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ABSTRACT

As the trend continues toward the decreased invasiveness of medical procedures,
image-guided percutaneous ablation has begun to supplant surgery for the local control of
small tumors in the liver, kidney, and lung. New ablation technologies, and refinements of
existing technologies, will enable treatment of larger and more complex tumors in these and
other organs. At the same time, improvements in intraprocedural imaging promise to
improve treatment accuracy and reduce complications. In this review, the latest advance-
ments in clinical and experimental ablation technologies will be summarized, and new
applications of image-guided tumor ablation will be discussed.
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Objectives: Upon completion of this article, the reader should be able to evaluate the limitations of current ablation technologies, and

how new and refined ablation technologies, as well as advancements in intraprocedural imaging, promise to overcome these limitations.
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In the last two decades, the development and
refinement of needle-based ablation techniques using
freezing or thermal energy have allowed local therapy of
tumors in a minimally invasive manner. The benefits of
the percutaneous approach include shortened hospital
stay, lower morbidity, and decreased healthcare costs, as
well as the ability to treat tumors in nonsurgical candi-
dates.1,2

Multiple studies have demonstrated the safety and
efficacy of percutaneous ablation for tumors in the
liver,3,4 kidney,5,6 and lung,7,8 and in some situations
ablation appears equally effective to traditional surgical
resection.9,10 However, percutaneous ablation does face

several significant shortcomings, which restrict its appli-
cation in many patients. First and foremost is the limi-
tation of tumor size. Studies in the liver, kidney, and lung
demonstrate complete ablation in over 90% of tumors
<3 cm in size.11–13 In larger lesions, however, residual
disease and local tumor recurrence become increasingly
common. Second is the issue of applicability; percuta-
neous ablation is currently only in routine clinical use for
tumors in the liver, kidney, and lung. Finally, intra-
procedural imaging is often suboptimal, either due to
image degradation of the target lesion or poor delineation
of the ablation zone. This review article summarizes the
recent advances in the field of percutaneous ablation, as
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new technologies and refinements of existing technolo-
gies aim to overcome some of the aforementioned lim-
itations. Future directions in the field will also be
presented.

NEW TECHNOLOGIES AND REFINEMENTS
OF EXISTING TECHNOLOGIES
Representative examples of the needle-based ablation
modalities are depicted in Fig. 1.

Radiofrequency Ablation

Radiofrequency ablation (RFA) uses rapidly alternating
radiofrequency current to induce frictional heat around
probes placed in tissue, producing cell death by coagu-
lation necrosis. First-generation monopolar electrodes
generated a cylindrical ablation with a diameter of only
1.6 cm.14 Refined electrodes using umbrella-shaped
expandable tines or internal cooling increase conductive
heat delivery, and are the most commonly used RFA
devices in contemporary practice. However, the ablation
zone produced by these devices is still limited to �4 cm
diameter.2 Depending on the ablation margin desired,
this can be sufficient for treatment of lesions up to 2 to
3 cm, but in larger lesions, the number of overlapping
ablations needed to produce complete ablation increases

exponentially. Multiple needle repositionings are tedious
and increase the potential for error and resultant incom-
plete ablation, especially with the image degradation that
can occur with treatment.2

RFA has several other drawbacks, including de-
pendence on thermal conduction, which can be limited
by tissue desiccation and charring, and susceptibility to
‘‘heat-sink’’ effect, which may result in sublethal temper-
atures adjacent to vessels >3 mm in size.15,16 Also, tissue
heterogeneity can result in islands of viable tumor within
the ablation zone.17 Due to electromagnetic interfer-
ence, only one RFA probe can be activated at a time, and
grounding pads are required, which can be a site of skin
burns. Attempts to overcome these limitations have led
to technical advancements in the field of RFA over the
last few years.

