blobs compared to voxels.
This characteristic produces that the SRM has a significantly
large number of nonzero SRM elements, resulting in long
CPU-based reconstruction times.

The forward and backward projections in a Maximum-
Likelihood- (ML-) based reconstruction algorithm perform
independent operations on each LOR and voxel, respec-
tively, which makes these operations highly parallelizable.
Graphical processing units (GPUs) technology have been
successfully employed to enhance speed of image reconstruc-
tion in both precomputed [21-23] and on-the-fly [24, 25]
SRMs, which makes it a potential candidate for blob-based
reconstruction as well.

An alternative approach to parallelize the recon-
struction process is to use CPU-multicore architectures.
In this work we have implemented an optimized CPU-
multicore version of the reconstruction algorithm using the
Message-Passing-Interface (MPI) libraries (http://www.mcs
.anl.gov/research/projects/mpi/index.htm).

This paper explores the suitability of these two ap-
proaches for the special case of ML-Expectation-Maximi-
zation (EM) PET reconstruction using a blob-based Monte
Carlo precomputed SRM. The use of a large precomputed
SRM in GPU technology represents one of the major chal-
lenges of this work.

2. Materials and Methods

2.1. Scanner Description. In this study the small animal
scanner MADPET-II [26], shown in Figure 1, is used as a
model for all the simulations carried out. MADPET-II has a
radial diameter of 71 mm and an axial FOV of 18.1 mm. The
ring contains 18 modules, where each module has two layers
of 8 X 4 LYSO crystals with individually read out electronics
based on avalanche photodiodes. The size of the crystals in
the front layer is 2 X 2 X 6 mm? and that of the rear layer is
2 x 2 x 8mm?. The dual layer provides information of the
depth of interaction, which mitigates parallax error.
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FiGURE 1: Mockup of MADPET-II with the wedge-like source
simulated in red to calculate the SRM.

2.2. Hardware Description. The graphics card used in image
reconstruction was the NVIDIA Tesla C2070, based on a
Fermi architecture. The GPU contains 448 cores (thread
processors or shaders) running at 1.15 GHz (575 MHz core),
6 Gb GDDRS5 on-board global memory, 48 Kb of shared
memory per block, and a bandwidth of 144 Gb/s. Threads
are internally organized as a grid of thread blocks, where
threads in the same block communicate through shared
memory. The maximum number of blocks is 65 535 and the
maximum number of threads per block is 1 024. The card has
a peak performance of 515.2 Gflops/s for double precision
operations.

The algorithm was implemented for both the GPU and
an eight-core desktop PC (Intel(R) Core(TM) i7 CPU 950
@ 3.07 GHz) with 12 Gb of RAM. An optimized algorithm
allowed the use of either a single core or multiple cores and
distributed memory.

2.3. Polar Symmetries and SRM Calculation. The total
number of crystals of MADPET-II is 1152; for image
reconstruction using cubic voxels an image space of 140 X
140 x 40 (voxels of size 0.5 x 0.5 x 0.5mm?) was used,
resulting in ] X N = 10'? elements. However, the SRM is
highly sparse, significantly reducing the number of elements
necessary for storage.

A popular method to reduce the number of SRM
elements to calculate and to reduce the SRM storage size
is to exploit the scanner symmetries. The typical polygonal
architecture in PET scanners allows the use of polar sym-
metries. For a Monte Carlo-based SRM this approach allows
not only the reduction of the file size of the SRM, but also
the simulation time. The level of reduction depends on the
number of symmetries which can be exploited. The number
of symmetries in a PET system is intrinsically linked to its
geometry, specifically to the number of detector modules
employed over the circumference. The high resolution small
animal scanner MADPET-II contains 18 block detectors.
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Using 18 rotational symmetries and 2 reflection symmetries
transaxially and 2 reflection symmetries axially, up to 72
symmetries can be exploited.

Therefore, a factor of 72 reduction in the simulation time
and in the SRM file size is achieved. More details about this
implementation of symmetries in MADPET-II can be found
in [16].

