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Abstract
In frequency-modulation atomic force microscopy the direct observable is the frequency shift of an oscillating cantilever in a force

field. This frequency shift is not a direct measure of the actual force, and thus, to obtain the force, deconvolution methods are neces-

sary. Two prominent methods proposed by Sader and Jarvis (Sader–Jarvis method) and Giessibl (matrix method) are investigated

with respect to the deconvolution quality. Both methods show a nontrivial dependence of the deconvolution quality on the oscilla-

tion amplitude. The matrix method exhibits spikelike features originating from a numerical artifact. By interpolation of the data, the

spikelike features can be circumvented. The Sader–Jarvis method has a continuous amplitude dependence showing two minima and

one maximum, which is an inherent property of the deconvolution algorithm. The optimal deconvolution depends on the ratio of the

amplitude and the characteristic decay length of the force for the Sader–Jarvis method. However, the matrix method generally

provides the higher deconvolution quality.
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Introduction
The atomic force microscope (AFM) was invented 25 years ago

as an offspring of the scanning tunneling microscope (STM),

extending the imaging capabilities to insulators [1]. Nowadays

the focus of development and investigation shifts from purely

topographic imaging, in spite of this still being the main use of

an AFM, to quantitative force measurements between single

atoms or molecules in high-resolution, dynamic AFM modes.

Examples are the measurement of the force needed to move an

atom on surface [2] or the chemical identification of different

adatom species [3]. Another trend is the three-dimensional force

mapping [4,5] giving tomographic insight into the force field

over atoms and molecules. However, all these remarkable

results have to rely on inversion methods as the force is not

directly measured in the dynamic modes of an AFM.

http://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:joachim.welker@physik.uni-regensburg.de
http://dx.doi.org/10.3762%2Fbjnano.3.27
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Figure 1: (a) Definition of the z-axis: The cantilever oscillates with a constant amplitude A. The lower turnaround point is denoted with zltp and the
center of the oscillation is at zltp + A. (b) The frequency shift can be calculated as a convolution of the force gradient kts with a semicircular weight
function w.

For high-resolution atomic force microscopy commonly the

frequency-modulation (FM) technique is used [6]. In FM-AFM

the direct observable is the frequency change of an oscillating

cantilever due to the force field acting between the tip of the

probe and the sample surface. The corresponding frequency

shift is related to the actual force by a convolution [7]. Hence to

obtain the force, deconvolution methods are necessary.

A number of inversion methods from frequency shift to force

have been suggested. Iterative methods were proposed by

Gotsmann [8] and Dürig [9]. The higher harmonics of the

cantilever oscillation can be exploited to recover the force

instantaneously [10]. Hölscher showed that a deconvolution is

possible if the amplitude dependence of the frequency shift is

known [11]. Predominantly, the direct deconvolution methods

of the Δf(z) dependency that were proposed by Sader and Jarvis

[12] and Giessibl [13] are used. These methods were found to

be the most robust [14]. Both methods start from the same equa-

tion for the convolution, but they have different approaches in

solving it for the force.

In this paper we compare the Sader–Jarvis deconvolution

method and Giessibl’s matrix method. We use the analytical

formulas of the Morse and Lennard-Jones model forces and the

corresponding frequency shifts. The analytically calculated

frequency shifts are deconvoluted back into a force and

compared with the original model force.

In the first section we introduce the model forces and the

corresponding frequency-shift curves. In the second section

both deconvolution methods and their implementation for

discrete data points are described. In the third section we

present the results of the simulation showing a nontrivial ampli-

tude dependence of the deconvolution quality and discuss the

origin of the variations in deconvolution quality.

Forces and frequency shifts in FM-AFM
In FM-AFM the force is not directly proportional to the

measured frequency shift, but instead to the average force

gradient, as can be seen from a simple model. Let us assume an

interaction potential between a tip and a sample denoted by

Vts(z). Accordingly, the force is given by Fts(z) = −(dVts(z)/dz)

and the force gradient by kts(z) = −(dFts(z)/dz). If kts is constant

over the range of one oscillation cycle, which is fulfilled, for

example, for small amplitudes, the actual resonance frequency f

can be calculated with an effective spring constant k + kts

(1)

where m is the effective mass and k the spring constant of the

cantilever. For kts << k we can expand the square root in

Equation 1 and calculate the frequency shift Δf = f − f0

(2)

