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Important insights into aging have been generated with the
genetically tractable and short-lived budding yeast. However, it is
still impossible today to continuously track cells by high-resolution
microscopic imaging (e.g., fluorescent imaging) throughout their
entire lifespan. Instead, the field still needs to rely on a 50-y-old
laborious and time-consuming method to assess the lifespan of
yeast cells and to isolate differentially aged cells for microscopic
snapshots via manual dissection of daughter cells from the larger
mother cell. Here, we are unique in achieving continuous and high-
resolution microscopic imaging of the entire replicative lifespan of
single yeast cells. Our microfluidic dissection platform features an
optically prealigned single focal plane and an integrated array of
soft elastomer-based micropads, used together to allow for trap-
ping of mother cells, removal of daughter cells, monitoring gradual
changes in aging, and unprecedented microscopic imaging of the
whole aging process. Using the platform, we found remarkable
age-associated changes in phenotypes (e.g., that cells can show
strikingly differential cell and vacuole morphologies at the moment
of their deaths), indicating substantial heterogeneity in cell aging
and death. We envision the microfluidic dissection platform to be-
come a major tool in aging research.
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Aging is a complex gradual impairment of normal biological
function caused by accumulation of molecular damage, fi-

nally culminating in death. Investigation of the genetically trac-
table and short-lived budding yeast Saccharomyces cerevisiae has
yielded important insights into general eukaryotic aging: specific
genes mediate aging (e.g. SIR2) (1–3) and dietary limitations can
increase lifespan (4). S. cerevisiae’s replicative aging is considered
an important model for aging in mitotically active cells (5, 6),
with the replicative lifespan being defined as the number of
daughter cells produced by a mother cell before the mother cell
ceases dividing (Fig. 1A). Because of asymmetrical inheritance of
damage to the mother (7), senescence factors are thought to
accumulate in mother cells (8). Comprehensive analyses of age-
associated phenotypes are considered to be instrumental in
identifying the senescence factors (9, 10).
Analyzing the phenotype of replicative aging yeast cells, how-

ever, harbors a major technical challenge: continuous budding of
the cells causes the originalmother cells to be rapidly outnumbered
by the exponentially increasing number of daughter cells, and thus
makes long-term tracking of the aging cell impossible (Fig. S1).
Technologies for studying age-associated phenotypes of replicative
aging yeast cells are still very limited (e.g., ref. 11), and until today
the prime tool in yeast aging research has been a 50-y-old dissec-
tion method (12), in which daughter cells are removed by micro-
scopic micromanipulation with a needle from the larger mother
cell on thick opaque culture pads (10, 13) (Fig. 1B). In a laborious
and time-consuming manner—one lifespan experiment requiring
several days of manual work for removing daughter cells after each
mitotic cycle—such dissection allows assessment of the cell life-
span (10) or the isolation of single cells to generate microscopic

snapshots of differentially aged cells. This capability has, for ex-
ample, led to the finding that the morphology of cells changes with
age (9, 10, 12). However, because of several constraints, the con-
ventional dissection method does not allow for high-resolution
microscopic imaging (e.g., fluorescent imaging), and not for con-
tinuous tracking of cells throughout their complete lifespan, which
would afford dynamic and essential insights into the phenotype
of aging cells.
Unprecedented insights into single cells during aging would be

possible with a method that allows for continuous high-resolution
microscopic imaging of whole lifespans of yeast cells from their
youth through senescence to death. The development of micro-
fluidic devices has raised expectations for their capability to culti-
vate yeast cells in controlled environments with continuous
microscopic observation (14, 15). Unfortunately, none of the cur-
rently existing microfluidic devices can be applied for long-term
replicative aging studies. Respective devices are limited either by
the number of generations over which mother cells can be moni-
tored (typically eight) because of the exponential increase in the
number of daughter cells retained in the microfluidic observation
chambers (16–18), or by nonideal optical properties imposed by the
chip design (19).
In this work, we set out to solve this problem and developed