Commercially available RF generators produce
�200 W of power and 2000 mA of current. Higher
power (1000 W), higher current generators (3000 mA)
have been examined in vivo in healthy pig livers, and
were found to enlarge the coagulation zone from a single
3-cm-active-length internally cooled electrode from 2.6
to 3.6 cm. When a 4-cm active length cluster electrode
was used (not yet in clinical use), an ablation diameter of
5.0 cm could be achieved.18 The use of these high power
generators is not without risk, however. At the highest
current setting (4000 mA), burns to the bowel were

Figure 1 Representative percutaneous ablation devices. (A) Cool-tip internally cooled radiofrequency electrode (Covidien,

Mansfield, MA). (B) Monopolar (top) and bipolar (bottom) irreversible electroporation probes. (C) Evident internally cooled

percutaneous microwave antenna (Covidien, Mansfield, MA). (D) Perc-24 cryoprobe (Endocare, Irvine, CA).
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observed in several animals, and one intraprocedural
death occurred. Additional studies are required to eval-
uate the safety of high power generators in vivo.

The potential for injected saline to increase the
ablation size was realized soon after the seminal articles
on RFA. Injection of normal or hypertonic saline into the
tissue adjacent to the RF electrode increases electrical
conductance and thermal conductivity, thereby improv-
ing energy delivery and enlarging the ablation zone.19,20

However, the distribution of the injected liquid is un-
predictable, which can result in an irregular ablation
zone,21 and the diffusion of hot saline can cause burn
injury to surrounding organs.22 An expandable electrode
using saline injection and multistep deployment of tines
to a maximum diameter of 7 cm is commercially available.
Ablation of 31 hepatocellular carcinoma (HCC) lesions
measuring 3 to 7.5 cm using this device yielded a
complete ablation rate of 74%, with an average of 1.6
electrode insertions.23 The complication rate was 48%,
but all complications were self-limited.23

Bipolar RF ablation utilizes a parallel-placed
needle, or a second electrode within the same ablation
needle, to serve as an electrical ground.24 Because the
current flows directly from one electrode to the other,
the dependence on thermal conduction is reduced,
ablation times are faster, and energy loss from heat
sink decreases.25 Grounding pads are not needed. How-
ever, early ‘‘dry’’ bipolar probes were plagued by tissue
charring, which decreased current flow between the
electrodes and often resulted in a flattened or discontin-
uous ablation zone.22,26 The combination of saline in-
jection with bipolar probes improves current penetration
and decreases charring. One ‘‘wet bipolar’’ device incor-
porates both electrodes and four saline exit sites into a
single 1.8-mm-diameter applicator, and produces a ho-
mogeneous ablation zone with short axis diameter of
�3 cm in a live swine model.27

An alternative method of reducing charring with
the bipolar electrode is to use internal cooling. A single
water-cooled bipolar applicator examined in ex vivo
bovine livers achieved a short axis ablation diameter of
3.2 cm.28 A recent study examined the use of carbon
dioxide gas as a more powerful cooling agent (cryo
RFA); incorporated into a single 1.8-mm-diameter
bipolar applicator, short axis diameters of 4.4 cm could
be achieved in ex-vivo bovine liver.29 These electrodes
have not yet been studied in vivo.

A logical extension of the bipolar technique is the
use of multipolar electrode arrays. Three internally
cooled bipolar electrodes are placed in a triangular array,
and a switching controller passes RF energy between all
possible electrode pairings until target impedance is
reached. This prevents tissue charring and creates a
uniform ablation zone. Depending on the power applied,
the spacing of the electrodes, and the duration of
ablation, coagulation diameters of 4.2 to 8.4 cm have

been achieved in ex vivo bovine liver.30 In a clinical
study, this technology achieved an 81% complete abla-
tion rate in hepatocellular carcinoma (HCC) measuring
5.0 to 8.5 cm, without major complications and usually
in a single treatment session.31