The SRM was calculated using GATE [27] in the local
GRID facility which had 108 nodes (two Quad Core Xeon
E5420 @ 2.50 Ghz machines) for sequential processing. The
total number of simulated events in the SRM was 3.7 x 1010,
which represents 4.3 x 10° events per voxel. The simulation
of the 3.7 x 10'? events was split in 200 parallel jobs, where
each parallel job took approximately 12 hours. The SRM
was simulated using a back-to-back gamma source, thus
half life, noncollinearity and positron range were ignored.
A low energy threshold of 200keV was applied at singles
level. Singles list mode data were processed after simulation
to select coincidences using a coincidence timing window of
20 ns. Accidental and multiple-scattered events are discarded
in a postprocessing step.

2.4. Object Representation: Spherical Basis Functions. An
estimation of the continuous radiotracer distribution f(r) is
represented in image space as a linear combination of image
coefficients and basis functions, expressed as

N

f) = fr) = cw(r—r), (1)

i=1

where r represents the space coordinate, f(r) the estimated
distribution, ¢; the image coefficients, y(r) the basis func-
tions, N the total number of voxels, and ; the placement grid.

Spherical basis functions provide better noise properties
compared to cubic voxels. Spherical basis functions have
compact support, that is, the function is zero beyond a given
value (blob radius), but have a smoother behaviour than the
traditional cubic voxels. The spherical basis functions used in
this work are based on the Kaisser-Bessel function, described
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where m is the order of the Bessel function I, a is the
blob radius, and « is the taper parameter. A thorough
investigation of these parameters is found in [28] in which
the optimal values are obtained. The study, performed in
frequency space, determines that the optimal value of m is
2 (the first derivative is continuous at the blob boundary),
the optimal radius a is 1.994A (A being the distance between
elements of the underlying grid), and the optimal « is 10.4.
Figure 2 shows the wedge-like source simulated to calcu-
late the SRM elements using symmetries, with an underlying
polar grid and blobs placed over the grid using a body-
centred strategy with the polar voxels used as reference.
Using spherically symmetric basis functions and exploit-
ing spherical symmetries, the final SRM was 5.3 Gb in size

W(r)m,a,oc =

FIGURE 2: Wedge-like source simulated to calculate the SRM with
blobs and underlying voxelized grid (not shown to scale).

and contained 7.04 x 10® nonzero elements (out of the 5.79 x
10%: 8740 blobs x 662976 LORs). If eight cubic symmetries
were used (2 rotational + 2 reflectional transaxially + 2
reflectional axially), instead of spherical symmetries, the
resulting SRM file size would be 47.2Gb with the same
statistical quality as that used.

2.5. Description of Phantoms. Three different phantoms were
simulated for this study. All phantoms were simulated
using a back-to-back gamma source in agreement with the
simulation of the SRM. Therefore, only true coincidence
events remained for image reconstruction. Simulated data
is stored in LOR-histograms where each histogram bin
corresponds to an LOR, and no preprocessing was applied to
the data [9, 29]. The three phantoms used here are detailed
below.

(1) A homogeneously filled phantom with a hot and
a cold rod inserts has been simulated to study the
image quality. The cylinder is 20 mm long and 30 mm
radius, while the rod inserts are 20 mm long and
10 mm radius. The simulated activity of the phantom
was 32MBq (0.86 mCi) and 74 MBq (2mCi) in
the hot and warm regions, respectively (3:1 ratio).
The experiment time simulated was 155 seconds,
producing a total of ~4.5 x107 coincidences.

(2) To study the spatial resolution, an ellipsoidal phan-
tom with six hot point sources and six cold spheres
(1.5 mm ), placed radially along the ellipsoid
and separated by 5mm on a warm background,
was simulated. The ellipsoid was 35mm by 20 mm
transaxially and 2 mm long. The phantom was placed
12.5mm off-centre covering more than one half of
the FOV. The activity simulated in the point sources
was 3.7 MBq (0.1 mCi) and 207.2 MBq (5.6 mCi) in
the background (200:1 ratio), producing a total of
~9.6 X106 coincidences. The background was used in
order to mitigate the resolution enhancement caused
by the nonnegativity constraint of ML-EM [5, 30].