a microfluidic dissection platform with a prealigned single focal
plane for long-term live-cell imaging of the complete replicative
(and also chronological) lifespan of budding yeast cells. Similar to
the classic dissection method, our platform also draws on the fact
that the mother is larger than the bud cell (Fig. 1C). Yeast mother
cells are trapped under soft elastomer (polydimethylsiloxane,
PDMS)-micropad. A continuous medium flowing through the de-
vice washes away emerging buds and at the same time ensures
a defined and constant environment during the whole aging ex-
periment. This soft elastomer-based “microfluidic dissection plat-
form” allows monitoring of the aging process of single cells from
“young” to “death.” In addition to offering the capability of per-
forming lifespan analyses in a less laborious manner, the excellent
optical properties of the chip permit in vivo fluorescence meas-
urements during the entire lifespan.
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Results and Discussion
Yeast mother cells are trapped under micropads (30 μm × 15 μm)
(Fig. 1C andD) that are arranged in an array-based format (Fig. 1E).
The engineered height between the micropad and the glass cover-
slide is similar to the diameter of yeast cells (i.e., 4–5 μm), realizing
a prealigned single focal plane for long-term live-cell imaging (Fig.
1C).Hydrostatic pressure, applied during the loading of the chipwith
cells (Fig. S2), lifts up the ∼200 elastic PDMS micropads and allows
the cells to pass beneath them.After the release of this pressure, cells
are trapped underneath the pads (Fig. 1D, loading) without any
detrimental effects on the cells (Fig. S3). After cell loading (de-
scribed in detail in Fig. S2), a continuous medium flows through the
device and (i) washes away emerging buds, which—because of their
smaller size—are not held under the micropad (Fig. 1D: culturing,
dissection) and (ii) ensures a defined and constant environment
during the whole aging experiment. A stable and long-term opera-
tion of the chip (> 5 d) is ensured by the overall chip’s channel layout.
With this technology, it is possible tomonitor, in a fully automated

manner without intervention of the experimenter, ∼50 single cells

from birth to death (i.e., up to about 60 generations) in a single
experiment (Movie S1), despite the fact that occasionally bud cells
push neighboring mother cells away from the micropad. This
number of cells is comparable with the number of cells observed in
conventional lifespan analysis (13). Fig. S4 shows the dynamics of
the cell-retention capacity of the chip. We found that the division
time of single cells obtained with our device agrees well with findings
in another, independent study (20) (71± 0.8 min; n=206 for first to
third divisions of wild-type cells at 30 °C in Synthetic DefinedMedia
with the full amino acid complement), indicating that our setup
allows for the generation of physiologically correct data. At this
point, it is important to note that with our setup starting the ex-
periment with newborn cells is not guaranteed, although considering
the typical bud index distribution of an exponentially growing liquid
culture (i.e., 80% of the cells have never budded before, 12% once,
6% twice, 3% three times) (21), the majority of loaded cells are still
new or recently born cells.
We first asked whether we could use the device to generate classic

lifespan data in a simpler and more automated way than with the
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Fig. 1. Uniquemicrofluidic method for monitoring the aging process of budding yeast. (A) Schematic illustration of replicative aging. The number of produced
buds (daughters) represents the replicative age of themother cell. Aged cells often increase in size and produce ellipsoidal daughters. (B) Schematic illustration of
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conventional microdissection method. Therefore, we loaded wild-
type cells and recorded the division events and time of individual
cells until all cells had entered senescence (after approximately 50–
100 h). Furthermore, we used a SIR2 and a FOB1 deletion strain,
which are known to show a decreased (2) and increased replicative
lifespan, respectively (7, 11, 22). In Fig. 2A, the viability of these
strains is shown as a function of the number of buds produced.
Consistent with data fromconventional dissection analysis (2, 7, 22),
the lifespan of the SIR2 deletion mutant is significantly shorter than
that of the wild-type strain (medianWT: 21 divisions vs. mediansir2Δ:
11 divisions) and the lifespan of the FOB1 deletionmutant is longer
(medianfob1Δ: 32 divisions). A side-by-side comparison of the life-
spans obtained through the classic dissection method with the ones
generated through our microfluidic section platform (when using
identical preculture and culture medium conditions) demonstrates
that our experimental system generates very comparable lifespan
data (Fig. S5). Moreover, at the same time we overcome other
limitations of the classic dissection method: (i) our method effaces
the limitations of the agar gel pad required for cell growth during
classic dissection and the long-working distance objective lens that
severely limits the optical resolution with which cells can be imaged
(Fig. 1B); and (ii) it negates the issue of local nutrient depletion and
by-product production during the experiment, as we can now realize
absolutely constant nutritional conditions (e.g., calorie restriction or
noncalorie restriction) throughout the whole experiment through
a constant supply of fresh medium.
In addition to the acquisition of lifespan data, the dynamic pro-