In general kts is not constant over the oscillation cycle, espe-

cially for larger amplitudes A. In this case the oscillation of the

cantilever has to be taken into account. A derivation of the

frequency shift caused by an arbitrary force Fts is given, for

example, in reference [15] based on the Hamilton–Jacobi

formalism:

(3)

where zltp is the lower turnaround point of the oscillation (see

Figure 1a). Thus the frequency shift can be calculated by a
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convolution of the force with an amplitude-dependent weight

function. Integration by parts of Equation 3 leads to a more

intuitive form:

(4)

This equation describes the frequency shift Δf as a convolution

of the force gradient kts with a semicircular weight function

with radius A (see Figure 1b). Equation 4 is equivalent to

Equation 2 upon replacing kts with the average force gradient

Equation 3 needs to be inverted in order to calculate the force

for a given Δf(z) curve. Additionally, it enables us to calculate

the expected frequency shift for a given force law. In reference

[16] analytical functions of Δf(z) curves for power and exponen-

tial force laws were calculated. A common exponential force

law is the force derived from the Morse potential used to

describe the bonding between two atoms:

(5)

(6)

Here Ebond is the bond energy, κ is the decay constant and σ is

the equilibrium distance. The frequency shift that is derived

from such a Morse force law is given by [16]:

(7)

with  being the Kummer function (see section 13.2.1 in

[17]).

Another potential commonly used to describe the interaction

between two atoms is the Lennard-Jones potential. In contrast to

the Morse potential, the Lennard-Jones potential is based on

power functions and has only two parameters, that is, the

equilibrium distance σ and the bond energy Ebond:

(8)

(9)

The Lennard-Jones force law leads to the frequency shift [16]:

(10)

with  being the hypergeometric function (see section

15.3.1 in [17]). In this work we use both the Morse and the

Lennard-Jones force laws as model systems to judge the quality

of the force-deconvolution methods.

Force-deconvolution methods for discrete
data
Sader and Jarvis [12] proposed an analytical force-deconvolu-

tion method (hereinafter called the Sader–Jarvis method). The

force Fts(zltp) is expressed in terms of a Laplace transformation.

In doing so, Equation 3 can formally be solved for Fts. But to

calculate the actual expression numerically, part of the Laplace

transformed function needs to be approximated by a rational

function. Using fractional calculus, Sader and Jarvis provide

an equation to recover the force Fts from a Δf(z) in a closed

analytical form:

(11)

Practically, the frequency shift is not given as an analytical

function but in discrete data points Δfi = Δf(zi), i = 1,…,N. It is

convenient to define z1 as the point of closest approach and

zi+1 > zi, but the data points do not need to be equidistant. Upon

implementation of Equation 11, both the derivation and the inte-

gration have to be calculated numerically. The derivation is
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replaced by the difference quotient and the integral is calcu-

lated following, for example, the trapezoidal rule:

(12)

where

(13)

is a correction term. Sader introduced this term in his imple-

mentation of the force-deconvolution algorithm [18] to account

for the divergence of the integrand in Equation 11 at t = zltp.

The correction term is given by the integration over the interval

[zj,zj + 1] with Δf(t) assumed to be constant. The numerical inte-

gration is conducted over the discretized integrand

(14)

This implementation is of course only one possibility. There

are, for example, other algorithms than the trapezoidal rule to

perform the numerical integration in Equation 12. Choosing

another integration algorithm, the correction term in

Equation 13 may become unnecessary (see for example [19]).

However, further below we will show that it is not the

numerical integration that is the limiting factor in accuracy, but

rather the used approximation.

Another method was proposed by Giessibl [13] (hereinafter

called the matrix method). This method directly uses the

discrete nature of the frequency shift versus distance data.

The starting point is also the discretized Equation 3, but

the data points Δfi = Δf(zi), i = 1,…,N must be equidistant:

zi = (i − 1)d + z1. Here, z1 is the first z value with nonzero

frequency shift coming from far away from the sample. Hence

the z-axis is opposite to the one used in the Sader–Jarvis

method. Equation 3 can be expressed as a matrix equation by

appropriate substitution and index shifting:

(15)

The matrix elements Wij are given by

(16)

where α = round(A/d) is the ratio of the amplitude A and the

step width d rounded to the nearest integer. The upper and

lower boundaries of the integral are given by

(17)

The integral in Equation 16 can be evaluated analytically

resulting in . In order to solve Equation 15 for Fts the

equation needs to be multiplied from the left with the inverse

matrix M = W−1 resulting in

(18)

Hence the deconvolution method does not need any approxima-

tion and only involves the calculation of the inverse matrix M.

