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In response to environmental changes, the connections (“arrows”)
in gene regulatory networks determinewhich genesmodulate their
expression, but the quantitative parameters of the network (“the
numbers on the arrows”) are equally important in determining the
resulting phenotype. What are the objectives and constraints by
which evolution determines these parameters? We explore these
issues by analyzing gene expression changes in a number of yeast
metabolic pathways in response to nutrient depletion. We find that
a striking pattern emerges that couples the regulatory architecture
of the pathway to the gene expression response. In particular, we
find that pathways controlled by the intermediate metabolite
activation (IMA) architecture, in which an intermediate metabolite
activates transcription of pathway genes, exhibit the following re-
sponse: the enzyme immediately downstream of the regulatory
metabolite is under the strongest transcriptional control, whereas
the induction of the enzymes upstream of the regulatory interme-
diate is relatively weak. This pattern of responses is absent in path-
ways not controlled by an IMA architecture. The observation can be
explained by the constraint imposed by the fundamental feedback
structure of the network, which places downstream enzymes under
a negative feedback loop and upstream ones under a positive feed-
back loop. This general design principle for transcriptional control of
a metabolic pathway can be derived from a simple cost/benefit
model of gene expression, in which the observed pattern is an op-
timal solution. Our results suggest that the parameters regulating
metabolic enzymeexpression are optimizedby evolution, under the
strong constraint of the underlying regulatory architecture.

Aclassic paradigm of gene regulation is the regulation of met-
abolic enzyme expression in response to changes in external

nutrient levels. By regulating enzyme levels, cells not only control
the metabolic program, but also save resources and energy by not
expressing enzymes that are not needed at a particular time. To
achieve this regulation, a variety of strategies can be used, in-
volving different interplay between metabolites, enzymes, and
regulatory proteins. In many cases involving model organisms, the
regulatory framework that controls this process is known, and
research over past decades has revealed a number of different
regulatory strategies (1–4).
For a linear biosynthetic pathway, a general strategy for con-

trolling the pathway flux is end product feedback inhibition, typ-
ically acting on the first enzyme of the pathway (Fig. 1 B–D) and
serving as the main sensor of product depletion. In addition, the
expression of enzymes is often controlled at the transcriptional
level, by transcription factors (TFs) that can sense either the end
product or an intermediate metabolite, giving rise to different
regulatory architectures (Fig. 1 C and D). Potentially any one of
the regulatory architectures in Fig. 1 B–D can solve the problem of
keeping the pathway flux low when there is a sufficient external
nutrient supply, but turning the pathway on and restoring product
levels if the external flux disappears, and for a given architecture,
there is a large space of parameters (the numbers on the arrows,
such as the binding affinity to the promoters, rate of transcription,
etc.) that allow the network to fulfill its general function. However,
different parameter choices can lead to quantitatively different
behaviors, e.g., the dynamic features such as the speed of the re-
sponse and the settling time (5, 6). How are these numbers picked

by nature? Are they picked purely by historical accident or are
there some basic principles underlying their selection?
In trying to address these questions, we have explored gene

regulation in a number of metabolic pathways and discovered
a unique pattern of gene expression that couples to the feedback
architecture of the system. The generality of the pattern in different
pathways prompted us to search for a common principle underlying
the observed phenomena. Previous studies based on theoretical
considerations and experiments in Escherichia coli suggested that
the strength of the regulation ofmetabolic enzymes may be derived
by optimizing an objective function that incorporates cost and
benefit of protein expression (7–9). By further developing this idea
to investigate how different regulatory architectures may lead to
different performance and different parameter choices, we find
that the observed pattern can be captured by a simple theoretical
model and thus provide a plausibility argument that it is a conse-
quence of optimization by natural evolution.

