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While the rheology of non-Brownian suspensions in the dilute re-
gime is well understood, their behavior in the dense limit remains
mystifying. As the packing fraction of particles increases, particle
motion becomes more collective, leading to a growing length scale
and scaling properties in the rheology as the material approaches
the jamming transition. There is no accepted microscopic descrip-
tion of this phenomenon. However, in recent years it has been un-
derstood that the elasticity of simple amorphous solids is governed
by a critical point, the unjamming transition where the pressure
vanishes, and where elastic properties display scaling and a diver-
ging length scale. The correspondence between these two transi-
tions is at present unclear. Herewe show that for a simple model of
dense flow, which we argue captures the essential physics near the
jamming threshold, a formal analogy can be made between the
rheology of the flow and the elasticity of simple networks. This
analogy leads to a new conceptual framework to relatemicroscopic
structure to rheology. It enables us to define and compute numeri-
cally normal modes and a density of states. We find striking
similarities between the density of states in flow, and that of amor-
phous solids near unjamming: both display a plateau above some
frequency scaleω� ∼ jzc − zj, where z is the coordination of the net-
work of particle in contact, zc ¼ 2D where D is the spatial dimen-
sion. However, a spectacular difference appears: the density of
states in flow displays a single mode at another frequency scale
ωmin ≪ ω� governing the divergence of the viscosity.
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Suspensions are heterogeneous fluids containing solid parti-
cles. Their viscosity in the dilute regime was computed early

on by Einstein and Batchelor (1). However, as the packing frac-
tion ϕ increases, steric hindrance becomes dominant and parti-
cles move under stress in an increasingly coordinated way. For
non-Brownian particles, the viscosity diverges as the suspension
jams into an amorphous solid. This jamming transition is a none-
quilibrium critical phenomena: the rheology displays scaling laws
(2–8) and a growing length scale (2, 3, 9, 10). Jamming occurs
more generally in driven materials made of repulsive particles,
such as in aerial granular flows (11) with similar rheological
phenomenology (12), and where large eddies are observed as
jamming is approached (9). This phenomenology bears similarity
with that of the glass transition, where steric hindrance increases
upon cooling, and where the dynamics becomes increasingly col-
lective as relaxation times grow (13). In dense granular materials
and in supercooled liquids, the physical origin of collective dy-
namics and associated rheological phenomena remain elusive.

Recent progress has been made on a related problem, the un-
jamming transition where a solid made of repulsive soft particles
is isotropically decompressed toward vanishing pressure (14–20).
In this situation, various properties of the amorphous solid, such
as elasticity, transport, and force propagation, display scaling with
the distance from threshold (14, 21, 22) and are characterized
by a diverging length scale (17, 18). The packing geometry also
displays scaling: the average number of contacts or coordination z
of jammed particles is observed to converge (5) to the minimal
value allowing mechanical stability zc derived by Maxwell (23).
Theoretically, these observations can be unified by the realization

that the vibrational spectrum of these simple amorphous solids
must display a crossover at some threshold frequency (15), dis-
tinct from Anderson localization, above which vibrational modes
are still extended but poorly transport energy (16). This threshold
frequency, corresponding to the so-called boson peak ubiqui-
tously observed in glasses (24), is governed by coordination and
applied pressure (25) and vanishes at the unjamming threshold.

Under an imposed shear flow, materials near the jamming
transition are strongly anisotropic and particles receive a net
force from particles they are in contact with. When an amorphous
solid is decompressed toward its unjamming transition however,
configurations are isotropic and forces are balanced. Despite
these significant differences, both transitions deal with the emer-
gence or disappearance of rigidity, and it is natural to seek a com-
mon description of these phenomena. Such a framework would
unify the elastic and vibrational properties of amorphous solids,
much studied in the context of granular materials, glasses (24)
and gels of semiflexible polymers (26), with the rheology of sus-
pension flows. Herein we build the foundation of this framework,
by focusing on a model of a suspension flow of non-Brownian
hard particles where hydrodynamic interactions are neglected
(2). The relationship between this model and real suspensions is
not obvious. Here we furnish numerical observations and physical
arguments to support the contention that this model captures the
relevant physics near jamming. The next step is to show that for
this model we can build a formal analogy between rheology and
elasticity. This analogy allows us to simulate accurately and to
measure with high precision key aspects of the particle organiza-
tion, in particular the packing coordination. More fundamentally,
it enables us to define and compute, in flows of hard particles,
normal modes and their density, which are the natural mathema-
tical objects connecting geometry to rheology. We find striking
similarities between the jamming and the unjamming transitions:
the coordination converges to Maxwell’s value with a nontrivial
scaling with pressure. Furthermore, the density of states displays
a transition that is characteristic of vibrational properties of
amorphous solids. However, a fundamental difference appears:
the density of states displays biscaling instead of the simple scal-
ing found near unjamming, with one mode at low frequency that
strongly couples to shear, which is responsible for the rapid
divergence in viscosity.