(3) The digital mouse phantom MOBY [31] was sim-
ulated with a total activity of 0.2mCi. Five bed
positions were necessary to acquire the whole mouse
with six overlapping slices (3 mm) between bed
positions, with a time scan of four minutes per bed
position. The activity simulated in each organ is the



default relative activity set by the MOBY phantom
files. It was not a purpose of this study to simulate
realistic activity concentrations in each organ.

2.6. Quality Assessment: Figures of Merit. The noise perfor-
mance obtained with each of the implementations explored
was measured in the image quality phantom using three
figures of merit, the coefficient of variation (CV), the
contrast to noise ratio (CNR), and the correlation coefficient
(CC). The spatial resolution was also studied by measuring
the full width at half maximum (FWHM) across the point
sources of the ellipsoidal phantom described in Section 2.5.
These figures of merit were measured to compare the
different implementations presented here, and not to assess
the performance of spherical basis functions.

The CV and CNR were measured over regions of interest
(ROI) of size 8 X 9 x 0.5mm?, placed far enough from the
boundaries so that there were no edge effects. The CC was
measured over the entire image volumes. In all cases only one
realization of the phantom was used.

The CV is commonly used as a normalized measurement
of noise in a given ROI and is described as

Os
CV=—, 3
. 3)

where p; is the mean value and o; is the standard deviation
measured in the ROL.

The CNR is a measure of noise performance between two
ROIs [32] given by

CNR = &)

(032 + 05)/2 @)

where p; is the mean value and oy, is the standard deviation
measured in the background.

The CC between two images is a statistical similarity
measure defined as

CCpp = Zizl(fAz _fA) <fo _fB) ’

JE Go-7)) (2 G- 7))

(5)

where ]?A, is the intensity value at voxel i in image A, f, is
the mean value of image A, and similarly for image B. A CC
value of 1 represents two perfectly correlated images, while a
value of —1 represents two completely uncorrelated images.

The spatial resolution was measured as the FWHM taken
from a profile drawn across the hot point sources embedded
in the ellipsoidal phantom.
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3. Hardware Implementations

3.1. GPU Implementation. The SRM was precomputed
and stored in sparse format. One of the main challenges
addressed in this work was the difficulty to cope with the
amount of information needed by a single thread to perform
both forward and backward projection, given that the SRM
was too large to be stored in local memory, registers or shared
memory. While a memory access to a register or shared
memory takes only one clock cycle, access to global memory
takes 400-600 clock cycles and access to texture memory
takes 1-100 clock cycles (depending on cache locality).

The floating point values used in this work were
distributed as follows: given the significant size of the
SRM (5.3 Gb) this was stored in global memory, while the
arrays stored in texture memory were the ratio between
measurements and projected image estimate (2.52Mb), a
look-up table used to unfold the symmetries (2.40 Mb) and
the image estimate used in the forward projection (2.40 Mb).

The number of blocks in the GPU grid was optimized to
achieve the shortest reconstruction time per iteration, being
32 blocks obtained empirically.

The SRM was ordered by consecutive LOR indices in
sparse format. Therefore, memory access to the SRM ele-
ments in the forward projection operation was consecutive,
as opposed to the backward projection, where access to
the SRM elements was highly irregular. The SRM organi-
zation implies that the forward projection was a gathering
operation, while the backward projection was a scattering
operation, which is slower.

During the forward projection, each thread reads from
a number of blob coordinates and calculates the projection
of one LOR, hence writing in different memory positions.
However, during the backward projection, each thread reads
from a number of measurements, back-projects the current
estimate to image space, and writes in the corresponding
blob coordinate. Given that threads are organized by LORs,
different threads can write in the same memory position.
This represents what is known as a race condition. To
avoid such problem three different approaches have been
implemented as follows.

(1) An SRM ordered by consecutive LOR indices (detec-
tion) was used in the forward projection, while an
SRM ordered by consecutive blob indices (image)
was used in the backward projection. This second
SRM represents the transpose of the initial SRM
although stored in a different file due to the use
of sparse format. Using this approach the LOR-
ordered SRM is loaded for the forward projection and
subsequently unloaded. The blobs-ordered SRM is
then loaded for the backward projection. The process
was repeated for each iteration. The advantages are
that the access to SRM elements was in consecutive
memory positions for both operations and that
there was no overwrite hazards. The disadvantage
of this implementation is the time required for
each iteration to load and unload each SRM file in
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the GPU. To refer to this implementation the term
SRM cload Was used.

