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The lack of reliable forecasts for the spread of oceanic and atmo-
spheric contamination hinders the effective protection of the
ecosystem, society, and the economy from the fallouts of environ-
mental disasters. The consequences can be dire, as evidenced by
the Deepwater Horizon oil spill in the Gulf of Mexico in 2010. We
present a methodology to predict major short-term changes in en-
vironmental contamination patterns, such as oil spills in the ocean
and ash clouds in the atmosphere. Our approach is based on new
mathematical results on the objective (frame-independent) identi-
fication of key material surfaces that drive tracer mixing in unstea-
dy, finite-time flow data. Some of these material surfaces, known
as Lagrangian coherent structures (LCSs), turn out to admit highly
attracting cores that lead to inevitable material instabilities even
under future uncertainties or unexpected perturbations to the
observed flow. These LCS cores have the potential to forecast im-
minent shape changes in the contamination pattern, even before
the instability builds up and brings largemasses of water or air into
motion. Exploiting this potential, the LCS-core analysis developed
here provides a model-independent forecasting scheme that relies
only on already observed or validated flow velocities at the time
the prediction is made. We use this methodology to obtain high-
precision forecasts of two major instabilities that occurred in the
shape of the Deepwater Horizon oil spill. This is achieved using
simulated surface currents preceding the prediction times and
assuming that the oil behaves as a passive tracer.

In April 2010, a blowout caused an explosion on the Deepwater
Horizon (DWH) mobile offshore oil rig near the Mississippi

River’s mouth in the Gulf of Mexico. The resulting fire could
not be extinguished and the drilling rig sank shortly after, leaving
the oil well gushing at the sea floor. Before the well was capped
in mid-July, an estimated 4 million barrels of oil escaped (1),
causing the largest accidental marine oil spill in the history of the
petroleum industry. Beyond the enormous ecological damage,
the spill resulted in an estimated loss of over a billion dollars for
the tourism industry alone.

In this environmental disaster, uncertainties in the spread of the
pollutant plume had severe financial implications. Mass cancella-
tions devastated the tourism industry along the Southwest Florida
coastline, which was never actually reached by the DWH oil spill.
Beyond the measurable cost, the lack of reliable forecasts for the
spread of contamination hindered effective countermeasures and
led to suboptimal resource allocation by decision makers.

Precise longer-term forecasts for the underlying ocean flow
have not been within reach because of the same inherent sensi-
tivities and uncertainties that affect weather-forecasting models.
Shorter-term predictions of ocean currents are more accurate,
but the relevant details of such predictions typically depend on
the models and initial conditions on which they are based.

In this paper, we propose an approach to short-term (4–6 d)
prediction of impending changes in the material distribution of a
pollutant plume in the ocean, as opposed to the current practice
of forecasting changes in the full unsteady velocity field. Our
methodology assumes that time-resolved measured velocities or
validated model velocities are available up to the present time

when the forecast is made. No assumption is made, however,
about the availability of future velocities from numerical models.

Our approach is Lagrangian (i.e., fluid-trajectory based), and
takes advantage of modern developments in nonlinear dynamical
systems theory. In particular, we use Lagrangian coherent struc-
tures (LCSs), the recently discovered hidden skeleton behind
complex mixing patterns in unsteady flows (2, 3), to make short-
term predictions of major deformations that are about to happen
in an observed tracer pattern. What makes this possible is the
structural stability of LCSs with highly attracting cores, which gen-
erate enough momentum to keep the tracer on its pathway for a
while, even if unexpected or unresolved perturbations arise from
the underlying velocity field. The resulting methodology, LCS-core
analysis, is based on exact mathematical results, frame indepen-
dent, and does not rely on future model data. These features dif-
ferentiate it from other proposed Lagrangian approaches (see, e.g.,
ref. 4) and enable highly localized predictions for short-term tracer
instabilities without the danger of false positives or negatives.