Constitutive Relations
Dimensional analysis implies that suspensions of overdamped
hard particles are controlled by one dimensionless parameter (6),
the viscous number I ≡ _γη0∕ ~p where ~p is the particle pressure, η0
is the fluid viscosity and _γ is the strain rate. For convenience we
shall consider its inverse, the normalized pressure p ≡ ~p∕_γη0. The
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steady-state rheology is then entirely determined by two consti-
tutive relations that allow the computation of the flow in various
geometries (6, 12): ϕðpÞ describes the dilatency of the material,
and μðpÞ ≡ σ∕ ~p its effective friction, where σ is the shear stress.
Near jamming it is observed experimentally that:

ϕc − ϕðpÞ ∝ 1∕pα; [1]

μðpÞ − μc ∝ 1∕pβ; [2]

with α ≈ 1∕2 (6) and β ≈ 0.4 (10, 6, 27). Currently these consti-
tutive relations are phenomenological and lack a microscopic
theory.

The Affine Solvent Model
We consider a model of hard frictionless particles immersed in a
viscous fluid that we call the affine solvent model (ASM). The
dynamics is overdamped, and hydrodynamic interactions are ne-
glected: the viscous drag on a particle is equal to the difference
between the imposed velocity of the underlying fluid and the par-
ticle velocity times a coefficient ξ0. The flow of the fluid phase is
undisturbed by the particles and is chosen to be an affine shear of
strain rate _γ. For hard particles at fixed packing fraction, changing
_γ simply rescales time and the stress tensor must therefore be pro-
portional to _γ (28). Note that for this model we can renormalize
the pressure as p ≡ ~p∕_γξ0 in two dimensions and p ≡ ~pd∕_γξ0 in
three dimensions, where d is taken to be the diameter of the small
particles in our bidisperse numerics.

We constructed an event-driven simulation scheme [see (29)
and Methods below] based on an exact equation of motion de-
rived below, and on the actualization of the contact network,
to simulate flow while carefully extracting the geometry of con-
figurations visited. In Fig. 1 we present a snapshot of a configura-
tion from our simulations in two-dimensions, and a typical stress-
strain signal. A movie (Video S1) of our simulations can be found
in the Supplementary Information.

Our results for the constitutive relations are shown in Fig. 2.
We first note that fluctuations in pressure for a given ϕ, propor-
tional to the extent along the p-axis of the corresponding data-
points cloud, diverge as jamming is approached, as expected from
the observation that ϕc fluctuates in a finite size system (35). This
finite size effect creates a difficulty to accurately extract the ex-
ponent α that characterizes the dilatancy, see Eq. 1. Our simula-
tion method does not allow for the study of larger systems, which
would improve our estimation of this exponent; nevertheless, our
results in two-dimensions are in good agreement with previous
work (2, 30, 31). Our results for three dimensions are similar to
experimental observations: in three dimensions the friction law fol-
lows Eq. 2 with β ≈ 0.33, whereas dilatency follows Eq. 1 with
α ≈ 0.38. These exponents are close to the experimentally observed
exponents, supporting the claim that hydrodynamical interactions
have weak effects, if any, on the critical behavior near jamming.
Note that the exponents are found to be similar in two and three
dimensions, raising the possibility that they are actually the same.

In sharp contrast with the fluctuations of pressure for a fixed
packing fraction, the fluctuations in various quantities considered
as a function of pressure are very limited, and seem to remain
regular throughout the entire range of pressures simulated, see
Figs. 2, 3 and 5. In addition, we detect no finite size effects when
computing means as a function of pressure, see, for example,
Fig. 5. Thus pressure is a much more suitable variable than pack-
ing fraction to quantify the distance from threshold and to study
criticality in a finite system.