A different tact to expand ablation zones with
RFA is the use of complementary liposomal chemo-
therapy. The chemotherapy sensitizes the tumor to heat,
increasing tumor destruction in the sizable rim of tissue
around the ablation zone which is exposed to mildly
elevated but otherwise sublethal temperature.32,33 Pack-
aging of the chemotherapy within biologically inert
liposomes prolongs circulation time and reduces sys-
temic toxicity.34 An early trial comparing RFA alone
with combined RFA and liposomal doxorubicin in 10
patients with liver tumors found a 25 to 30% larger
ablation volume in the liposomal RFA group at 2 to 4
weeks after treatment, as well as more complete internal
tumor destruction.35 Thermosensitive liposomes have
also been developed, which promise to further increase
the release of the chemotherapeutic drug in regions of
tissue heating. A phase III clinical trial (HEAT study)
examining thermosensitive liposomal RFA in 600 pa-
tients with HCC is currently underway.

Microwave Ablation

Microwave ablation employs a needle antenna to create a
localized electromagnetic field. The field causes water
molecules around the antenna to oscillate, producing
heat. Since the mid-1990s, microwave ablation has
slowly gained recognition as an alternative tumor abla-
tion method, especially in Asia, where it is commonly
used in liver applications.

Microwave ablation promises several theoretical
advantages over RFA. Microwave ablation actively heats
the ablation zone, rather than the passive conduction of
heat relied upon by RFA. Thus, microwave ablation is
not limited by tissue desiccation and charring, is less
affected by heat sink, and can rapidly reach high temper-
atures, resulting in faster ablation times and a more
uniform ablation zone.36,37 For larger lesions, multiple
microwave antennae can be operated simultaneously to
rapidly produce a large ablation area.4,38 Also, ultra-
sound visualization of the ablation zone of microwave
ablation may be better than RFA, due to the lack of
artifacts caused by desiccated and charred tissue.37,39

Early percutaneous microwave ablation devices
showed satisfactory outcomes in treating small liver
lesions,38,40 but ablation zones were small and the anten-
nae were prone to overheating. Cooled-shaft microwave
ablation antennae allow more power delivery without
skin burns. Using cooled-shaft antennae, a 92% complete
ablation rate was achieved in liver lesions up to 8 cm, and
others have ablated tumors >10 cm in size.41 A cooled-
shaft 915 MHz microwave ablation system has recently
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been approved for use in the United States, which yields a
larger ablation zone compared with the 2,450 MHz
cooled-shaft antennae used in Asia.42 The most extensive
study of this device was intraoperative, where liver tumors
up to 6 cm were treated, with a 95% complete ablation
rate and only 2% local recurrence rate.43

One of the most promising advancements in
percutaneous microwave ablation is the triaxial antenna.
This device consists of a coaxial monopole antenna
placed through an introducer needle, and is tunable to
optimize its use in different tissues. The device max-
imizes energy transfer to the tissue while minimizing
back heating, and allows for antenna diameter as small as
17 or even 18 gauge.44 A prototype 17-gauge cooled
triaxial microwave antenna has been shown to produce
25% larger and more spherical ablations than a compa-
rable 17-gauge internally cooled RF electrode in a
porcine lung model.45

Multiple microwave antennae can be activated
simultaneously to achieve synergistically larger zones of
ablation. In vivo liver experiments show that simulta-
neous three probe microwave ablation lesions are 3 times
larger in volume than sequential three probe lesions. The
simultaneous application also resulted in more uniform
coagulation, even near blood vessels, and better spher-
icity.46 However, clefting of the ablation zone can occur
when the antennae are spaced by more than 1.7 cm.
With the use of three 17-gauge triaxial microwave
antennae, the improved input power and efficiency
allows antenna spacing up to 3 cm, and in vivo experi-
ments yield ablation zones averaging 5.3� 7.6 cm. Ves-
sels as large as 1.1 cm were completely coagulated,
demonstrating the ability of this technique to overcome
the heat-sink effect.47