It is a common argument that the implementation of the matrix

method is more complicated than the Sader–Jarvis method and

needs high-performance mathematical software tools [14]. The

implementation of Equation 12 and Equation 18 used in this

work was done in MATLAB [20], and the scripts are available

in Supporting Information File 1. Both implementations are

straightforward and work also with the freely available soft-

ware GNU Octave [21] without modification. As both

MATLAB and Octave have built-in optimized routines for

matrix operations, the matrix method is slightly faster. This may

change upon use of a different implementation or different soft-

ware.

Comparison of the force-deconvolution
methods
For comparison we consider two theoretical model systems, the

Morse potential (Equation 5) and the Lennard-Jones potential

(Equation 8). For these model systems we can derive the force

laws Fts(z) (Equation 6, Equation 9) and the frequency-shift

curves Δf(z) (Equation 7, Equation 10) for an FM-AFM force

sensor. The calculated frequency-shift curves are deconvoluted

back to a force curve FS/M by using the Sader–Jarvis (S) and the

matrix (M) method, respectively.
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In order to compare the two deconvolution methods for

different force laws, we need a measure for the deconvolution

quality. In this work we use the coefficient of determination

(CoD)

(19)

as a measure of the similarity of the modeled force Fts to the

deconvoluted force FS/M. The  denotes the average of the

deconvoluted force and N is the number of data points. The

CoD is widely used as a measure of the goodness of fit. Gener-

ally, 0 < R2 ≤ 1 holds independently of the number of data

points, and the order of magnitude of the force giving a CoD of

1 corresponds to a perfect match. In principle, a negative CoD

can also occur, if the force model fits the deconvoluted force

worse than just taking the average of the deconvoluted force. As

the CoD does not give information about the shape of the devia-

tion, the residuals

(20)

are calculated for selected amplitudes (see below). Both the

CoD and the residuals as a measure of the deconvolution quality

emphasize the errors at positions with very steep gradients.

Therefore, a small shift of the deconvoluted forces, especially in

the repulsive regime, leads to strong deviations. However, as

the analysis shows, both measures provide a good insight into

the deconvolution quality.

Two important parameters of the atomic interaction are the po-

sition and the value of the force minimum (maximum attractive

force). Therefore, we also compare the deviation from the

model values:

(21)

(22)

To calculate the frequency shift we chose a tuning fork sensor

in the qPlus design [13] with a spring constant of k = 1800 N/m

and a resonance frequency of f0 = 32768 Hz. This sensor can

operate with very small amplitudes in the picometer range up to

large amplitudes in the nanometer range [22]. The amplitude

contributes to the deconvolution in a nontrivial way, whereas k

and f0 are just linear factors. Therefore, we investigated the

amplitude dependence of the deconvolution for the Sader–Jarvis

and the matrix method.

We took 500 logarithmically distributed amplitude values A in

the range from 10 pm to 1 nm. For each amplitude the Morse

and Lennard-Jones force and frequency-shift curves were calcu-

lated in a z range from 0.23 nm to 5 nm with 5000 data points.

We assumed an equilibrium distance of σ = 0.235 nm and a

bond energy of Ebond = 0.371 aJ, which were previously used to

model a silicon–silicon interaction [15]. Additionally, for the

Morse potential we assumed a decay constant of κ = 4.25 nm−1.

This leads to a maximum attractive force of Fmin = −790 pN at

zmin = 398 pm and Fmin = −4.25 nN at zmin = 261 pm for the

Morse and Lennard-Jones force laws, respectively.

Results
Results for a Morse force law
Figure 2 shows the amplitude dependence of the CoD R2 of the

Morse force law based on both the Sader–Jarvis and the matrix

deconvolution method. Both methods reveal a nontrivial ampli-

tude dependence of the deconvolution quality. Upon using the

Sader–Jarvis method the CoD varies continuously reaching the

smallest value at an amplitude of A = 137 pm and the largest at

A = 352 pm. With the matrix method the CoD exhibits periodic

spikelike features that grow in magnitude as the amplitude is

decreased. For larger amplitudes A > 100 pm the CoD

converges to 1. However, both deconvolution methods have a

R2 > 0.990 over the whole of the considered amplitude range.