Relationship Between Dynamics and Packing Geometry.
Within ASM the viscous drag force ~Fk acting on particle k at
position ~Rk is ~Fk ¼ −ξ0ð ~V k − ~V fð ~RkÞÞ, where ~V k and ~V fð ~RkÞ

are the particle and fluid velocities respectively, and ξ0 charac-
terizes the viscous drag. This linear relation can be written for
all particles in compact notation:

jFi ¼ −ξ0ðjV i − jV fiÞ ≡ −ξ0jV nai; [3]

where the uppercase ket notation jXi indicates a vector of dimen-
sion ND, D being the spatial dimension and N the number of
particles. jV nai ≡ jV i − jV fi is the so-called nonaffine velocity.

In addition to the viscous drag, a force f ik ~nik is exerted on the
kth particle from all particles i which are in contact with particle
k, where ~nik is the unit vector along ~Rk − ~Ri. In the viscous limit
considered here, forces are balanced ~Fk þ∑ f ik ~nik ¼ 0, where
the sum is over all particles i in contact with k. This equation
can be written in compact notation:

jFi þTjf i ¼ 0; [4]

where the lowercase ket notation jxi indicates a vector of dimen-
sion Nc, the number of contacts. The linear operator T is of
dimensionND × Nc, its nonzero elements correspond to the vec-
tors ~nik, for particles i and k in contact.

The last condition defining ASM is that particles cannot over-
lap. This condition is best expressed by considering the network
of contacts, as illustrated in Fig. 1. This network rewires by instan-
taneous events where contacts open or close (see Movie S1). In
between these discrete events, the network is conserved, and the
distance between particles in contact is fixed. This condition im-
plies that
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Fig. 1. (A) Snapshot of a configuration visited under flow from simulations
in two dimensions (see Methods for details). Small and large particles are re-
presented in different colors. The width of the black segments connecting
particles is proportional to the contact force. The arrows indicate the shear
direction. (B) Example of the evolution of the stress with time. Instantaneous
jumps upward correspond to the creation of new contacts. Stress relaxes
smoothly, however, within periods where contacts do not change. Interest-
ingly, this situation is opposite to the plasticity of amorphous elastic solids,
where stress loads continuously before relaxing by sudden plastic events, as
illustrated in (C) for compressed soft elastic particles under quasistatic shear.
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ð ~V k − ~V iÞ · ~nik ¼ 0; [5]

for all contacts. The Nc linear constraints in the form of Eq. 5
(one constraint for each pair of particles in contact) can be writ-
ten in compact notation as:

SjV i ¼ SjV fi þ SjV nai ¼ 0 or SjV nai ¼ −SjV fi; [6]

where S is the Nc × ND linear operator that computes the
change in pairwise distances jδri between particles in contact, in-
duced by a displacement of the particles jδRi : SjδRi ¼ jδri. A
direct inspection of the elements ofS indicates that it is the trans-
pose of T : S ¼ T t.

Now we may derive an expression for the viscosity. Operating
with S on Eq. 3, and using Eqs. 4 and [6], we obtain:

Njf i ¼ −ξ0SjV fi [7]

where N ¼ ST ¼ SS t is a Nc × Nc symmetric operator, which
is generally invertible when the viscosity is finite (see below). N
contains the information on the topology of the contact network
(who is in contact with whom) and the contact orientations. N
characterizes how a contact force field jf i is unbalanced
hf jNjf i ¼ hf jT tTjf i ¼ hFjFi. The termSjV fi on the right-hand
side of Eq. 7 is not singular near jamming, as it is the rate at which

the contacts lengths would change (generating gaps or overlaps
between particles) if particles were following the affine flow of
the fluid. One can thus introduce the notation SjV fi ≡ _γjγi.
For a pure shear in the ðx; yÞ plane, the components of jγi are
γij ¼ rijð ~nij · ~exÞð ~nij · ~eyÞ, where rij is the distance between parti-
cles i and j. Inverting Eq. 7 and using this notation we derive an
expression for the contact forces:

jf i ¼ −ξ0 _γN−1jγi [8]

This result, together with Eqs. 3 and [4] yields an expression for
the dynamics: jV nai ¼ −_γS tN−1jγi. The shear stress σ carried by
the particles is related to the contact forces by the relation (36)
σ ≡ − ~ex · ð∑ijf ijrij ~nij ⊗ ~nijÞ · ~ey∕Ω ¼ −hf jγi∕Ω, where Ω is the
volume of the system. We thus obtain from Eq. 8 the suspension
viscosity η:

η ¼ ξ0
Ω
hγjN−1jγi [9]

Eq. 9 is a key result, as it shows that all the singularities that ap-
pear near jamming within ASM are contained in a single opera-
tor, N, which connects rheology to geometry.