We illustrate the proposed methodology by forecasting the
location and time of two main instabilities that had a crucial
impact on the shape of the DWH oil spill. The first such event,
the “tiger-tail” instability, took place on May 17, 2010. It involved
an unexpected southeastward spread of the spill, in the form of
a prominent finger, into a cyclonic eddy north of a much larger
anticyclonic eddy pinched off from the Loop Current. The second
event we forecast is the “coastal-spread” instability, an inward
bend of the spill along the northwestward direction around June
10, 2010, followed by a southwestward-northeastward elongation
that lead to the accumulation of oil along the northeastern Gulf
of Mexico coastline.

Our analysis of the DWH oil spill is based on surface velocity
fields obtained from a general ocean circulation model that as-
similates in situ observations and satellite-based remote sensing.
In these forecasts, we neglect nonconservative behavior, such as
diffusive mixing of the oil and chemical reactions, as well as sub-
mesoscale processes whose length scales (less than 10 km) are well-
separated from the large-scale instabilities we seek to forecast.
Even with these approximations, we obtain remarkably accurate
predictions of instabilities in the shape of the spill, which under-
lines the robustness of the LCS-core analysis developed here.

Results and Discussion
Tracer Instabilities in Steady and Unsteady Flows. Two-dimensional
incompressible fluid motion is governed by the differential equation

_x ¼ vðx; tÞ; ∇ · v ¼ 0; [1]

where the overdot denotes differentiation with respect to the time t,
∇ denotes the gradient with respect to the two-dimensional spatial
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variable x, and the vector field vðx; tÞ denotes the fluid velocity field
depending on the location and time. The solution xðt; t0; x0Þ of
Eq. 1 gives the position of a fluid particle at time t, given that
the particle started from the point x0 at an initial time t0. The flow
map, defined as Ft

t0ðx0Þ : ¼ xðt; t0; x0Þ, therefore, acts as a map-
ping that deforms any initial particle distribution Dðt0Þ at time
t0 into its later shape DðtÞ at time t (Fig. 1A).

Steady flows are characterized by time-independent velocity
fields of the form vðxÞ. For such flows, the geometric properties
of the flow map can readily be inferred from the streamlines of
the velocity field, which coincide with the trajectories of the dif-
ferential Eq. 1. In a steady incompressible flow, the only possible
drivers of instability are saddle points and their associated un-
stable manifolds (5). The latter manifolds are simply trajectories
that asymptote to the saddle in backward time, while grabbing
and transporting material away from the saddle in forward time.

In particular, assume that a saddle point p of vðxÞ exists inside
the initial tracer distribution Dðt0Þ, with its unstable manifold
W uðpÞ intersecting the boundary of DðtÞ at a nonzero angle
(Fig. 1B). As a consequence, material will be transported expo-
nentially fast by the flow map alongWuðpÞ, leading to a fingering-
type instability in the shape of DðtÞ. Similarly, if a saddle point q
exists outside the boundary of Dðt0Þ, with its unstable manifold
W uðqÞ intersecting the boundary of Dðt0Þ at a nonzero angle,
then material from the outside will be transported exponentially
fast towards the interior of Dðt0Þ along the unstable manifold of
q (Fig. 1C). Consequently, to predict major short-term changes in
a tracer blob Dðt0Þ it is sufficient to determine the position of
saddle points of vðxÞ relative to the boundary of Dðt0Þ.

This simple flow geometry also extends to special unsteady
velocity fields vðx; tÞ whose dependence on time is T-periodic.
In this case, the Poincare map Ft0þT

t0 provides a steady sampling
of the dynamics of the flow. Once saddle-type fixed points of
Ft0þT

t0 are located, discrete fingering-type instabilities of Fig. 1
can be predicted based on the location of these fixed points re-
lative to tracer patterns of interest.

By contrast, forecasting tracer instabilities in unsteady flows
with general time dependence is substantially more involved.
There is no longer any steady stroboscopic mapping whose phase
portrait would explain global mixing patterns. The flow map loses
any direct relationship with streamlines, which become time vary-
ing and distinct from fluid trajectories. Instantaneous stagnation
points (i.e., points where vðx; tÞ vanishes momentarily) continue
to exist but are no longer directly related to solutions of Eq. 1
unless the flow is near-steady (6). Actual fixed points (i.e., points
where vðx; tÞ vanishes permanently) are unlikely to arise away
from flow boundaries.