Thus in terms of the CoD both methods work very well.

Figure 2: Amplitude dependence of the CoD for the Morse force law.
The positions marked with 1, 2, 3, and 4 correspond to the amplitudes
12.8 pm, 12.9 pm, 137 pm and 352 pm, respectively.

In order to show that these small variations in the CoD repre-

sent measurable differences between deconvoluted force and

the model force, the model and deconvoluted force curves

FS/M(z) and the residuals ΔFS/M(z) are plotted in Figure 3 for

selected amplitudes marked in Figure 2. For tip–sample

distances greater than 1.5 nm the deviation is below 1 pN. But

in the interesting region around the force minimum and in the

repulsive regime there are deviations up to 109 pN for both

deconvolution methods.
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Figure 3: Model force Fts(z), deconvoluted force FS/M(z) and the residuals ΔFS/M(z) for the Morse force law with selected oscillation amplitudes. (a)
Amplitude 1 in Figure 2 (12.8 pm) with R2 ≈ 1 for the matrix method. (b) Amplitude 2 in Figure 2 (12.9 pm) with R2 = 0.995 for the matrix method. (c)
Amplitude 3 in Figure 2 (137 pm) with R2 = 0.990 for the Sader–Jarvis method. (d) Amplitude 4 in Figure 2 (352 pm) with R2 ≈ 1 for both methods.

A comparison of the residuals ΔFS/M(z) for an amplitude of

12.8 pm (Figure 3a) and 12.9 pm (Figure 3b) reveals that in

case of the matrix method even tiny differences in the oscilla-

tion amplitude can have a great effect on the quality of the

deconvolution. This manifests as a drop in the CoD from 1 to

0.995. Similarly, strong deviations are present in the residuals

for the Sader–Jarvis method. The Sader–Jarvis method leads to

a CoD of R2 = 0.990 at the lowest amplitude of A = 137 pm (see

Figure 3c) and to R2 ≈ 1 at the highest amplitude of A = 352 pm

(see Figure 3d). This rise in the CoD of 0.01 connotes a

decrease in the maximum deviation from 109 pN to 13 pN in

the residuals. The greatest deviation occurs in the region of the

steep gradient to the left of the force minimum, which is caused

by a small shift in the z values of the deconvoluted force. As

can be seen from the force curves, the agreement in that range is

still reasonably good.

The amplitude dependence of the force minimum ΔFmin(A) in

Figure 4a has a similar shape to the amplitude dependence of

the CoD in Figure 2. The deviations from the force minimum in

the Sader–Jarvis method vary continuously, and the largest

deviation at an amplitude of A = 123 pm almost coincides with

the minimum of the CoD at A = 137 pm. The matrix method

shows spikelike features similar to Figure 2 in the deviation of

the force minimum that become greater with decreasing ampli-

tude. However, for amplitudes exceeding 110 pm these devia-

tions become smaller than 3 pN. Whereas the CoD is always

above 0.990, the deviations of the force minimum are up to

53 pN corresponding to 7% of the actual value Fmin = −790 pN

for both deconvolution methods. For most of the considered

amplitude range ΔFmin is positive for both methods. Therefore,

the absolute value of the deconvoluted maximum attractive

force is smaller than the actual maximum attractive force. The

deviation in the position can only take an integer multiple of the

step width d between the z values (see Figure 4b). For the

Sader–Jarvis method deviations up to nine data points corres-

ponding to ΔzFmin = 9 pm occur. The matrix method is in this

regard very accurate as there are only deviations of one data

point at most.

Results for a Lennard-Jones force law
In Figure 5 the amplitude dependence of the CoD for the

Lennard-Jones force law is shown. The amplitude dependence

is again continuous for the Sader–Jarvis method, but the curve
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Figure 4: Amplitude dependence of the deviation in magnitude (a) and position (b) from the force minimum for the Morse force law. The steps in (b)
are due to the discretization of the z-values.

is shifted to smaller amplitudes compared to the Morse force

law in Figure 2. The Sader–Jarvis method exhibits minima at

amplitudes of 23 pm and 122 pm and a maximum at 58 pm. The

matrix method shows again the periodic spikelike features.