(2) An SRM ordered by consecutive LOR indices was
used in both, the forward and backward projections.
This approach represented an overwrite hazard dur-
ing the backward projection when LORs intersecting
the same voxels were processed by threads in parallel.
This situation is likely to happen in those areas
where most LORs intersect, that is, the centre of the
FOV. Atomic writing prevents this situation from
occurring, at the cost of longer computation time. To
refer to this implementation the term SRM_om;c was
used.

(3) Similarly to the implementation above, an SRM
ordered by consecutive LOR indices was used in both,
the forward and backward projections. To mitigate
the speed problem caused by atomic operations, a
combination of two strategies was followed:

(a) the LORs were sent to the threads using a
random ordering, hence not following any
spatial correlation. By introducing spatial ran-
domness in the execution of LORs in parallel,
the probability of processing intersecting LORs
simultaneously decreased drastically. However,
writing in the same memory positions still
happened in a region at the centre of the FOV;

(b) atomic writing was exclusively used for those
voxels located in the two central slices. Other-
wise a nonatomic operation was performed.

To refer to this implementation the term SRMsnd—ar Was
used.

3.2. Implementation Using the MPI Libraries. This approach
used distributed memory, hence a portion of the SRM is
sent to each core to perform the forward and backward
projections, respectively. The SRM ordered by LOR indices
was used in the forward projection, while a blobs-ordered
SRM is used for the backward projection, similar to the GPU
implementation using SRMeload. Subsequently, the SRM was
loaded and unloaded each time a forward and a backward
operation was performed, adding a computational overhead.

4. Results and Discussion

4.1. Timing Performance. The reconstruction time obtained
in this work using GPU technology and spherical basis
functions is comparable to the reconstruction time obtained
using polar or cubic basis functions on a CPU [33]. However,
the time performance is not as high as that published in
other works [22, 25] due to the nature of this approach, that
is, the use of a large Monte Carlo precomputed SRM. This
implies that the number of global memory accesses by each
thread in a forward/backward projection corresponds to the
number of nonzero elements of each LOR/blob multiplied by
the number of symmetries. This clearly represents the main
bottle-neck in this approach.

Table 1 shows a comparison between the time perfor-
mance measured using a single Intel(R) Core(TM) i7 CPU
950 @ 3.07 GHz, that is, nonparallelized (np), with the time
performance measured using the CPU-multicore implemen-
tation for 1 (MPI-1), 2 (MPI-2), 4 (MPI-4), and 8 (MPI-8)
cores, and finally the time performance measured with the
GPU, using the different implementations described above
(SRM ignoring the overwrite hazard, SRMreload, SRMatomic»
and SRMand_at). The results shown in Table 1 were obtained
using the image quality phantom described in Section 2.5.
Nevertheless, small variations were observed between differ-
ent phantoms. These reconstruction times represent average
times measured after several iterations. The CPU-single-core
implementation has been taken as reference to calculate the
improvement factors of the parallelized implementations.
Table 1 shows that the GPU-based implementation where
the overwrite hazard is ignored is the fastest implementation
because atomic writing is not used, at the cost of producing
unacceptable artefacts in the final reconstructed images (see
Figure 3(¢)).

Using SRMeload, memory access to SRM elements is
performed consecutively, both in the forward and backward
projection. In every other implementation, consecutive
memory access is performed only in the forward projection
but not in the backward projection, hence decreasing the
time performance. Using the implementation with SRMeload
the forward projection takes 97s and 58s to load the
SRM, while the backward projection requires only 87s and
57s for loading. This represents an iteration time of 184s
if we consider only processing time. However, an extra
115s is taken to load the SRM in each operation. Strict
reconstruction time was very consistent for all the iterations.
However, SRM loading/unloading time varied slightly for
each iteration.