In such flows, the role of the stable and unstable manifolds of
saddle points in organizing mixing patterns is taken over by LCSs
(2, 3). In two dimensions, hyperbolic LCSs are special material

lines that are locally the most attracting or repelling among all
nearby material lines (2, 7). Attracting LCSs, therefore, act as
the skeletons around which deforming passive tracer blobs de-
form (Fig. 2A).

Beyond various diagnostic tools proposed in the literature (see
ref. 3) and the references cited therein), rigorous sufficient and
necessary criteria for locating LCSs are now available (7, 8).
These criteria provide a mathematical foundation for a computa-
tional algorithm that extracts LCSs as parametrized material
curves from unsteady flow data 9.

For attracting LCSs, the algorithm starts by solving Eq. 1 nu-
merically between the present time t0 and an earlier time t0 − T
of interest, with initial conditions x0 taken from an initial grid of
positions at t0. Using the family of backward fluid trajectories
obtained in this fashion, the Cauchy–Green strain tensor field is
computed as

Ct0−T
t0 ðx0Þ ¼ ½∇Ft0−T

t0 ðx0Þ��∇Ft0−T
t0 ðx0Þ;

where star denotes matrix transposition, and the deformation
gradient ∇Ft0−T

t0 is obtained by numerically differentiating the
backward flow map Ft0−T

t0 ðx0Þ ¼ xðt0 − T; t0; x0Þ with respect to
the present position x0. The backward strain eigenvalue fields
λiðx0Þ and corresponding strain eigenvector fields ξiðx0Þ are then
defined as

Ct0−T
t0 ðx0Þξiðx0Þ ¼ λiðx0Þξiðx0Þ; jξiðx0Þj ¼ 1; i ¼ 1; 2;

0 < λ1ðx0Þ ≤ λ2ðx0Þ:

As shown in refs. 7 and 8, hyperbolic LCSs at time t0 are con-
tained in strainlines, i.e., in trajectories of the differential equa-
tion

x 0
0ðsÞ ¼ ξ1ðx0ðsÞÞ; [2]

with the parameter s referring to arc length. More specifically, a
compact segment γ0 of such a strainline is an attracting LCS if

hξ2ðx0Þ;∇2λ2ðx0Þξ2ðx0Þi < 0 [3]

holds for all x ∈ γ0, with ∇2λ2ðx0Þ referring to the Hessian of
λ2ðx0Þ. In addition, the averaged normal repulsion rate of γ0, de-
fined as λ̄2ðγ0Þ ¼ ð∫ γ0

λ2ðx0ðsÞÞdsÞ∕lengthðγ0Þ, must be maximal
among the averaged normal repulsion rates of all neighboring
strainline segments satisfying 3 (see ref. 9).

LCS-Core Analysis. Attracting LCSs with high λ̄2 values will have a
dramatic overall impact on tracers distributions over the time in-
terval ½t0 − T; t0�. The nature of attraction along a given LCS,
however, will typically vary: Some parts of an LCS will attract uni-
formly, whereas other parts of the LCS may alternate between
periods of attraction and repulsion.

We refer to LCS segments with uninterrupted strong attraction
as LCS cores (Fig. 2B). Along with similar subsets of nearby attract-
ing material lines, LCS cores form small (uniformly) hyperbolic re-
gions that act as generalizations of the saddle points shown in Fig. 1

A

B C
Fig. 1. (A) The deformation of a tracer blob DðtÞ under the flow map F t

t0
. (B)

Outward fingering-type instability of a tracer pattern DðtÞ in a steady flow,
caused by as saddle point p located inside the initial tracer distribution Dðt0Þ:
(C) Inward fingering-type instability of a tracer pattern DðtÞ in a steady flow,
caused by as saddle point q located outside the initial tracer distribution Dðt0Þ.