gression of the division times of single cells can easily be assessed
with our setup. Consistent with earlier reports, we noted that the
division time and deviation increased dramatically as the cells
approached the end of their lives (12) (100 ± 4.1, 122 ± 6.4, and
151.2 ± 9.5 for wild-type cells at three, two, and one buds before
death, respectively) (Fig. 2B). With our platform, it is possible to
measure division time very precisely, which has been difficult with

the classic dissection method: manual dissection requires a few
minutes per cell, and in single experiments, ∼40 cells need to be
observed and dissected continuously.
The unprecedented feature of our platform is the possibility for

continuous high-resolution imaging of individual yeast cells from
birth to death (Movie S1). We exploited this capability to generate
novel data on gradual changes in cellular and vacuolar morphology
during the complete lifespan of individual cells; the latter was visu-
alized by a GFP-tagged version of VPH1 (a subunit of the vacuolar-
ATPase) (Fig. 2C andD). Consistent with earlier observationsmade
at distinct time points (23), we observed that the surface of the cells
becomes more wrinkled with age (12, 24) (Movie S1). In addition,
both the cell and vacuole sizes gradually become larger as cells age,
with an increase in both sizes during the last three divisions (Fig. 2C
and D), a finding that parallels the earlier observed increase in di-
vision time (Fig. 2B). Of interest, the ratio between vacuole size and
cell size increases toward the end of the lifespan, potentially in-
dicating higher autophagy activity (25). Exploiting the fact that in
some cases bud cells are not immediately removed from the pads, we
found that the mother cell typically produced ellipsoidal daughter
cells even before the mother’s own shape became ellipsoidal (e.g.,
25th and 26th buds in Fig. 2E andMovie S1).Of note, these daughter
cells died even earlier than the mother (Fig. 2E). Intriguingly,
daughter cells of old mothers were sometimes found to be larger
than the respective mother cell (Fig. S6 and Movie S2).
Because we could now track cells during their complete replica-

tive lifespan with continuously recording phenotypic traits, we
wanted to explore whether there is heterogeneity in the aging pro-
cess and death pattern, an insight that remains elusive in studies of
yeast cell aging at the population level (11). First, we found two cell
morphologies directly before a cell’s death (Fig. 3A, Lower),
a spherical shape (34.1%) or an ellipsoidal outline (pseudohyphae,
65.9%). Next, we focused on the vacuole morphology and identified
three typical vacuole morphologies right before cell death: a tubular
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shape, a fused appearance, or a fragmented structure (Fig. 3B).
Often, completely ruptured vacuoles were observed at the end of
cells’ life (Movies S1, S3, and S4). As intuitionally expected, the
tubular structurewas observed onlywith the ellipsoidal death pattern
(Fig. 3 B and C). This type of cell death points to problems in cy-
tokinesis (26, 27), which may also cause failure of vacuole segrega-
tion. Usually, after a normal cell division, vacuole structures fuse and
form one vacuole (Fig. 3B, Center). However, in about 22% of all
cases (Fig. 3C), this fusion fails or is not completed and fragmented
vacuolar structures are observed at cell death (Fig. 3B, Right).
With this heterogeneity in morphologies identified, we next asked

whether the death types are correlated with any other measures that
we obtained. Indeed, we found that cells dying with the spherical
death type (Movie S5) die, on average, at a younger age (after
12 buds generated) compared with cells dying the ellipsoidal
death (after 23 buds generated) (Fig. 3D), and do so after a sudden
increase in their cell sizes (Fig. 3E). This finding implies that the
spherical cell death occurs rather at the mid age, suddenly “striking”
younger cells, but the ellipsoidal death occurs at rather an older age.
This finding indicates that there is indeed heterogeneity in the aging
process, resulting in fundamentally different culminations of damage
that is ultimately incompatible with life, a fact that underlines the im-
portance of the developed platform for future yeast aging research.