Cryoablation

Cryoablation utilizes rapid freezing (as low as -1968C)
and thawing cycles to induce tissue necrosis by ice crystal
formation, cell dehydration, and impairment of tumoral
microvasculature. Cryoablation has several theoretical
advantages over RFA. The ice ball that forms is well
seen with computed tomography (CT), magnetic reso-
nance imaging (MRI), or ultrasound, and can be tailored
by controlling individual probe temperatures. Multiple
probes can be simultaneously applied for a large ablation
zone (>8 cm).48 Also, cryoablation is a relatively painless
procedure that can often be controlled with nonnarcotic
medications.49 However, the zone of complete lethality
lies a variable distance inside the edge of the ice ball, 4 to
10 mm or more, meaning the ice ball must extend well
beyond the tumor to ensure a satisfactory treatment
margin.50 Cryoablation also can suffer a ‘‘cold-sink’’
effect from adjacent vessels,15 and rare but serious
complications of cryoshock and parenchymal crack can
occur, especially in liver applications.51

Historical cryoprobes used liquid nitrogen as a
cryogen and were designed for intraoperative applica-
tions. The switch to argon gas as the cryogen allowed
downsizing of probes to 2.4 mm (13-gauge), and
enabled safe percutaneous use. MRI-compatible
1.5-mm (17-gauge) cryoprobes became available earlier
this decade, and produce an ice ball essentially the same
size as the 2.4-mm probes, despite a 38% smaller probe
diameter (manufacturer’s data).

High-Intensity Focused Ultrasound

The ability of focused ultrasound energy to noninvasively
heat tissue has been recognized for decades. Using a
transducer that delivers sonic energy at intensities
�10,000 times that used in diagnostic ultrasound, high-
intensity focused ultrasound (HIFU) can produce almost
instantaneous cell death in a precisely targeted volume.
The main advantage of HIFU compared with other
ablative technologies is its noninvasiveness. As the skin
is not breached and the tumor is not punctured, there is no
risk of needle-related hemorrhage or tumor seeding.52

HIFU ablates tissue primarily via the thermal
effects of molecular friction and the mechanical effects
of acoustic cavitation.53 The thermal effects are in-
duced by ultrasound absorption and are relatively easy
to control. The acoustic cavitation effects are less
predictable, but have potential to enlarge the ablation
area size and thereby reduce procedure time.54 A
single application of a typical 1.5 MHz HIFU trans-
ducer produces a thermal lesion measuring �2 mm in
width and 1.5 to 2.0 cm in length.55 These lesions are
‘‘stacked’’ by movement or steering of the transducer to
produce an overlapping ablation zone of the desired
size.

At the time of the writing of this article, HIFU is
faced with several limitations. Procedure times are pro-
hibitively long for ablation of medium and large lesions,
with some treatments lasting 6 hours or more. Organ
movement can result in incomplete target ablation, or
worse, ablation of nontarget structures. Reflection of the
high-energy ultrasound waves by bone or gas-containing
bowel can cause soft tissue damage, and skin burns can
occur if there is poor acoustic coupling at the skin–
transducer interface.53 Some of these drawbacks are
being addressed by new technologies, such as real-time
adaptive treatment under MRI guidance,56 which may
improve the speed and accuracy of HIFU, and expand its
capability in moving organs.

The injection of intravenous microbubbles during
HIFU application may be able to enlarge the resultant
ablation zones. The microbubbles act as ‘‘seeds’’ for
cavitation, decreasing the threshold and increasing the
activity of acoustic cavitation.55 This in turn leads to
increased tissue temperatures with less sonication time as
demonstrated in animal models,57,58 and may allow
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more rapid treatment compared with conventional tech-
niques.

New geometries of HIFU transducers also prom-
ise to enlarge the coagulated volume and decrease treat-
ment time. A toric transducer, composed of eight
ultrasound transducers with focal zones distributed
over a 10-mm cone, has been described. Using sequential
5-second applications of each HIFU transducer in
healthy pig liver, a coagulative lesion with an almost
2-cm diameter can be produced in only 40 seconds.59

Irreversible Electroporation

Irreversible electroporation (IRE) refers to the process of
permanent cell membrane permeabilization by applica-
tion of a high external electrical field. The transmem-
brane potential from the external electrical field is
thought to cause the formation of innumerable nano-
sized pores in the membrane and subsequent disruption
of intracellular homeostasis. If the applied electrical field
is below a certain threshold, this event is only temporary
and the cell membrane returns to normal when the
external electrical field is removed (reversible electro-
poration). If the applied electric field exceeds the thresh-
old, it will result in permanent disruption of cell
membrane structures and intracellular homeostasis,
leading to cell death.60 This latter effect, which was
initially considered undesirable by researchers, has been
recently seized upon as a novel technique for minimally
invasive ablation.