Analogy Between Elasticity and Rheology
The operator N bears similarities with the well-studied stiffness
matrix M that plays a central role in elasticity. By definition,
the quadratic expansion of the energy in any elastic system is
δE ¼ hδRjMjδRi∕2. Consider the case of an elastic network
of unstretched springs of unit stiffness. Labeling a spring by α,
the energy can be expressed in terms of the spring elongation
δrα, namely:

δE ¼ ∑
α

1

2
δrα 2 ≡

1

2
hδrjδri ¼ 1

2
hSδRjSδRi ¼ 1

2
hδRjS tSjδRi

[10]

Together with the definition of M, Eq. 10 implies that M ¼ S tS.
This expression is closely related toN ¼ SS t, building a connec-
tion between rheological properties of suspended hard particles
and the elasticity of spring networks with identical geometry. In
particular, the spectra of M and N are identical for positive ei-
genvalues λ ≡ ω2, where ω is referred to as the mode frequency.
To see this let us assume that jδrðωÞi is a normalized eigenvector
of N, then

SS tjδrðωÞi ¼ ω2jδrðωÞi: [11]

Operating on the above equation with S t we find:

S tSS tjδrðωÞi ≡ MS tjδrðωÞi ¼ ω2S tjδrðωÞi; [12]

implying that S tjδrðωÞi is an eigenvector of M with the same
eigenvalue ω2. Thus, there is a one-to-one correspondence
between eigenvectors of M and N for positive eigenvalues.

This observation suggests that the analytical techniques that
were developed to study elasticity in random media apply as well
to rheology of suspensions, at least within ASM. Here we shall
take another route by studying empirically the spectrum of N,
identifying what the spectral signatures of the singularities are
in the rheological laws, and compare those with the known sin-
gularity in the spectrum of M near the unjamming transition.

Microscopic Analysis of Flow Configurations
A key variable that characterizes steric hindrance is the average
number of contacts per particle, or the coordination z ¼ 2Nc∕N.
This intuition is substantiated by Eq. 9, which indicates that
the viscosity diverges when detðNÞ ¼ 0. SinceN ¼ SS t,Nmust

A

C

D

B

Fig. 2. The relation ϕðpÞ within ASM is computed by averaging the normal-
ized pressure p at different packing fractions. This relation is well captured by
Eq. 1 introduced to describe real suspension flows, with (A) ϕC ≈ 0.842 and
α ≈ 0.46 for D ¼ 2 and N ¼ 4096 particles, (B) ϕC ≈ 0.647 and α ≈ 0.38 for D ¼
3 and N ¼ 1000. The friction law μðpÞ follows Eq. 2, with (a) μc ≈ 0.093 and
β ≈ 0.35 for D ¼ 2, and (b) μc ≈ 0.115 and β ≈ 0.33 for D ¼ 3. The insets display
μ − μc averaged at fixed pressure. The main plots show nonaveraged data;
colors (and symbols) label the different packing fractions at which measure-
ments were made, growing with increasing pressure (see Methods).
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display zero-modes if S t does, which must occur if Nc > ND, as
S t is of dimensionND × Nc. For the coordination this argument
implies that jamming must occur if z > 2D ≡ zc, a necessary con-
dition for rigidity derived by Maxwell (23). Earlier numerical
work (32) considered the scaling of the coordination with ϕ,
where it was found that for ϕ < ϕc, z0 − z ∼ ϕ − ϕc with
z0 ¼ 3.8. However, this analysis is hampered by the rather large
fluctuations of ϕc in finite size systems (35), in addition to errors
originating from the inclusion of rattlers. Our numerical proce-
dure allows for a careful measurement of the coordination, dis-
played in Fig. 3. We find instead:

δz ≡ zc − z ∼ 1∕pδ; [13]

with zc ¼ 2D, δ ≈ 0.38 and δ ≈ 0.34 in two and three dimensions
respectively.

Density of States
The symmetric operator N is readily obtained from the contact
network, and its spectrum is computed numerically. The fre-
quency spectra, or densities of statesDðωÞ defined as the number
of modes per unit frequency per particle, are shown in Fig. 4 as
jamming is approached. They consist of two structures: a plateau
of modes appearing above some frequency threshold ω�, and a
gap at lower frequency, containing only one isolated mode of fre-
quency ωmin. Strikingly, this plateau is also present in the vibra-
tional spectrum of simple amorphous solids (14, 17), where its
onset frequency scales as z − zc (15, 16). To determine if this scal-
ing law holds in configurations visited in flows as well, we rescale
the frequency axis by δz ∼ 1∕pδ. Fig. 4 displays a striking collapse
of the plateau in the density of states, emphasizing the strong con-
nection between elasticity near unjamming and the rheology of
dense flows.