Results
Gene Expression Profiles in Amino Acid and Nucleotide Biosynthesis
Pathways in Saccharomyces cerevisiae. To examine the relationship
between regulatory architecture and expression dynamics, we
measured the transcriptional response to starvation in a number
of amino acid and nucleotide biosynthesis pathways in S. cer-
evisiae. We examined four pathways: biosynthesis of leucine, ly-
sine, adenine, and arginine. All four are basically linear pathways
withminimal branching whose transcriptional regulation has been
extensively studied. In all four, a single transcription factor or
transcription factor complex is responsible for the majority of the
transcriptional regulation in response to depletion of the pathway
end product. The architecture of the network, however, differs. In
leucine, lysine, and adenine biosynthesis, the transcription factor
is activated by the accumulation of one of the intermediate
metabolites of the pathway (intermediate metabolite activation,
IMA), whereas for arginine biosynthesis, the transcription factor
directly senses the concentration of the end product (end product
inhibition, EPI). All four pathways share the motif of allosteric
inhibition of the first enzyme of the pathway by the end product.
The respective network diagrams are shown in Figs. 2A, 3A, 4A,
and 5A.
We measured expression of all pathway enzymes by using fluo-

rescent reporter strains, constructed by putting yeast-enhanced
green fluorescent protein (yeGFP) (10) under the control of the
natural promoter of each gene. The strains were grown in rich
media, thenmoved quickly tomedia lacking one of the amino acids
or adenine. Throughout the time course, fluorescence in single
cells was monitored by flow cytometry, using an automated system
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for sample injection and data collection. The induction profiles for
the four pathways are shown in Figs. 2B, 3B, 4B, and 5B.
The expression of leucine biosynthesis enzymes in response to

leucine depletion had been studied in some detail by Chin et al. (5)
using reporter strains with protein–GFP fusions. Here we re-
confirm the results and show that the most highly induced enzyme
in the pathway is Leu1, with about 20-fold induction (Fig. 2). Leu1
is the enzyme immediately downstream of the regulatory in-
termediate alpha-isopropyl-malate (αIPM). Leu2, the next down-
stream enzyme, also had an induction of about 10-fold, larger than
any of the enzymes upstream of αIPM.
We also observed the pattern of themost induced enzyme being

immediately downstream of the regulatory intermediate in the
other IMA pathways. For lysine biosynthesis, this is the protein
Lys9, which has an induction ratio of over 40-fold, much higher
than any other enzyme in the pathway (Fig. 3). The other enzyme
downstream of the intermediate, Lys1, had an intermediate level
of induction that was largely unaffected by a deletion of the
transcription factor Lys14, suggesting that it may be regulated by
a different mechanism (also suggested by previous data in ref. 11).
For the third IMA pathway, adenine biosynthesis, it is clear that

one (or both) of the two metabolites AICAR and SAICAR
induces transcriptional activation via the transcription factor
Bas1; however, it is not fully understood which is the major reg-
ulator (2). We find that the enzyme Ade17 has a higher induction
than any other enzyme in the pathway (Fig. 4). On the basis of our
observations in the leucine and lysine pathways as well as the
theoretical work that we discuss later, we suggest that AICAR, the
metabolite converted by Ade17, is likely to be the more important
regulator of the pathway. Ade16, an isoenzyme of Ade17, is
known to contribute only a small fraction of the catalytic activity
and not to be regulated by adenine levels (12).
To investigate whether such a pattern is a consequence of IMA

architecture, we explored for contrast the arginine biosynthetic
pathway, which has an EPI architecture: the transcription factor

complex ArgR is activated by arginine to repress expression. In
this case (Fig. 5) we see no clear outlier with high fold induction as
we did in the three pathways with IMA architecture.
In all four pathways, we did not observe significant timing dif-

ferences between the enzymes when the expression profiles were
normalized to the initial and final values (Figs. 2C, 3C, 4C, and
5C), suggesting that all genes in the pathway sense the stimulus at
the same time.
We confirmed that the enzymes in the pathway are in fact

induced by the transcription factor that we have attributed to
them. We performed identical experiments in strains with dele-
tions for the transcription factors Leu3, Lys14, Bas1, and Arg80
(one of the proteins in the ArgR complex). With the exception of
Lys1 (mentioned above) and Leu4 [discussed in some detail by
Kohlhaw (1) and Chin et al. (5)], none of the enzymes showed
any measurable induction when the transcription factor was
deleted (Figs. 2D, 3D, 4D, and 5D).