Additionally, for larger amplitudes the CoD R2 does not

converge to 1. The deconvolution quality expressed by the CoD

R2 ≥ 0.993 is also very high for the Lennard-Jones force law.

Figure 5: Amplitude dependence of the CoD for a Lennard-Jones
force law. The positions marked with 1, 2, 3, and 4 correspond to the
amplitudes 11.7 pm, 12.0 pm, 23 pm and 58.3 pm, respectively.

The deconvoluted force curves and the residuals of the

Lennard-Jones force law shown in Figure 6 show significant

deviations only for tip–sample distances below 0.55 nm.

Comparing the residuals of the matrix method for an amplitude

of 11.8 pm (Figure 6a) and 12.0 pm (Figure 6b) also shows a

strong deviation of the deconvolution quality due to only a

small increase in amplitude, as was observed for the Morse

force law. At the first minimum of the CoD for the Sader–Jarvis

method the maximum difference between the deconvoluted

force and the model force is 460 pN (Figure 6c). For an ampli-

tude of 58.3 pm (Figure 6d) the deviation for the Sader–Jarvis

method is only 78 pN corresponding to a CoD of R2 ≈ 1.

For the Lennard-Jones force law the shape of the ΔFmin(A)

curve (Figure 7a) is similar to the amplitude dependence of the

CoD in Figure 5. Using the Sader–Jarvis method the largest

deviation appears at an amplitude of 21 pm, approximately

where the CoD has its first minimum. At this position, the

deconvoluted force minimum is larger than the minimum of the

model force. Therefore, the absolute value of the maximum

attractive force is smaller than the correct value. At the second

minimum of the CoD (A = 120 pm) the deviation is negative.

For the matrix method most amplitudes result in a positive

ΔFmin meaning that the absolute value of the maximum attrac-

tive force is underestimated. The deviations from the actual

force minimum rise up to 293 pN for the matrix method and up

to 259 pN for the Sader–Jarvis method, which is 7% and 6%,

respectively, of the correct value Fmin = −4.25 nN. The devia-

tions of the position of the force minimum shown in Figure 7b

are very small in the case of the Lennard-Jones force law

compared to the Morse force law. There are no deviations for

the matrix method and the Sader–Jarvis method shows only

deviations of one data point at most.

Discussion
To determine the origin of the amplitude-dependent periodic

spikes in the CoD for the matrix method, in Figure 8, we plot

the CoD versus the ratio of amplitude and step width A/d for the

Morse and the Lennard-Jones force law. The position of the

best deconvolution quality strongly depends on the simulation

parameters (force law, amplitude range). But a sharp drop of R2

for A/d ≈ n + 0.5 is seen for all parameters. Therefore, we

suggest using only integer ratios of A/d as they are furthest

away from the singularities.

At first glance the matrix method does not seem to be suitable

for small amplitudes. But the drop in the CoD for small ratios

A/d is not related to a shortcoming of the matrix method for

small amplitudes but rather to a numerical artifact that is
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Figure 6: Model force Fts(z), deconvoluted force curves FS/M(z) and the residuals ΔFS/M(z) for the Lennard-Jones force law with selected oscillation
amplitude. (a) Amplitude 1 in Figure 5 (11.7 pm) with R2 = 0.9996 for the matrix method. (b) Amplitude 2 in Figure 5 (12.0 pm) with R2 = 0.996 for the
matrix method. (c) Amplitude 3 in Figure 5 (23 pm) with R2 = 0.994 for the Sader–Jarvis method. (d) Amplitude 4 in Figure 5 (58.3 pm) with R2 ≈ 1 for
the Sader–Jarvis method.

Figure 7: Amplitude dependence of the deviation in magnitude (a) and position (b) from the force minimum for the Lennard-Jones force law. The
steps in (b) are due to the discretization of the z-values.

Figure 8: Dependence of the CoD on the ratio A/d of amplitude and step width for the Morse and the Lennard-Jones force law. The inset shows that
the spikes are always at positions A/d = n + 0.5 for both force laws with an integer n.
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emphasized by using too few data points for the deconvolution.