A B

Fig. 2. (A) The deformation of an initially circular tracer blob in the presence
of a nearby attracting LCS between times t0 − T and t0. (B) The hyperbolic
core of an LCS at the present time t0.
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to unsteady, finite-time flow data. In particular, hyperbolic regions
attract material along a pathway transverse to the attracting LCS,
then eject the attracted material along the LCS.

Unlike saddle points in steady flows, however, hyperbolic re-
gions are dynamic and transient in nature: they form, travel with
the flow then disappear. The formation of a hyperbolic region is a
precursor to one of the two types of tracer instabilities shown in
Fig. 1 B and C, depending on its location relative to the tracer
blob of interest.

As shown in ref. 10, the instantaneous normal attraction rate
of an LCS at a point xt with unit normal nt is measured by the
Lagrangian strain rate

rðxt; tÞ ¼ hnt; Sðxt; tÞnti; [4]

where S ¼ 1
2
½∇vþ ð∇vÞ�� is the rate-of-strain tensor evaluated in

4 along the backward fluid trajectory xt ¼ Ft
t0ðx0Þ for times t ≤ t0.

Substituting the expression nt ¼ ½∇Ft0
t ðxtÞ��n0∕j½∇Ft0

t ðxtÞ��n0j
from ref. 7 into Eq. 4 and using the fact that n0 ¼ ξ2ðx0Þ holds
along an LCS, we obtain

rðxtðx0Þ; tÞ ¼
hξ2ðx0Þ; ~Sðxtðx0Þ; tÞξ2ðx0Þi
j½∇Ft0

t ðxtðx0ÞÞ��ξ2ðx0Þj2
; [5a]

where

~Sðxtðx0Þ; tÞ ¼ ∇Ft0
t ðxtðx0ÞÞSðxtðx0Þ; tÞ½∇Ft0

t ðxtðx0ÞÞ�� [5b]

and the notation xtðx0Þ is used to point out the dependence of the
backward position xt on the present position x0. We conclude that
a fluid trajectory xt in an attracting LCS lies within a uniformly
hyperbolic region over a time interval ½t0 − T; t0� if the strain rate
rðxtðx0Þ; tÞ listed in 5a stays negative for all t values in ½t0 − T; t0�.
Such xt trajectories form the core of an attracting LCS, playing
the role of generalized saddle points in the tracer instabilities
shown in Fig. 1. To identify the most influential LCS cores at the
prediction time t0, we additionally require jrðx0; t0Þj to be large
relative to strain rates of other LCS cores (cf. Methods). Moni-
toring the emergence of LCS cores inside and outside a tracer
pattern, such as an evolving oil spill, therefore provides us with
a prediction tool (LCS-core analysis) for imminent shape changes
in the pattern, without any reliance on future velocity data.

Application to DWH Oil Spill Instabilities. Here we show how LCS-
core analysis predicts the formation of two major instabilities in
the DWH oil spill. In particular, we capture two key LCS cores,
stronger than 99% of coexisting LCS cores, that foretell the tiger-
tail and coastal-spread instabilities 4–6 d before they are actually
observed around May 17, 2010 and June 15, 2010, respectively.
Snapshots recording the development of these instabilities in the
observed oil spill are shown in Fig. 3.

The results of LCS-core analysis applied to the tiger-tail in-
stability are shown in Fig. 4. For each time t0, the corresponding
panel shows the strongest (top 1%) uniformly hyperbolic regions
as circles overlaid on the silhouette of the observed oil slick. Dou-
ble-headed arrows indicate the predicted direction of maximum
Lagrangian stretching, marked by ξ1ðx0Þ, at the center of each
circle. The length of these arrows is scaled by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2ðx0Þ

p
, the local

normal repulsion rate of the LCS containing x0 (7).
Two LCS cores are identified whose strengths remain moder-

ate from April 30, 2010 through May 2, 2010, predicting the lack
of any imminent large-scale instability (Fig. 4A). Observe, how-
ever, the smaller-scale inward fingers created by the LCS core
outside the perimeter of the spill, in agreement with our earlier
sketch in Fig. 1C. These smaller instabilities need virtually no
time to build up: They involve smaller masses of oil and water,
reacting instantaneously to the presence of relatively weak hyper-
bolic cores. Our description of them, therefore, cannot be con-
sidered forecasting but, rather, now-casting. Still, the accuracy

of our scheme in locating the root causes of these small-scale in-
ward fingering events is notable.