The sole exception is the isolated mode at low frequency that
does not collapse with this rescaling. Rather, its frequency scales
as ωmin ∼ 1∕pϵ with ϵ ≈ 0.51 independently of the spatial dimen-
sion, as shown in Fig. 5. Such biscaling is a new feature of flow not
present in the elasticity of solids near unjamming, and it is of cri-
tical importance for the rheology.

Using Eq. 9 we can separate the contributions of the first mode
σ0 and of the plateau σ − σ0 to the shear stress σ. Denoting the

lowest-frequency mode as jδr0i, and the rest of the modes by
jδrωi, we obtain:

σ ¼ ξ0 _γ
Ω

hγjδr0i2
ω2
min

þ ξ0 _γ
Ω ∑

ω>ω �

hγjδrωi2
ω2

[14]

We find that the first term of Eq. 14, denoted σ0, dominates stress
near jamming: σ → σ0. This stems from the fact that the first
eigenvector has a very strong projection on a shear that does
not vanish as the number of particle increases: hγjδr0i∕ðjjγjj ×
jjδr0jjÞ ≈ 0.15 in three dimensions. Using that jjγjj ∼N and that
jjδr0jj ¼ 1 leads to σ0 ∼ 1∕ω2

min. Since σ0 ∼ σ ∼ p we obtain
ωmin ∼ 1∕ ffiffiffi

p
p

or ϵ ¼ 1∕2, very close to the observation ϵ ≈ 0.51.
Note that the strong coupling between jδr0i and jγi implies,

together with Eq. 8, that jf i∕jjf jj → jδr0i as p → ∞. Thus Fig. 1A
and Movie S1, that display respectively an example of jf i and its
evolution under shear very close to threshold, are very accurate
representations of jδr0i.

The relative contribution of the rest of the density of states,
corresponding to the second term in Eq. 14, vanishes as
ðσ − σ0Þ∕σ ∼ p−0.65, as shown in Fig. 5. This exponent can also
be rationalized by a simple scaling estimate, similar to arguments
previously introduced for isotropic configurations near the un-
jamming transition (22, 33). Assuming that the modes jδrωi form-
ing the plateau inDðωÞ have random orientations with respect to
a shear (22) leads to hγjδrωi2 ∼Oð1Þ. Thus

σ − σ0
ξ0 _γ

≡
1

Ω ∑
ω>ω �

hγjδrωi2
ω2

∼
1

Ω ∑
ω>ω �

hδrðωÞjγi2
ω2

∼
Z
ω>ω �

DðωÞdω
ω2

∼
Z
ω>ω �

dω
ω2

∼ 1∕ω� ∼ 1∕δz;

implying ðσ − σ0Þ∕σ ∼ δz∕σ ∼ δz∕p ∼ pδ−1 which is indeed p−0.65

in three dimensions. Thus most of the spectrum contributes less
and less to the divergence of stress as jamming is approached.
This contribution may nevertheless play an important role in
the corrections to scaling, such as those leading to a varying fric-
tion law in Eq. 2. We shall explore this possibility in future work.

Discussion
We have shown that the rheological properties of ASM flows are
described by a single operator N, which is closely connected to
the stiffness matrix of elastic networks. This result allows us to
characterize flow in terms of the spectrum of a single operator
N. This spectrum presents remarkable features: it displays the
plateau of modes controlling the anomalous elastic properties
of amorphous solids near the unjamming transition, but also one
mode at low-frequency responsible for the sharp divergence of
the viscosity. Future work necessary to build a description of flow
near jamming should explain (i) what configurations can generate
such a biscaling spectrum, (ii) why such configurations are se-
lected by the dynamic, and (iii) what fixes the relationship
between ϕ and z.