This can be seen as the CoD always goes back to its optimum

value even for low ratios of A/d < 30. If the data points are not

given in an appropriate spacing, interpolation methods can be

used. This additional data processing increases computational

time and memory requirements for the deconvolution. In

general it is advisable to use ratios A/d > 50 as the variation in

R2 becomes very small for greater ratios, whereas a very small

ratio A/d ≤ 1 can even result in a negative CoD.

For the Sader–Jarvis method the situation is different. The

R2(A) curves show two distinct minima and one maximum at

which the deconvolution quality is optimal. However, the posi-

tions of the minima and the maximum are not connected to the

ratio A/d. Therefore, interpolation does not yield a better decon-

volution performance.

In fact, the deconvolution quality depends on the ratio of the

amplitude and the characteristic decay length of the force law.

For a Morse force law the decay length is inversely propor-

tional to the parameter κ. In Figure 9a the CoD is shown for

Morse force laws with κ’s from 2 nm−1 to 10 nm−1. We can

scale the amplitude axis for every individual CoD curve by κ, as

is shown in Figure 9b. The minima and maxima of all curves

coincide very well on the scaled axis. In the derivation of

Equation 11 the function T(x) = e−xI1(x), where I1(x) is the

modified Bessel function of the first order [17], is approxi-

mated by [12]

In Figure 9c the squared relative error of this approximation

(23)

is shown. By comparison of Figure 9b and Figure 9c it is

evident that the variation in the deconvolution quality is not a

numerical artifact, but an inherent property of the deconvolu-

tion method due to this approximation. This approximation

exhibits a maximum error of 5%, as already pointed out in

[12,23]. This is in concordance with the results presented in this

work yielding a maximum error of 7% in the force minimum.

Unfortunately, the optimal and the worst deconvolution lie very

close together on the order of the characteristic decay length.

For a Morse law the optimal deconvolution is attained for

A ≈ 1.5 κ−1 and the worst for A ≈ 0.59 κ−1. The deconvolution

Figure 9: (a) Amplitude dependence of the CoD for Morse force law
with different decay constants κ (see legend in (b)). (b) The same data
shown in (a) but with a scaled abscissa κA. The minima and maxima
coincide on the scaled axis. (c) square of the relative error SqRE of the
approximation of the function T(x).

quality rises again for larger amplitudes A > 7 κ−1. However,

usually amplitudes in the order of the characteristic decay

length of the force are desired to obtain the best signal-to-noise

ratio [24]. Therefore, in a real experiment it is difficult to judge

whether the Sader–Jarvis method will provide an optimal

deconvolution.

Besides the deconvolution algorithm, there are other uncertain-

ties in the experimental parameters that have a direct effect on

the correctness of the force deconvolution: The stiffness k, the

amplitude A (sensor sensitivity) and the tip–sample distance z

(z-piezo sensitivity). The uncertainties of these parameters are
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in the range of a few percent. Another important prerequisite to

the experimental data is that the frequency shift curves extend

far enough from the surface, so that Δf(z) and its derivative

dΔf(z)/dz go to zero, because of the finite number of data points

used for the deconvolution.

Conclusion
We have shown how the deconvolution methods proposed by

Sader and Jarvis and Giessibl can be implemented for discrete

data points. The analysis of the deconvolution methods has

shown that both methods work fine when we are considering

the coefficient of determination. However, in certain cases there

are significant differences in the deconvolution quality with

respect to the amplitude dependence. The deviation from the

force minimum was found to be 7% for both methods in the

worst case. The matrix method is very sensitive to the ratio A/d

of the amplitude A and the step width d of the Δf(zi). The decon-

volution can always be optimized by using this method either

by taking an integer value of A/d or by interpolating the data to

an integer or very large ratio. The deviations with the

Sader–Jarvis method do not originate from the discrete nature

of the data points. Therefore, interpolation does not increase the

deconvolution quality. The quality is related to the ratio of the

amplitude and the characteristic decay length of the force due to

the approximation used. For a Morse force law with a decay

constant κ it was found that optimal deconvolution is reached

for κA = 1.5. Generally, the matrix method provides the higher

deconvolution quality, as the data, if necessary, can always be

interpolated to equidistant points with a high integer ratio A/d.

If additional data processing is not desired and the data is given

in a low or unsuitable ratio A/d, the Sader–Jarvis method

provides a good alternative.

Supporting Information
Supporting Information File 1
Implementation of the Sader–Jarvis and the matrix force

deconvolution algorithm in MATLAB [20].
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