Next note that the strength of one of the LCS cores increases
significantly fromMay 9, 2010 through May 13, 2010, signaling an
impending large-scale instability (Fig. 4B). As time progresses,
the direction of maximum Lagrangian stretching rotates antic-
lockwise, forecasting the direction along which the oil eventually
breaks away and acquires the tiger-tail-shaped distribution on
May 17, 2010. This major instability is, therefore, signaled by our
LCS-core analysis about 1 wk before its full development. This is
because a large-scale tracer instability that goes beyond small
filament formation needs time to build up, as the large masses
of water and oil involved gradually gain momentum.

We now document the role of the attracting LCS, whose core
is shown in Fig. 4B, in the further development of the tiger-tail
instability. Fig. 5 shows snapshots of the evolving spill, with all
attracting LCSs overlaid, and with synthetic fluid particle posi-
tions (blue) initially lying within the LCS core identified on
May 11, 2010. Gradually, the patch of blue particles spreads and
forms the approximate centerpiece of the tiger-tail-shaped finger
on May 17, 2010. Remarkably, whereas diffusion, windage, three-
dimensionality, and other effects cause the spill to divert from
its LCS skeleton, the continued overall relevance of the LCS in
shaping the spill is evident from Fig. 5. As in the case of the tiger-
tail instability, the results of our LCS-core analysis are shown in
Fig. 6 for the coastal-spread instability. In this case, one or two
strong hyperbolic cores are uncovered each day of the week that
precedes the full development of the instability. The eventual
push of the spill towards the coast (Fig. 6, Upper) is forecasted
by growing Lagrangian strain around June 7, 2010. The subse-
quent spread along the coastline (Fig. 6, Lower) is now-casted

Fig. 3. Snapshots from the periods May 8, 2010–May 17, 2010 (Upper) and
June 10, 2011–June 19, 2011 (Lower), showing observed oil distribution on
the surface of the northern Gulf of Mexico. The black curve in each panel
indicates the silhouette of the oil slick on the last day shown. The box in
the inserted map in the Upper panel shows the specific area under study.
The triangle in each map indicates the DWH oil spill site.
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by a sustained Lagrangian strain in a predominantly southwest–
northeast direction.

As in the case of the tiger-tail instability, we also document the
continued role of the attracting LCS, whose core is first identified
on June 7, 2010, in shaping the oil spill (Fig. 7). Note how the LCS
marked by the blue curve keeps the spill at bay from its south-
eastern side, effectively forcing the spill to spread further along
the coastline. Again, the close correspondence between the re-
sults of our two-dimensional, passive-tracer-based analysis and
actual satellite observations of the oil spill evolution is remark-
able, as inferred from Fig. 7, Lower Right.

Conclusions
We have presented a methodology, LCS-core analysis, to predict
large-scale shape changes over a period of a few days in environ-
mental contamination patterns. This prediction scheme relies
only on velocities up to the prediction time, and hence does
not depend on yet-unvalidated model forecasts. Instead, it un-
covers massive developing instabilities that are yet to bring large
masses of tracers into motion, but are too strong to be halted
by short-term, unforeseen perturbations. The strength of these
instabilities is measured and classified in precise mathematical
terms, leading to accurate forecasts of major tracer-shape
changes in the history the DWH oil spill.

Fig. 4. LCS-core-based forecasting of the tiger-tail
instability. Selected snapshots of the satellite-
observed oil distribution (brown tone patches) are
shown along with identified attracting LCS-core cen-
troid locations (circles) and corresponding Lagran-
gian stretching directions (arrows), all within a
circular area of 200-km-radius (dashed circle) cen-
tered at the DWH oil spill site (triangle). Small-scale
inward fingering instabilities due to weaker LCS
cores are correctly now-casted (A). A major outward
instability is accurately forecasted about 8 d ahead of
its full development (B). Only velocities up to each
time t0 shown are used in this analysis; no input from
future surface–velocity model forecasts is assumed.