Theoretical Cost/Benefit Model. Our observation of similar expres-
sion patterns across several metabolic pathways with IMA archi-
tecture suggests that there may be a common design principle
underlying their regulation. The contrast between IMA and EPI
also indicates that the feedback structure of the regulatory net-
work can severely constrain the gene expression response. To
explore whether optimization by natural evolution can create the
observed pattern, we developed a theoretical model to quantita-
tively analyze the effect of different gene induction profiles on
cellular growth. The key element of the model is the tradeoff
between the costs of making a protein (energy and metabolic
resources) and the benefits of making it (its cellular function),
a fundamental idea in gene regulation. This tradeoff has been
observed in vivo in a number of studies across different organ-
isms in which higher fitness was observed for cells that did not
express unnecessary genes (9, 13–15). The basic structure of the
model is shown in Fig. 6 (see SI Text for more details). There are
three terms that correspond to reduced growth due to (i) basal
level enzyme production, (ii) enzyme production upon starvation,
and (iii) lack of product during starvation. Assigning weights to the
three terms results in three metaparameters, which can also be

A C

B D

Fig. 1. A sample of regulatory network architectures for a linear metabolic
pathway. Metabolism can be regulated by simple mass action (A), by allosteric
regulation of enzyme activity (B), or, typically, by a combination of allosteric
regulation and transcriptional regulation of enzyme levels (C and D). Two
classic examples of transcriptional regulatory architectures are the end product
inhibition (EPI) network (C) and the intermediate metabolite activation (IMA)
network (D). The two networks create different feedback structures.

A

C D

B

Fig. 2. Dynamic profiles of leucine biosynthesis enzymes. (A) The leucine
biosynthesis pathway in yeast is an IMA network regulated by the transcrip-
tion factor Leu3, which senses the intermediate metabolite αIPM. (B) Mean
GFP fluorescence levels normalized to the level before environmental shift.
(C) GFP levels normalized to both initial and final levels (ynormalized = (y − y0)/
(yfinal − y0)). Genes with negligible fold changes are not shown. (D) GFP
fluorescence levels in response to the environmental shift in a leu3Δ back-
ground. In Figs. 2–5, data shown are an average of two independent
experiments done on the same day. Data from identical experiments on dif-
ferent days were also quantitatively consistent.
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thought of as environmental or evolutionary parameters because
they have clear interpretations in terms of the environment in
which regulation of the pathway evolved. These are γ, which
corresponds to the cost (growth reduction) from synthesizing one
additional unit of enzyme; η, the amount of time spent in
nonstarvation conditions; and T, the amount of time spent in
starvation conditions.
We used ourmodel to address the question of whether evolution

may have selected for particular gene expression patterns across
different network architectures. For each regulatory architecture,
we search for the “optimal” gene expression pattern thatminimizes
the cost function, allowing only the parameters related to tran-
scriptional regulation to vary. In doing so, we make the implicit
assumption that more optimal cis-regulation can evolve much
faster than network structure and enzyme properties, an assump-
tion consistent with a number of studies that have suggested that
cis-regulatory regions evolve more rapidly than protein coding
regions (16, 17) and are undermore efficient selection (18–20).We
considered a linear pathway of six enzymatic steps, and therefore
six different regulatory strategies, which corresponded to each
metabolite directly affecting transcription factor activity. For each
one, we optimized the cost function using numerical methods. In-
terestingly, the different networks showed different gene expres-
sion strategies when allowed to evolve optimal regulation (Fig. 7).
In particular, for networks I–V, in which an intermediate me-