The atomic operation clearly increases the backward
projection time. However, by using the atomic operation
only for those critical voxels where the probability of over-
writing is high, the backward projection time of implemen-
tation using SRM;and—qt is reduced to 132s, close to the
backward projection time measured in the implementation
where the overwrite hazard is ignored (121s). Moreover,
the artefacts obtained in the reconstructed images when the
overwrite hazard is ignored are removed using SRM and-at
(Figure 3(d)).

4.2. Quantitative Assessment and Image Quality. When
enhancing speed of an image reconstruction algorithm, it is
of critical importance to produce the same image for each
implementation. To demonstrate that the implementations
detailed in this work do not have an impact on image
quality, the phantoms described in Section 2.5 have been
reconstructed using the CPU-single-core implementation,
the CPU-multicore implementation using eight cores, and
the GPU-based implementation using SRMand—at listed in
Table 1.

4.2.1. Noise Assessment. The impact on the noise perfor-
mance has been assessed using the image quality phantom
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TaBLE 1: Time performance.
Platform Forward Backward Tteration (s) Improvement
projection (s) projection (s) factor
CPU (np) 417 488 905 1
CPU (MPI-1) 523 (0.79) 748 (0.65) 1,272 0.71
CPU (MPI-2) 315 (1.32) 560 (0.87) 875 1.03
CPU (MPI-4) 214 (1.94) 357 (1.36) 571 1.58
CPU (MPI-8) 209 (1.99) 316 (1.54) 526 1.72
GPU (Overwrite hazard ignored) 79 (5.27) 121 (4.03) 200 4.52
GPU (SRM ejond) (58+)97 (2.7) (57+)87 (3.38) (115+)184 3.03
GPU (SRM,omic) 79 (5.27) 232 (2.10) 311 2.90
GPU (SRMand-—at) 79 (5.27) 132 (3.69) 211 4.28

described in Section 2.5, which has been reconstructed after
300 iterations using four of the implementations studied
(Figure 3): the CPU-single-core, the CPU-multicore, and
two of the GPU-based implementations, without atomic
operation and with atomic operation used only in the
two central slices (SRMand—at). Special mention is required
for the GPU-based implementation without atomic writing
(Figure 3(c)) where significant artefacts are observed, mainly
in the centre of the FOV. As explained above, these artefacts
are due to parallel threads overwriting in the same memory
positions during the backward projection, due to the high
overlapping between LORs in the centre of the FOV. The
artefacts are removed by performing an atomic operation
(Figure 3(d)).

The images obtained with SRMejoad and SRMatomic (not
shown in this work) are practically identical to the one
obtained with SRM;and—a- A profile across the four recon-
structed phantoms is shown in Figure 3(e), demonstrating
great resemblance between the images obtained with the
CPU-single-core, the CPU-multicore, and the GPU-based
implementation with atomic writing, while the artefact
observed in Figure 3(c) is clearly visible in Figure 3(e) in the
black profile.

For quantitative assessment, the CV (Figure 4) was mea-
sured in the hot, warm, and cold ROIs for the three different
implementations, every 10 iterations for 300 iterations. The
CV at iteration 300 is 0.15 and 0.28 for the hot and warm
ROIs, respectively, for all three implementations, while the
CV in the cold ROI for the CPU-based implementations
is 0.72 and for the GPU-based implementation 0.73. In all
cases the CV follows an increasing trend due to the known
noise increase as more ML-EM iterations are calculated. Dif-
ferences between the CPU-based implementations (single-
core and multicore) are below 0.08% (Figure 4(b)), while
higher differences were observed between the CPU-single-
core and GPU-based implementations, where differences
between —0.37% (hot ROI) and 0.81% (cold ROI) were
measured. These differences are due to the different floating
point precisions available in the CPU and the GPU. While the
precision had little effect on individual SRM elements, the
cumulative effect produced differences in the reconstructed

images. However, these differences are expected to be
dominated by statistical errors in the data.

Figure 5 shows the evolution of the CNR measured
between the hot and warm ROIs for 300 iterations at
every 10 iteration. The differences between the CPU-
based and the GPU-based implementations are shown in
Figure 5(b). Similarly to the CV study, differences between
the CPU-based implementations (single-core and multicore)
are below 0.02%, while small differences are observed
between the CPU-single-core and the GPU implementations.
The maximum difference is 2.5% and stabilizes after 200
iterations. However, from Figure 3 the images are visually
indistinguishable.