Fig. 5. Snapshots of the evolution of observed surface oil (brown tone patches), and the positions of synthetic fluid particles (blue) initially lying within the LCS
core identified on May 11, 2010. The red curves indicate attracting LCSs. The black triangle indicates the DWH oil well.
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Recent studies have already demonstrated the promise of var-
ious Lagrangian diagnostic quantities in interpreting the evolu-
tion of evolving tracer patterns in the ocean and atmosphere
based on model-based velocity field forecasts (4, 11 –15). Instead
of favoring any such diagnostic quantity, our approach is based on
the numerical implementation of exact mathematical results on
the variational detection of key material structures (attracting
LCS) that shape passive tracer evolution (7, 8). This enables
us to isolate Lagrangian shear (which leads to slow material
sliding) from Lagrangian strain (which leads to fast exponential
material stretching) in a frame-independent fashion. This is an
advantage over available alternative methods that are known to
produce false positives or negatives, as demonstrated in (4, 7, 10).

The present study considers velocities produced by a data-as-
similative US Navy Coastal Ocean Model (NCOM) simulation,
up to the prediction time t0, as a true representation of ocean
currents in the Gulf of Mexico for mesoscale and larger features.
In other situations, reconstructed observational velocity fields
obtained from remote sensing will be available as real-time input

to LCS-core analysis. Examples include surface ocean velocities
measured by coastal radar stations (16, 17).

Our results on the DWH oil spill have been obtained without
taking into account submesoscale processes unresolved by the ve-
locity data used here. We have also neglected three-dimensional
velocities, as well as diffusive mixing and chemical reactions in the
spread of oil. The success of our methodology confirms that these
processes indeed have negligible effects over a period of a few
days. Over longer time intervals, LCS-core analysis will continue
to apply if the velocity field vðx; tÞ in Eq. 1 is suitably modified to
account for additional factors, such as three-dimensinality, wind-
age, particle inertia, diffusion, or chemical reactions.

We envision that LCS-core analysis could serve as an efficient
quantitative tool in decision making, resource allocation, model
validation, and scenario analysis. In the specific context of an oil
spill, this analysis promises to provide quantitative support for
decisions involving coastal evacuation, intervention to protect
marine life, and optimal deployment of dispersants.

Fig. 6. LCS-core-based forecasting of the coastal-spread instability in the DWH oil spill. Colors and symbols are as in Fig. 4. A major inward instability is
accurately forecasted about 9 d ahead of its full development.

Fig. 7. As in Fig. 5 but with initial positions within the LCS core identified on June 9, 2010.
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LCS-core analysis is broadly applicable to contamination
spread in geophysical flows. We recall the 2010 eruption of
Eyjafjallajokull, an ice-covered volcano in Iceland, which threw
ash several kilometers up in the atmosphere. This resulted in
widespread airspace closure in western and northern Europe for
a period of 6 d. Beyond the major inconvenience to would-be
travelers on about 95,000 canceled flights, the shutdown caused
an estimated $1.7 billion loss for the airspace industry globally
(18). All this has motivated an ongoing LCS-core analysis of in-
stabilities in the 2010 ash pattern. The results of that study will
be reported elsewhere. We also mention red tides produced by
the accumulation of toxic dinoflagellates near the surface of
the ocean. In particular, red tides constitute a recurrent problem
along the Florida's west coast with negative effects for the health
of marine ecosystems as well as human health and, consequently,
the regional economy (20). LCS-core analysis can be applied to
investigate instabilities in the shape of a red tide distribution once
developed.