There are two main types of IRE probes: monop-
olar and bipolar. The monopolar system requires place-
ment of two probes (19 gauge, maximum depth of
15 cm) into or bracketing the target. Applying 2500 V
across two probes spaced 1.5 cm apart results in an
ablation zone measuring �2� 3� 3 cm61 (Fig. 2). To
achieve larger ablation areas, up to six monopolar probes
can be placed simultaneously. The bipolar system con-
sists of a single probe (16 gauge, maximum depth of
18 cm). It contains two poles within its distal portion.
Applying 2500 V across the two poles will create an
ablation zone of �2� 2� 3 cm.61

IRE demonstrates several unique advantages
over conventional thermal ablation methods. IRE has
an ultrashort ablation time, less than one minute, to
create an ablation area of �3 cm in diameter.60 This
short ablation time is expected to shorten anesthesia
time, reduce complications, and empower treatment of
more lesions in a single setting. Real-time ultrasound
can be used for treatment monitoring, and accurately
delineates the treatment zone, correlating well with the
zone of necrosis seen on immunohistopathology.60

Visualization is not hindered by the presence of echo-
genic microbubbles that obscure the ablation zone with
heat-based ablation. Because IRE is nonthermal, there is
no ‘‘heat-sink’’ effect, and complete cell death surround-

ing vessels can be produced.60,62–64 Although IRE ablates
the living cells, it preserves the cellular matrix and
pericellular structures, so large vessels and bile ducts
remain structurally and functionally intact.63,64 Finally,
collateral damage to nearby structures when IRE is
applied at the edge or dome of the liver appears less
likely to occur compared with thermal modalities.61

IRE does have some disadvantages. Delivery of a
high electrical field close to the heart during IRE of lung
lesions or high left lobe liver tumors has caused arrhyth-
mias including ventricular fibrillation in preclinical stud-
ies and in two patients in the preliminary clinical study.
Electrocardiogram gating of IRE application can be used
to avoid the application of electrical fields during systole,
which is the phase of highest susceptibility, and may
overcome this disadvantage (unpublished data). Never-
theless, additional caution is required in patients with
known cardiac comorbidity. Also, the high voltage used
by IRE results in significant muscle spasm. Muscle
relaxants such as cisatracurium are therefore used when
performing IRE ablation to prevent electric pulse-in-
duced muscle contractions.

In vivo and clinical data using IRE are limited at
the time of this review. A VX2 liver tumor ablation study
in rabbits and a phase I clinical feasibility study in
humans have been completed and are being prepared
for publication.

Figure 2 Irreversible electroporation (IRE). (A) Pre-reatment

planning estimation of IRE treatment zone (2000 V/cm with

1.5-cm distance using two monopolar probes). (B) and (C)

Gross and hematoxylin and eosin stained IRE-treated liver

specimens demonstrating clear demarcation between the

treated and nontreated tissue.
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NEW APPLICATIONS

Breast Cancer

Emerging research seeks to expand the use of percuta-
neous ablation to early-stage breast cancer. The current
standard of care for small breast carcinomas is local
excision with adjuvant radiation therapy. This carries a
risk of bleeding and infection, and can result in serious
breast asymmetry.65 Because the breast is a superficial
organ, well visualized with ultrasound, and easily immo-
bilized, it is amenable to percutaneous ablation. Mini-
mally invasive treatment would be expected to reduce
complications and improve cosmesis.