Finally, the CC (Figure 6) was measured between the
entire volumes of the resulting reconstructed image quality
phantoms obtained with the CPU-based implementation,
the MPI-based implementation, and the GPU-based imple-
mentation. Similarly to the CV and the CNR studies,
the CC measured between the CPU-based and the MPI-
based implementations shows perfect correlation, while the
comparison between the GPU-based implementation with
the CPU-based and the MPI-based implementations show
high correlation initially, but the trend is to slightly decrease
at later iterations. However, the CC at 300 iterations is over
98.5% so that the difference can be considered negligible.
To confirm that the trend was not exacerbated as more
iterations are computed, the CC between the MPI-based
implementation and the GPU-based implementation was
computed over 600 iterations, showing a CC of 94% at 600
iterations and a slight trend correction.

4.2.2. Spatial Resolution Assessment. Figure 7 shows the
spatial resolution phantom reconstructed after 300 iterations
using the CPU-single-core, the CPU-multicore, and the
GPU-based implementations (using SRM and—at). The three
reconstructed phantoms show great resemblance by visual
inspection.

The profile drawn across the point sources in the three
reconstructed phantoms, shown in Figure 8, confirms the
conclusions made in the noise study. The CPU-single-core
and the CPU-multicore implementations produce identical
results while the images reconstructed using the GPU imple-
mentation are slightly different. This is further confirmed by
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FIGURE 5: CNR between the hot and warm ROIs for 300 iterations measured every 10 iterations (a) and CNR difference in % between the
CPU-single-core/CPU-multicore and CPU-single-core/GPU implementations (b).
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Figure 6: CC measured between the CPU-multicore/CPU-single-
core, GPU/CPU-single-core, and GPU/CPU-multicore implemen-
tations for 300 iterations measured every 10 iterations.

Table 2, where the FWHM (mm) measured from each point
source and each profile is shown (Ps 1 corresponds to the
point source located closer to the centre of the FOV while Ps
6 corresponds to the point source located closer to the edge
of the FOV). The spatial resolution decreases as the point
source is located farther from the centre of the FOV due to
the parallax effect.

Similarly to the noise assessment study, the FWHM
was measured over 300 iterations at steps of 10 iterations
(Figure 9(a)), showing small differences measured between
the CPU-based and the GPU-based implementations below
0.4% at 300 iterations (Figure 9(b)).

4.3. Qualitative Assessment. For qualitative assessment, the
MOBY phantom [31] has been reconstructed using blobs

TaBLE 2: FWHM (mm) of the profiles shown in Figure 8.

Platform Ps1 Ps2 Ps3 Ps4 Ps5 Ps6
CPU-single-core  1.17  1.65 1.73 1.96 225 2.24
CPU-multicore ~ 1.17  1.65 1.73 196 225 224
GPU 1.17 166 174 196 226 2.24

in the GPU and using the CPU with the MPI libraries. For
comparison purposes, the phantom was also reconstructed
using traditional cubic voxels. However, it is important to
highlight that the focus of this work is not to compare these
two basis functions. Spherical basis functions provide better
noise performance than cubic voxels, so in order to perform a
fair comparison, the image reconstructed using cubic voxels
was filtered to match the noise performance of that achieved
using spherical basis functions [33], which produces a visible
image detail degradation.

Figure 10(a) shows the ideal MOBY phantom.
Figure 10(b) shows the reconstructed phantom obtained
using cubic voxels with a postreconstruction Gaussian
filter of ¢ = 0.5mm for comparison purposes. A ¢ =
0.5mm for the Gaussian filter has been applied to match
the noise levels obtained with cubic voxels and blobs.
Figure 10(c) shows the phantom reconstructed with
spherically symmetric basis functions using the GPU
implementation and Figure 10(d) shows the phantom
reconstructed with spherically symmetric basis functions
using the CPU-multicore implementation. 300 iterations
were used to reconstruct each bed position in the three
reconstructed MOBY phantoms presented here.