tabolite controls transcription factor activity (IMA networks), the
optimal network response involves a separation of responses:
strong induction for enzymes downstream of the controlling in-
termediate and weaker induction for enzymes upstream of the
controlling intermediate. This separation of responses is similar to
our observed dynamics in the yeast leucine, lysine, and adenine
biosynthesis pathways and can be explained by a simple observa-
tion. Looking at the network topology from the point of view of the
intermediate metabolite, up-regulation of the upstream genes
creates a positive feedback loop, because higher levels of upstream
enzymes lead to higher levels of the intermediate metabolite.
However, up-regulation of downstream genes creates a negative
feedback loop, because higher enzyme levels deplete the in-
termediate metabolite (Fig. 1 C and D). Strong negative feedback
has long been a well-known design principle for strong and fast up-
regulation of gene expression (21, 22). Although strong positive
feedback is invaluable in switching or bistable systems, it can often
have deleterious consequences in adaptive systems (23).
The aforementioned results were obtained by choosing rea-

sonable values for the evolutionary parameters γ, η, and T. Be-
cause the true values are largely unknown, we repeated the
analysis using a wide range of values for these parameters, creating

a phase diagram of network behaviors. The results for network III
are shown in Fig. 8. For a wide range of parameters, we see the
behavior observed previously, with a separation of responses be-
tween upstream and downstream genes. Similar results were
obtained for the other IMA networks (Fig. S1).
For network VI, in which the end product of the pathway reg-

ulates the transcription factor, we found the optimal response to
involve almost identical expression profiles for every enzyme in
the pathway. This behavior was found to be robust for a very wide
range of environmental parameters. In this network, there is no
positive feedback loop, and thus no constraint on induction of the
enzymes at the top of the pathway. This agrees with our obser-
vations in the yeast arginine biosynthesis pathway where all
enzymes had similar induction dynamics.
Similar results were obtained for models with different

numbers of enzymes. We also explored the phase diagrams for
other environmental parameters. These are included in Figs.
S2 and S3.

Discussion
Wehave shown that in a number of biosynthetic pathways in yeast,
gene expression dynamics depend on the underlying regulatory
architecture. In particular, we have observed that under the
IMA, the enzyme immediately downstream of the regulatory in-
termediate is induced much more strongly than any other enzyme
in the pathway and that this is a universal feature of all of the
pathways with the IMA architecture we examined. In some cases,
other enzymes downstream of the intermediate also have a rela-
tively strong induction level. In arginine biosynthesis, which is
regulated by the EPI architecture, we did not observe significant
differences in gene induction among pathway enzymes.
By using a theoretical model to balance the relative costs and

benefits of gene expression level, we have shown that organisms are
likely to evolve different patterns of gene expression depending on
the regulatory architecture used to control the pathway. In par-
ticular, for networks in which an intermediate metabolite interacts
with the transcriptional regulator, the theoretical model predicts
that the optimal gene expression dynamics involve amuch stronger
induction for enzymes downstream of the intermediate than for
those upstream of the intermediate. Combining the theoretical
analysis with the experimental observations, our results suggest
that the strengths of regulation of the pathway enzymes may have
been optimized by evolution and that the cost/benefit model cap-
tures the basic features of the objective function.
Although we have concentrated on the prediction of gene

expression profiles for individual networks, our model also

A B

C D

Fig. 3. Dynamic profiles of lysine biosynthesis enzymes. See Fig. 2 legend
for an explanation of the panels.

A B

C D

Fig. 4. Dynamic profiles of adenine biosynthesis enzymes. See Fig. 2 legend
for an explanation of the panels.
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predicts a final cost value for each network, and we can compare
the costs between the six networks in Fig. 7. We find that across
virtually the entire phase space, network VI consistently has the
lowest cost, followed by networks I, II, III, IV, and V in that
order. This finding is somewhat intuitive because this is the order
in which the networks sense the starvation signal, from earliest
(directly sensing lack of product) to latest (the last intermediate
in the pathway). However, it does create the question of why all
biological pathways do not use the least costly regulatory to-
pology. We hypothesize that this is due to the high evolutionary
barrier of switching the regulatory program. A switch in regula-