RFA is the most extensively studied modality in
the breast. Ten feasibility studies of RFA followed by
definitive resection in early-stage breast cancers have
demonstrated an overall complete ablation rate of
87%66–75 and a low complication rate. The most recent
study used a dedicated breast cool-tip RF electrode to
treat primary breast cancers averaging 1.9 cm in diameter
in 34 women. Total procedure time averaged 27 minutes,
and a complete ablation rate of 97% was achieved. The
ablation margins seen on postprocedure MRI were
spherical and correlated well with histologic specimens.
Cosmesis was excellent.70

The dielectric properties of microwave ablation,
which allow preferential heating of water-rich tumors
compared with adipose tissues, suggest its potential
suitability for breast cancer treatment. Only feasibility
studies have been performed thus far. The technique
achieved tumor necrosis, but complete ablation was rare.
Occasional skin burns occurred.76,77

Interest is increasing in cryoablation for breast
masses, driven by the lower sedation requirements and
good imaging visualization of the ablation zone. Ultra-
sound-guided cryoablation of fibroadenomas has already
proven safe and durable.78 Feasibility studies of breast
cancer cryoablation achieved complete ablation rates
of 52 to 100% in T1 to T3 tumors.79–81 Recently,
11 patients with 21 breast cancer foci averaging 1.7 cm
in diameter were treated under ultrasound and CT
guidance, without follow-up excision. The mean ice
ball diameter was 5.1 cm, using an average of 3.3 probes.
No major complications were recorded, and no local
recurrences were seen after 18 months. Patient satisfac-
tion was very high.82

The excellent acoustic window and easy immobi-
lization of the breast make it amenable to HIFU treat-
ment. Thus far, studies of MRI-guided HIFU in the
breast have been mostly limited to treatment and resec-
tion feasibility studies. These studies have shown that
HIFU can ablate most of the tumor volume (mean
percentage necrosis of 88 to 97%),83,84 but usually leaves
some tumor behind at the treatment margins, with
complete ablation rates of only 0 to 50%.83–86 One group
using ultrasound-guided HIFU in a ‘‘treat-and-resect’’

protocol was able to achieve 100% necrosis in all
21 patients treated, likely related to the large margins
(1.5–2.0 cm) sought during treatment.87 In all studies,
HIFU was performed under moderate intravenous seda-
tion, was well tolerated, and had no major complications.

IRE has not yet been applied to breast cancers
in vivo, but in vitro study demonstrates lethality of
electroporation against an aggressive breast cancer cell
line, and the nonthermal nature is expected to reduce
scarring and minimize cosmetic effects.88

Although percutaneous ablation has great poten-
tial benefit in breast cancer patients, several obstacles
remain. Besides the treatment-specific limitations de-
scribed above, patients with large tumors and extensive
ductal carcinoma in situ or invasive lobular carcinoma
are not ideal candidates. Also, significant scar tissue may
be created in the ablation zone, which can reduce the
accuracy of ultrasound or mammographic follow-up.
There are no long-term data for breast cancer ablation
without subsequent excision, and until these data are
available, this treatment will likely be limited to non-
surgical candidates.

Prostate Cancer

Early-stage prostate cancer is exceedingly common, and
conventional treatments (radical prostatectomy and ra-
diation) incur significant morbidity. The alternative,
watchful waiting, risks spread or invasion of the index
tumor. Thus, the prostate is a suitable target for mini-
mally invasive local therapy.

Cryotherapy of whole gland prostate cancer has
already been established as a safe and effective alternative
to conventional treatments, confirmed with long-term
follow-up data.89,90 The idea of focal cryoablation, freez-
ing the tumor while sparing the uninvolved prostate, is a
logical next step. Transrectal ultrasound is used to guide
placement of a cryoablation probe through the perineum
and into the tumor. Because the neurovascular bundles
can often be spared, the rates of impotence and incon-
tinence may be lower than surgery or radiotherapy.91 In a
study of 120 men with localized prostate cancer who had
focal cryoablation over 12 years, 93% had no evidence of
cancer at follow-up, despite the majority being labeled
medium to high risk of recurrence. Eighty-five percent
retained sexual function and all who had not had prior
prostate surgery remained continent.92 Another study has
shown comparable results.93