It can be noticed that the thyroids and brain are more vis-
ible, and boundaries better delineated using spherical basis
functions, compared to filtered cubic voxels (Figure 10(b)),
as shown in Figures 10(c) and 10(d).

The reconstruction time necessary using cubic vox-
els in a single core in the CPU (Figure 10(b)) was ~110
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FIGURE 8: Profile across the point sources in phantom shown in
Figure 7 reconstructed after 300 iterations using a CPU-single-core
(a), eight cores parallelized using MPI libraries (b), and the Tesla
GPU (¢).

hours, the CPU-multicore implementation using spherical
basis functions (Figure 10(d)) was ~220 hours, and the
GPU-based implementation using spherical basis functions
(Figure 10(c)) was ~88 hours. If the same phantom was
reconstructed using spherical basis functions on a single core,
the necessary reconstruction time would be ~380 hours.

From Figure 10 it can be seen that the combination
of blob-based reconstruction and a precomputed Monte
Carlo SRM using GPU technology is a feasible alternative,
not only for simple phantom geometries as those shown
in Section 4.2, but also for multistage and highly realistic
phantoms as the MOBY phantom.

5. Conclusions

Increasing granularity in PET scanners provides improved
spatial resolution while increasing the number of detec-
tor elements at the same granularity improves sensitivity.
However, increased resolution means that the calculation
of the SRM is an extremely cumbersome task, particularly
for simulation-based SRM calculation. Nevertheless, Monte
Carlo-based system matrices for iterative statistical image

reconstruction applied to emission tomography are growing
in popularity due to their image quality advantages. The
extended availability of affordable computing power means
that significant efforts are being put into sophisticated
improvements of the system response model.

Overlapping spherically symmetrical basis functions
have clear advantages over nonoverlapping (cubic or polar
voxels) even at the cost of a significantly high number of
nonzero elements in the SRM, resulting in large SRM file
sizes and long reconstruction times. These problems can
be partly overcome by exploiting cylindrical symmetries to
reduce the simulation time, the number of nonzero SRM
elements, and hence the file size necessary to store the SRM.
The combination of spherically symmetric basis functions
and cylindrical symmetries makes this approach feasible
for use in a clinical or preclinical application. However,
reconstruction time is then the main concern due to the still
large number of nonzero SRM elements required to process
the forward and backward projection.

Ordered-Subsets- (OS-) EM represents a common ap-
proach to speed up the reconstruction process. While OS-EM
can be implemented in GPU technology, it requires a device-
dependent level of complexity, and its inclusion may reduce
the generality of the study presented here. Moreover, subset
choice interacts with both speed and image quality while
hardware-based solutions decouple this relationship. While
it is expected that the combination of OS-EM and GPU
technology can effectively further reduce reconstruction
times, this is beyond the scope of this investigation.

This work presents a SRM-generic hardware imple-
mentation that achieved reconstructed images 4.3 times
faster using GPU technology compared to an optimized
CPU-single-core implementation and 2.5 times faster than
a CPU-multicore (8) implementation. A CPU-multicore
implementation decreased the reconstruction time by only
1.7 times compared to the single-core implementation.

Differences in image performance were assessed from an
image quality and a spatial resolution perspective. Negligible
differences were demonstrated between CPU-based single-
core and multicore implementations, and small differences
between CPU-single-core and GPU-based implementations
were observed. Differences below 1% for the CV, below 2.5%
for the CNR, and below 0.4% for the spatial resolution were
measured between the CPU-single-core implementation and
the GPU-based implementation.
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Figure 9: FWHM (mm) of the closest (1-blue) and farthest (6-red) point source from the centre of the FOV for 300 iterations measured

every 10 iterations obtained with the CPU (+) and the GPU ([J) (a) and difference in % between the CPU and GPU implementations for
each point source (b).
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FiGure 10: 3D rendering of the ideal MOBY phantom (a), reconstructed phantom after 300 iterations using cubic basis functions filtered

with a ¢ = 0.5 mm Gaussian filter (b), spherically symmetric basis functions using the GPU-based implementation (c), and CPU-multicore-
based implementation (d).
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