tory program must involve the evolution of a new metabolite–TF
interaction, as well as a concurrent evolution of each of the
promoters involved, and is likely to create a very unfavorable
intermediate state. Another possibility is that the chemical struc-
ture of certain end products makes it difficult to interact with
transcription factors.
We note also that the model predicts virtually identical expres-

sion profiles for all enzymes downstream of the control point in
IMA networks, whereas our data only show consistently a strong
induction for the enzyme immediately after the control point.
There are several reasons why this could be the case. One possi-
bility is that we are observing some natural variation away from the
optimal solution, which is lower for the enzyme immediately after
the control point than for other downstream enzymes. Indeed we
show (Fig. S4) that of all of the downstreamenzymes, the sensitivity
of the cost function is highest to parameters that affect the ex-
pression of the enzyme immediately downstream; that is, changing
expression of the first enzyme downstream of the intermediate is
more detrimental to the behavior of the system than changing the
expression of other downstream enzymes. This is because this ex-
pression level tightly controls the level of the regulatorymetabolite
and will affect expression in the entire pathway. Intuitively, having
insufficient induction of the enzyme immediately downstreammay
lead to an effective positive feedback loop for the system when the
two feedback loops of opposite signs are combined (Fig. 1D). Be-
cause such positive feedback can lead to an unstable situation that
results in overexpression of the whole pathway, the regulatory ar-
chitecture would put the strongest constraint on the expression of
the enzyme immediately downstream. A slightly different but re-
lated possibility is that it may be beneficial to reduce stochastic
fluctuations, as strong negative feedback is known to do (24).
Although we have restricted our experiments to one organism,

themodel results suggest that the phenomenon should be general.
Indeed, for pathways with IMA architecture, additional evidence
from a recent study suggests that the expression patterns we ob-
served in yeast may also hold true in E. coli. We obtained time
course data for expression of a number of amino acid biosynthesis

A B

C D

Fig. 5. Dynamic profiles of arginine biosynthesis enzymes. See Fig. 2 legend
for an explanation of the panels.

A

B

C

D

Fig. 6. A cost/benefit model for gene expression in a metabolic pathway upon nutrient depletion. (A) Generalized linear pathway with one possible reg-
ulatory architecture. (B) Set of differential equations describes the dynamics of enzyme induction and product formation. A complete explanation of
parameters and variables used in the model and the cost function is provided in SI Text. (C) Cost function used for optimization of regulatory parameters is an
estimate of the growth penalty imposed by insufficient product flux or unneeded protein expression. See main text and SI Text for a detailed explanation of
the model variables. (D) Graphical illustration of the cost function components.
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genes under depletion for six different amino acids in E. coli from
Yamada et al. (25) (reproduced in Figs. S5–S7 and found to have
similar patterns). The clearest example is in the lysine biosynthesis
pathway in E. coli, regulated by the transcription factor LysR,
which binds the metabolic intermediate diaminopimelate to be-
come active (26). LysA, the enzyme downstream of the regulatory
intermediate, has a significantly higher level of induction than any
of the othermeasured enzymes. In themethionine pathway, where
homocysteine regulates the transcription factor MetR (27), the
downstream enzyme MetE also has higher induction than the
other enzymes in the pathway. For the cysteine and valine bio-
synthesis pathways, we also see high induction of the enzyme im-
mediately downstream, which may suggest a similar pattern, but is
insufficient to make a definite conclusion.
One might expect fewer instances of differential regulation of

enzymes in the pathway in bacterial systems, due to the common
constraint of cotranscription of pathway enzymes in one operon.
However, in fact, in none of the above cases do we observe
cotranscription of genes corresponding to upstream and down-
stream enzymes (although several upstream enzymes might in
fact be found in one operon). This observation might argue that
evolution has found it necessary to separate the regulation of
upstream and downstream enzymes when a pathway is regulated
by an IMA network.
We have also noted that we do not observe timing differences