Conclusion
In this article we present a microfluidic dissection platform that
allows us to track single yeast cells over their entire replicative
(and chronological) lifespans with high-resolution imaging capa-
bility, a possibility the yeast-aging research community has long
awaited. Not only can this technology replace the tedious manual

microdissection methods to determine lifespan data, but it can also
be used for high-resolution in vivo fluorescence imaging of aging
cells under exactly controlled environmental conditions. This tech-
nology thus opens up unique possibilities for future aging research:
Its capability for phenotypic tracing is essential (i) to explore the
relevance of cell-to-cell heterogeneity in the aging process, and (ii)
to address important questions, such as whether certain phenotypes
in cellular youth affect old-age behavior, or how damage is asym-
metrically inherited by the mother cell and removed from the
daughter cell, and how this changes with age. We envision that our
technologywill enable novel investigations in the quest formolecular
mechanisms underlying the aging process and will permit large-scale
screens into the aging phenotype for its capability to be easily mul-
tiplexed and to allow aging experiments in an unsupervised manner.

Methods
Yeast Strain. All yeast strains used in this work were in the S288C (BY) back-
ground. The SIR2 and FOB1 deletion strains were obtained from the yeast
genome deletion collection, and the relevant genotype of the strain for vi-
sualization of the vacuole and Msn2 was VMA5-RFP::KANR, VPH1-GFP::HIS3
and HOG1-mCherry:HIS3, and HTA2-CFP with pRS315 MSN2-GFP plasmid, re-
spectively. Yeast cells were prepared in Synthetic Defined Media with 2%
glucose or Yeast Peptone Dextrose medium (YPD). Yeast cell cultures were
grown overnight to stationary phase and then allowed to resume exponential
growthby dilution into fresh growthmedium (OD600 = 0.3), and incubation for
3 h at 30 °C before the experiment. The cells weremildly sonicated for 1min to
separate any cell aggregates that could block themicrofluidic device. The cells
were then introduced into the microfluidic device.

Microfluidic Device. The microfluidic device is made of PDMS (Sylgard 184;
Dow Corning) and produced by replica molding from an SU-8 wafer. The
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device consists of a main channel (height = 15 μm), which contains an array of
micropads with a distance of 4 μm between the PDMs and glass slide, and
a side channel (height = 100 μm) as a cell outlet during the loading process
(Fig. S2). The microstructures were fabricated by photolithography using
negative photoresists (SU-8 2002 and SU-8 10; Microchem). The side channel
mold was made by adhesive tape. In a 1:10 wt/wt ratio, the PDMS base and
curing agent were mixed, thoroughly stirred, and degassed in a vacuum
chamber for 0.5–1 h to remove air bubbles. The degassed mixture was
poured onto the SU-8 master mold and cured on a hot plate (65 °C for 1 h
and 130 °C for 30 min). The cured PDMS was carefully peeled off the mold.
Inlet and outlet connections per holes were punched using a blunt injection
needle. Finally, the surfaces of a cover glass and the PDMS mold were sub-
jected to UV irradiation (UV Ozone cleaner PSD-UVT; Novascan) for 6 min to
activate the surface for covalent bonding. The mask design required to
produce the devices will be made available upon request.

Live-Cell Imaging and Analysis. The microfluidic device was mounted on the
stage of an inverted microscope (Eclipse Ti; Nikon Instruments) equipped
with an incubator for cultivation at 30 °C. Yeast cell growth and individual
budding events were monitored by time-lapse imaging, successively cap-
turing images every 10 min. The budding events are determined by com-
parison of two adjacent images, and the moment of cell death was
identified by a sudden shrinkage of the cell’s body. The hardware-based

focusing system (Nikon Instruments; Perfect Focus System) automatically
and stably maintained the focus during the whole experiment. LED (pE2;
CoolLed) illumination was used as the fluorescent light source. The images
were taken with a high numerical aperture (N.A.) oil immersion objective
lens (CFI Plan Apo 60×; Nikon; N.A. = 1.4; working distance = 0.13 mm). The
exposure times were 1 ms and 50 ms for transmission and GFP images, re-
spectively. Defocused as well as focused transmission images were taken for
subsequent segmentation of cells (28). The images were converted into
binary images by manual application of the threshold function to ensure
proper cell segmentation. The size of segmented cells was measured by the
image process function in ImageJ (Wayne Rasband, National Institutes of
Health, Bethesda, MD).
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