The prostate is well-suited for HIFU due to its
good visualization with ultrasound, lack of intervening
structures, and minimal respiratory movement. Trans-
rectal ultrasound guidance is used. A recent study
compiled long-term follow-up in 517 patients treated
with HIFU for localized prostate cancer, and found that
72% remained biochemically disease-free at 5 years. No
patients died due to prostate cancer. Some complications
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were encountered, including a 29% risk of erectile
dysfunction and 17% incidence of urethral stricture,
and prolonged catheterization was needed in 13% of
patients due to prostate swelling.94 Other studies have
confirmed 5-year disease-free survival rates of 68 to 78%
for early-stage localized prostate cancer.95–97

In vivo experiments in dogs suggest that IRE of
the prostate may offer several advantages over cryoabla-
tion and HIFU. The IRE lesions resolve rapidly, making
urethral dysfunction from prostate swelling unlikely, and
possibly facilitating imaging follow-up. Even when in-
tentional IRE of the neurovascular bundle was per-
formed, the nerve and vessel remained intact,
suggesting that tumors involving this structure can be
ablated with low risk of impotence. The urethra and
rectum also seemed unaffected by IRE.98 Human trials
have not yet been performed.

Uterine Fibroids

Uterine fibroids are exceedingly common and frequently
symptomatic. Minimally invasive therapy using uterine
artery embolization (UAE) is safe and effective, but the
procedure is often painful, risks ovarian failure, and is
not indicated in patients who wish to preserve fertil-
ity.99,100 Percutaneous ablation deserves attention as a
treatment alternative.

Percutaneous radiofrequency ablation and cryoa-
blation have been applied to uterine fibroids in several
small case series. Ten women with 11 fibroids measuring

up to 8 cm in size underwent RFA using an expandable
electrode under ultrasound guidance. Operative time
averaged 20 minutes, and technical success was 100%.
Mean volume reduction was 91% at 12 months, and
symptom severity scores significantly decreased in all but
one patient. No complications were encountered.101 In
the case of cryoablation, six patients with seven fibroids
averaging 7.1 cm in diameter were treated in one study,
using MR guidance and 2.9 cryoprobes per patient.
Volume reduction was 79% at 12 months, and subjective
symptoms improved in almost all patients.102 Two other
small series of cryoablation also showed success.103,104

The use of HIFU for uterine fibroids has been
well studied. MRI guidance is almost exclusively used.
Although exclusion criteria are many (morbid obesity,
lack of a clear pathway to the lesion, necrotic or degen-
erated fibroids), the treatment is feasible and effective in
selected patients. Volume reduction of 36.5% at
6 months has been achieved,105 and symptom severity
scores decrease significantly and durably after HIFU
treatment. Re-intervention rates for HIFU were found
to be 14% at 2 years,105 compared with 3.2% for
myomectomy99 and 6.9 to 23.5% for UAE.99,100

Regardless of the technique used, percutaneous
ablation for uterine fibroids is limited in patients with
large (>8 cm diameter) and/or multiple (more than
three) tumors, and in patients whose tumors cannot be
accessed transabdominally. Nevertheless, an increasing
role for percutaneous ablation in select patients is easily
envisioned.

Figure 3 Computed tomography (CT) and ultrasound imaging of radiofrequency ablation (RFA). (A) Liver ultrasound

demonstrates a 5-cm hypoechoic hepatocellular carcinoma. (B) An internally cooled cluster electrode has been placed, and

echogenicity at the electrode tips marks the beginning of ablation. (C) Five minutes later, echogenic microbubbles obscure the

lesion and the ablation zone. (D) Preprocedure noncontrast CT depicts the same lesion. (E) After multiple ablations and

repositionings, the ablation zone and the lesion are poorly defined and indistinguishable. (F) Postprocedure contrast-enhanced

CT clearly defines the ablation zone.
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Intraprocedural Imaging

Percutaneous ablation is most commonly performed
under ultrasound or noncontrast CT guidance. These
modalities are sufficient for lesion detection and probe
placement in most cases, but neither can depict the exact
ablation margins during treatment (Fig. 3). MRI with
temperature sensitive imaging is an alternative, but is
expensive, not widely available, and requires the use of
specialized MRI-compatible equipment.