between enzymes in the yeast metabolic pathways that we have
studied, including three pathways with IMA and one with EPI ar-
chitecture. This is in contrast to the “just-in-time” pattern reported
byZaslaver et al. (8) whereE. coli amino acid biosynthesis enzymes
in several pathways were activated in sequential order according to
their position in the pathways. Our observations suggest that just-
in-time behavior in metabolic pathways is not as general as it may
be perceived, despite several groups having presented a general
argument for it on the basis of theoretical grounds (7, 8). Although
the argument seems intuitive (best to produce enzymes only when
you need them), the intuition relies on the assumption that the
timing of each enzyme’s induction can be independently tuned
without incurring significant cost, and this may be feasible only
under very particular conditions. Within the context of the simple
regulation in our model, these conditions require very unusual

parameter values and are likely to be the exception rather than the
norm(Fig. S8). Ifmore complicated regulatory schemeswereused,
it would be possible to control timing of the induction indepen-
dently from the amplitude, but the benefit of saving protein syn-
thesis with just-in-time expression must then be weighed against
the cost of investing in complicated regulatory schemes.

Fig. 7. Predicted optimal dynamic profiles of gene induction under six different regulatory network architectures. Expression is measured as fold change as
opposed to absolute level because the latter can be scaled by scaling kcat for a particular enzyme, whereas the relative level is insensitive to the particular
enzyme parameters. Some curves that overlap perfectly have been artificially separated by a small offset for visibility.

Fig. 8. Phase diagram of optimal expression dynamics for an IMA network.
Each point in the graph corresponds to a pair of values (γ, η/T) represents an
optimization of the cost function over the regulatory parameters. Each so-
lution was classified on the basis of the resulting enzyme expression dy-
namics. The red region corresponding to intermediate values of the
evolutionary parameters shows a pattern of separation of enzyme dynamics
before and after the regulatory metabolite. The green region consists of
parameters where the optimal solution involved no regulation at all,
whereas the blue region contains other types of expression patterns. The
blue region is likely to involve unrealistic parameter values because these
solutions typically involve fold changes of over 104.

Chubukov et al. PNAS | March 27, 2012 | vol. 109 | no. 13 | 5131

SY
ST

EM
S
BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1114235109/-/DCSupplemental/pnas.201114235SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1114235109/-/DCSupplemental/pnas.201114235SI.pdf?targetid=nameddest=SF7
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1114235109/-/DCSupplemental/pnas.201114235SI.pdf?targetid=nameddest=SF8


There are two design principles for the regulation of metabolic
pathways that we have introduced in this work: (i) optimal patterns
of gene inductionare strongly dependent on theunderlyingnetwork
architecture and (ii) under the IMA, strong induction of enzymes
downstreamof the intermediate ishighly favorable.The latter is one
application of the more general principle of using strong negative
feedback for stability and fast response. Nevertheless, it is striking
that these results can be deduced from an extremely simple math-
ematical model of evolutionary optimality. Although the model is
a drastic simplification of reality, we feel that it captures the basic
principles behind the phenomenon and that the key finding of
strong dependence of expression profiles on network architecture
(and in particular on the feedback structure) will be robust as more
interesting models for cellular fitness are considered.

Materials and Methods
Strains, Media and Flow Cytometry. All yeast strains are derived from S288c
MATα ura3-52. For promoter–GFP constructs, 720 bp directly upstream of
each gene was used. For flow cytometry, cultures were grown in deep-well

96-well plates, with a volume of 500 μL per well. Exponential phase cells
growing in SD-complete media and having reached steady-state GFP levels
were collected by centrifugation and resuspended in dropout media. A cus-
tomized robotic liquid handler periodically diluted the cultures with fresh
media and delivered samples to an LSRII flow cytometer (Beckton-Dickinson).
Cell populations were filtered by gating on the forward and side scatter
values, and total GFP fluorescence was normalized to side scatter to give an
approximate measure of GFP concentration (28).

Cost/Benefit Model and Parameter Optimization. All computation was done
using software written by the authors. Five independent simulations were
done for each optimization problem, and variation in the final objective
function was typically below 1%.
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