Methods
Dataset. The numerically generated velocity data employed in our analysis of
the DWH oil spill consists of daily surface ocean currents produced by the
experimental real-time Intra-Americas Sea Nowcast/Forecast System (IASNF),
which is based on the NCOM. The model has 0.04°-horizontal-resolution
(roughly 3.5 km at mid latitudes), and 41 terrain-following (σ) levels. The
model’s topography is taken from the Naval Research Laboratory 2-min
digital bathymetry database. The model assimilates satellite-observed sea-
surface height anomalies, sea-surface temperature, and a suite of available
in situ observations. Surface forcing is applied using surface heat fluxes, in-
cluding solar radiation, wind stresses and sea level air pressure from the Navy
Operational Global Atmospheric Prediction System and US Navy Fleet Numer-
ical Meteorology and Oceanography Center database. The open boundary
conditions, including sea-surface elevation, transport, temperature, salinity,
and currents are provided by the NRL 0.08°-resolution global NCOM, which
is operated daily. The model also incorporates monthly discharges from 140
rivers. More information can be found at http://www7320.nrlssc.navy.mil/
IASNFS_WWW and in the references cited there.

The surface oil images used in our analysis were produced by the National
Oceanic and Atmospheric Administration (NOAA) Experimental Marine Pol-
lution Surveillance Reports (EMPSR). The EMPSR, which were constructed
by NOAA during the DWH oil spill, delineated the extent of surface oil using
satellite imagery from both active and passive sensors, and from other
supplementary information, such as overflights and in situ observations.
More information can be obtained at http://www.ssd.noaa.gov/PS/MPS/
deepwater.html.

Computational Aspects of LCS-Core Analysis. Our computational domain is
within a circle C of radius 200 km centered at the oil well. Starting from
C at each base time t0, we compute backward-time fluid trajectories by sol-
ving the differential Eq. 1, with initial conditions distributed over a regular
grid of 0.004° resolution. In solving 1, we employ a variable time-step, fourth/
fifth-order Runge–Kutta integration scheme, with the required spatiotem-

poral interpolations performed using a linear method. The backward inte-
gration time we use is T ¼ 15 d *, starting from the running present time
t0 at which we make our predictions. As mentioned earlier, we use no future
model velocities beyond what is already available and have been validated by
time t0.

The Cauchy–Green strain tensor field and its invariants are computed from
finite-differencing over initial particle positions, and from exact pointwise
formulae for the strain eigenvalue λ2 and eigenvector ξ2. Because of the high-
er numerical stability of ξ2, we compute ξ1 as a vector orthonormal to ξ2.
Next, we identify the subset C0 of the circular domain C on which condition
3 holds, then compute strainlines within C0 by solving the differential
Eq. 2 via a fixed-step fourth-order Runge–Kutta scheme. While 2 is time
independent, accurate strainline computation is challenging because of in-
herent orientational discontinuities and degenerate points that exist in
the eigenvector field of the tensor field C t0−T

t0
ðx0Þ. These challenges have

been addressed for general tensor lines in the scientific visualization litera-
ture (see, e.g., ref. 21) and can be adapted to our present context (9). As
a result, however, the strainline segments will no longer be parametrized
by arc length, and hence the average repulsion rate along them should
be computed as λ̄2ðγ0Þ ¼ ð∫ γ0

λ2ðx0ðsÞÞjx 0
0ðsÞjdsÞ∕lengthðγ0Þ.

Attracting LCSs at the current time t0 are identified as strainlines γ0 in C0

that locally maximize the average repulsion rate λ̄2ðγ0Þ. We identify such
strainlines by intersecting all strainlines in C0 with a set of longitudinal
and latitudinal lines spaced 0.25° apart, then identifying the locations at
which λ̄2ðγ0Þ exhibits a local maximum along at least one member of the se-
lected set of lines (see ref. 9 for more detail). Having extracted all attracting
LCS at the time t0 in this fashion, we identify their cores by detecting their
points satisfying rðxtðx0Þ; tÞ < 0 for all t ∈ ½t0 − T; t0�.

To focus on predicting the most robust instabilities, we only use the stron-
gest 1% of all LCS-core points detected in this fashion, with their strength
characterized by jrðx0; t0Þj ¼ hξ2ðx0Þ; Sðx0; t0Þξ2ðx0Þij. Weaker LCS cores also
participate in shaping the spill, but their prediction is less reliable given their
sensitivity to changes in the wind field, unresolved smaller scales, and three-
dimensional effects.
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