One potential solution is the use of real-time
CT–ultrasound fusion imaging, which matches a pre-
procedural volumetric CT (with contrast, if desired) to
real-time ultrasound images. An electromagnetic track-
ing system mounted on the ultrasound probe provides
the position and orientation of the probe, and permits
representation of the corresponding multiplanar refor-
matted CT image in the same plane and position. A
recent feasibility study showed high and consistent levels
of matching accuracy between preprocedure CT and
real-time ultrasound imaging in an in vitro liver model,
with mean registration error of only 3 mm.106 A clinical
trial of a similar system used needles with internalized tip
sensors, enabling virtual display of needle position

within a previously obtained CT, to perform biopsies
and ablations in 20 patients. Additional set-up time was
�5 minutes, and tracking error was �6 mm.107 At our
institution, the ability to provide real-time ultrasound
guidance for lesions that are only visible on CT and the
ability to enable accurate needle repositioning after the
ultrasound picture is degraded by ablation treatment
have proven to be useful applications of CT–ultrasound
fusion technology (Fig. 4).

An extension of fusion imaging is the addition of
computerized treatment planning. A semiautomated
computer program can be used to analyze preprocedural
CT, segment the tumor volume to be treated, and
output the desired needle approaches for the necessary
number of overlapping ablation spheres. These data can
then be used with the fusion imaging technology to
provide real-time guidance during needle placement.
This has been studied for RFA of lung nodules in
swine, and was feasible, though misregistration from
respiratory movement led to an average error of needle
placement of �1 cm.108 Programs that improve regis-
tration by adding computerized modeling of organ
motion over the breathing cycle have been developed,

Figure 4 Screen capture from the Traxtal PercuNav workstation (Philips, Andover, MA) during radiofrequency ablation.

Blended computed tomography- (CT-) ultrasound image (A) superimposes the real-time ultrasound image (B) on the virtual

noncontrast preprocedure CT image (C) in the corresponding plane and position. Although echogenic microbubbles obscure the

target lesion on ultrasound, visualization of the lesion is maintained on the virtual CT image (arrow).
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and promise accuracy to the millimeter level, but have
not yet been applied to needle ablation.109 CT-inte-
grated robots that partially or fully automate the needle
placement process based on a user-defined treatment
plan have been designed, and may eventually empower
‘‘point and click’’ tumor ablation.110

Recent advancements in ultrasound technology
are also aiding guidance during percutaneous ablation.
Contrast-enhanced flow imaging (four-dimensional ul-
trasonography) allows the operator to display the accu-
rate positioning of the ablation needle in the target of
hypervascular tumors such as HCC, and to better
evaluate the completeness of ablation posttherapy, with
good correlation to contrast-enhanced CT.111,112 Real-
time temperature estimation using ultrasound appears
feasible in tissue phantoms, but has been limited clin-
ically by motion artifacts. New algorithms promise to
improve clinical utility.113 Ultrasound-based elastogra-
phy is being investigated as an alternative modality for
treatment monitoring, taking advantage of the increased
hardness of thermally ablated tissue compared with
normal tissue.114,115

CONCLUSIONS
Percutaneous tumor ablation has made great strides over
the last decade. Refinements of thermal ablation techni-
ques have allowed larger ablation sizes with smaller
instruments, and new technologies have enabled non-
invasive ablation and nonthermal ablation with potential
advantages in patient safety and treatment efficacy.
Advances in intraprocedural imaging have improved
treatment planning and produced a more accurate assess-
ment of the ablation zone during treatment. As these
technologies mature, the indications for percutaneous
ablation continue to expand, and ablation promises to
increasingly supplant surgery for local tumor therapy.
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