It is likely that such a description will be of mean-field char-
acter. Near the unjamming transition the fact that a frequency
scale ω� scales linearly with the excess coordination δz in any di-
mension reflects the fact that spatial fluctuations of coordination
are weak and irrelevant. The unjamming transition is in some
sense a mean-field version of rigidity percolation where bonds
are deposited randomly on a lattice and where fluctuations are
important (34), as a mean-field description of the latter gives
the correct elastic behavior near unjamming (16). Our finding
that some frequency scale ω� also scales like δz in ASM flows
suggests that spatial fluctuations of coordination are irrelevant
in dense suspensions too. This is also supported by our observa-

A

B

Fig. 3. The coordination displays scaling near jamming δz ≡ zc − z ∼ 1∕pδ in
(A) two and (B) three dimensions. Particles barely connected to the contact
network (making less than two contacts with their surroundings), the so-
called rattlers, are removed from the analysis. Colors (and symbols) label dif-
ferent packing fractions (see Methods), growing with increasing pressure,
and each data point pertains to a single configuration.
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tion that more generally, exponents appear to depend weakly, if
at all, on spatial dimension.

To conclude, we discuss the generality of our results. Consti-
tutive relations in ASM appear quantitatively similar to experi-
ments in real suspensions. This result might seem surprising at
first glance, since the fluid is certainly strongly disturbed by flow
near jamming, unlike what ASM assumes. We speculate why
these two problems may fall in the same universality class. In real
flow dissipation is dominated by the viscous friction resulting
from lubrication between neighboring particles. The correspond-
ing tangential friction coefficient has a weak (logarithmic) depen-
dence on the gap between particles, whereas the normal friction
coefficient diverges as the inverse of the gap. However evidences
(37, 27) support that due to the finite elasticity and/or roughness
of the particles, real contacts are eventually formed (37, 27). If so,
one expects that the divergence of the normal friction coefficient
will have a cutoff, and that the viscosity will be proportional to the
square of the relative velocities between particles. In ASM, the
viscosity is proportional to the square of the nonaffine velocities.
However, we have checked that both quantities are approxi-
mately proportional to each other as jamming is approached, sup-
porting that this model is appropriate to describe the scaling
properties of suspension flows near jamming. Further support
comes from a recent work on the viscoelasticity of amorphous
solids near unjamming (33), showing that variations in the dissi-

pation mechanism need not alter the scaling relations for the vis-
coelastic properties.

Methods
The simulations are based on the ASM equations of motion, which prescribes
a velocity to each particle for a given configuration. We propagate the sys-
tem forward in time over small time steps, while carefully monitoring the
formation of new contacts or the destruction of existing contacts. For a com-
plete description of the simulation employed see (29).

We simulated systems of N2D ¼ 4096 particles in two dimensions, at pack-
ing fractions ϕ2D ¼ 0.82, 0.825, 0.83, 0.835, 0.837, 0.838, 0.839, and 0.840. We
also simulated systems of N3D ¼ 1000 and 2,000 particles in three dimensions,
at packing fractions ϕ3D ¼ 0.61, 0.625, 0.63, 0.635, 0.640, 0.642, and 0.643. In
all simulations we used a square box with Lees-Edwards periodic boundary
conditions (36) that allows for homogeneous shear flow profiles throughout
the simulation cell. Our systems consist of a 50∶50 mixture of small and large
particles, where the ratio of the diameters d of the large and small particles is
dlarge∕dsmall ¼ 1.4. We add a slight poly-dispersity of 3% in the particle sizes
to avoid hexagonal patches in the two-dimensional systems (29). Normal
modes are calculated with the LAPACK software package (http://www.
netlib.org/lapack/).

ACKNOWLEDGMENTS. We thank Y. Elmatad, A. Grosberg, P. Hohenberg, D.
Pine, E. Vanden-Eijnden, and anonymous referees for constructive comments
on the manuscript. This work has been supported by the Sloan Fellowship,
National Science Foundation DMR-1105387, Petroleum Research Fund
#52031-DNI9, and by the MRSEC Program of the National Science Foundation
DMR-0820341.

A C

B D

Fig. 4. Spectral analysis of the operator N governing flow as jamming is approached. The density of states DðωÞ averaged over 500 configurations for each
pressure indicated in the legend, in (A) two and (B) three dimensions. The amplitude of the peak at low-frequency was rescaled to make it visible. Since it
consists of one mode only, this amplitude vanishes in the thermodynamic limit. If the frequency axis is rescaled by the excess coordination pδ ∼ δz, as in (C, D),
the emergence of a plateau in DðωÞ collapses, indicating that the frequency at which this plateau appears follows ω� ∼ δz.

A C

B

Fig. 5. Scaling of the lowest frequency ωmin vs. normalized pressure p in (A) two and (B) three dimensions. This modes dominates the rheology near jamming,
as can be seen by plotting the relative contribution ðσ − σ0Þ∕σ of all the other modes to the stress, that vanishes as p−0.65. The relative contribution is found to
be independent of N.
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