Skip to main content
. 2012 Mar 12;109(13):4857-4862. doi: 10.1073/pnas.1118157109

Table 1.

Thermodynamic, structural, and catalytic properties of in vitro purified DHFR mutants

Mutant
Inline graphic (°C)
ΔG(H2O) (kcal/mol) 25 °C
kcat (s-1)
kcat/KM (s-1 μM-1)
ASA*
Conservation (%)
Native
Substitution
WT 51.7 −4.4 11.65 3.6
V40A 43.2 −3.31 24.05 3.22 0 43.6 0.34
I61V 53.4 −4.52 8.99 3.7 0 19.9 79
V75H 40.6 −2.18 15.5 4.57 0.05 32 0
V75I 39.2 −2.98 18.25 5.51 0.05 32 10.3
I91V 49.1 −3.14 17.87 5.13 0.07 33.3 29
I91L 41.4 −2.69 ND ND 0.07 33.3 20
L112V 47.4 −2.7 11.45 2.34 0 34 27.5
W133F 46.3 −4.4 13.45 6.79 0.05 53.6 20.6
W133V ND −1.53 ND ND 0.05 53.6 0.34
I155T 43.4 −3.68 11.27 2.72 0.12 15.8 21
I155L 45.8 −2.84 12.9 5.12 0.12 15.8 1
I155A 38.5 −2.42 11.95 2.71 0.12 15.8 1
I115V 51.4 −6 10.26 2.08 0.02 55.3 34.4
I115A 46.1 −3.4 7.59 0.5 0.02 55.3 0
V88I 44.3 −4.22 13.8 3.12 0.34 12.4 1.4
A145T 51.3 −4.13 10 3.6 0.89 12.4 1.4

*ASA (accessible surface area) was calculated by Vadar package (http://vadar.wishartlab.com); cutoff for buried residues is around 0.25.

Conservation (%) of a native E. coli’s DHFR residue (left column) or a substituted residue (right column) in a given position of 290 aligned mesophylic prokaryotic DHFR sequences retrieved from the Optimal Growth Temperature database (http://pgtdb.csie.ncu.edu.tw).

Not determined.