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Computational image analysis is used in many areas of biological and medical research, but advanced techniques
including machine learning remain underutilized. Here, we used automated segmentation and shape analyses, with pre-
defined features and with computer generated components, to compare nuclei from various premature aging disorders
caused by alterations in nuclear proteins. We considered cells from patients with Hutchinson-Gilford progeria syndrome
(HGPS) with an altered nucleoskeletal protein; a mouse model of XFE progeroid syndrome caused by a deficiency of
ERCC1-XPF DNA repair nuclease; and patients with Werner syndrome (WS) lacking a functional WRN exonuclease and
helicase protein. Using feature space analysis, including circularity, eccentricity, and solidity, we found that XFE nuclei
were larger and significantly more elongated than control nuclei. HGPS nuclei were smaller and rounder than the control
nuclei with features suggesting small bumps. WS nuclei did not show any significant shape changes from control. We
also performed principle component analysis (PCA) and a geometric, contour based metric. PCA allowed direct
visualization of morphological changes in diseased nuclei, whereas standard, feature-based approaches required pre-
defined parameters and indirect interpretation of multiple parameters. Both methods yielded similar results, but PCA
proves to be a powerful pre-analysis methodology for unknown systems.

Introduction

Clinicians, histologists, biologists, and other researchers have used
morphological information of different biological structures for
diagnosis and mechanistic information. Specifically, nuclear
morphology has played a significant role in cancer histology for
decades.1,2 Recently, computational image analysis and machine
learning techniques have been utilized to enhance diagnostic
imaging.3 Computational analysis of nuclear features aids in
diagnosis of cancer4-7 while highlighting cellular phenotypes that
are characteristic of tumor cells.8-10 Characterization of nuclear
morphological features may provide insights into mechanisms of
diseases as well as in cellular development.11

Nuclear morphology changes in several tissues as organisms
age.12,13 Furthermore, nuclear morphology abnormalities are com-
mon in progeria syndromes, which are diseases of accelerated aging.
Examination of nuclear morphology may be used to examine
progression of the disease14 and help to evaluate therapies.15 There

are several premature aging disorders caused by mutations in nuclear
proteins. Here, we study Hutchinson-Gilford progeria syndrome
(HGPS), Werner syndrome (WS), and primary cells from Ercc12/2

mice that model XFE (xeroderma pigmentosum type F-ERCC1)
progeroid syndrome.16 HGPS is a premature segmented aging
syndrome caused by a mutation in LMNA, which codes for the
nucleoskeletal structural proteins including lamin A and lamin C.17

Patients with HGPS develop symptoms by two years of age
and show extensive systemic phenotypes including osteoporosis,
osteoarthristis and cardiovascular disease, which ultimately causes
death in the early teens.18 WS, also known as an adult progeria, is a
premature aging syndrome caused by loss of the WRN helicase and
exonuclease, critical for telomere function and replication stress.19

WS symptoms develop after puberty, patients look much older than
their chronological age, and they die of cancer or heart disease in
their late forties or early fifties.20 ERCC1-XPF is a structure-specific
endonuclease involved in the repair of helix-distorting DNA lesions,
interstrand crosslinks and some double-strand breaks.21-24 Mutations
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that cause reduced levels of ERCC1-XPF can result in either the skin
cancer-prone disorder xeroderma pigmentosum (XP), cerebro-
oculo-facio-skeletal syndrome or a disease of accelerated aging
(progeria).16,25 Nuclei from patients with HGPS,26 WS27 and
Ercc12/2 mice28 have all been reported to have altered morphology.

Although the molecular defects of these diseases are well-
established, the mechanisms by which they lead to cellular
phenotypes or systemic aging are poorly understood. At the
nuclear level, morphological phenotypes are typically described
qualitatively as “dysmorphic” or “blebbed” and are quantified in a
binary fashion as the presence or absence of a particular charac-
teristic, often scored by eye. Numerical, feature-based approaches
(including size, circularity, eccentricity, etc.) quantify differences
between forms by pre-defined numerical features.29 However,
these features must be chosen ahead of time, and composite
images are hard to reconstruct from these features. Here, we also
view the entire shape as a morphological exemplar constructed in
geometric space.30-32 In this approach, little or no information is
lost and the entire image information can often be utilized for
computation. Direct mapping from one form to another allows
direct comparison of morphological changes. We applied a
contour-based metric and principle component analysis to
produce direct, visual comparisons of nuclear shapes between
the three aging disorders.

In this study, we analyze nuclear shapes using large sample
sizes, automated segmentation and computational analysis of
nuclear images to compare and quantify changes in cells from
progeria patients and mice to better understand nuclear
dysmorphisms associated with accelerated aging. Ultimately, the
characterization of nuclear deformation in premature aging
diseases may enable diagnosis or classification of newly identified
aging disorders by simple comparison with an image database.
High throughput analysis of nuclear shapes characteristic of
the disease may provide a quantitative endpoint for screening
therapeutic drugs or measuring disease progression. Also, we may
be able to suggest mechanisms of cellular aging based on
monitoring progressive nuclear structural changes associated with
these diseases.

Results

Feature space analysis (FSA). The sample size for each group was
dependent on the number of images available and segmentation
quality. We used an automated segmentation process, which did
not bias segmentation to the human eye and significantly reduced
analysis time to under 1 h for hundreds of images (see Methods).
User input was only used to confirm the segmentation of each
image to avoid overlapping nuclei or blurred images (see Methods
from Fig. 1).

We first analyzed the images based on shape parameters,
usually dimensionless, which were defined precisely. With our
automated segmentation, we were able to perform rigorous FSA
in relatively short time. This analysis was performed in the
“feature space” since the features were pre-determined. Most
commercial image analysis software programs perform feature
space analysis (including Image J). With this methodology,

dimensionless shape parameters are compared across many
groups, but the actual dysmorphic shapes must be inferred from
multiple features.

In cells from Ercc12/2 murine model of XFE progeroid syn-
drome, circularity, perimeter and eccentricity of the nuclei were
statistically different from control cells from a normal littermate,
but solidity was similar to the control (Fig. 2A). On average, XFE
nuclei were more elongated and had a greater perimeter than their
control set. Since the increase in perimeter was much greater than
the difference in elongation, an increased perimeter may be partly
from an increase in size, as well as from elongation.

Nuclei in cells cultured from HGPS patients were less solid, less
elongated, more circular and had a smaller perimeter (Fig. 2B).
Based on these results, HGPS nuclei were smaller, invaginated,
and rounder than the control group. HGPS nuclei were more
likely to have many small blebs rather than a few big ones, but the
difference in perimeter was greater than the difference in solidity,
indicating that a large number of small blebs significantly increase
the perimeter without adding much concave area.

In comparison to the nuclei of Ercc12/2 mice and HGPS
patients, nuclei from patients with WS did not exhibit any notice-
able differences from the corresponding control nuclei (Fig. 2C).
While WS is an aging disorder associated with nuclear abnorma-
lities, it did not cause a statistically significant deformation in the
nucleus, according to the FSA of large numbers of nuclei.

As we examined feature space shape parameters of XFE and
HGPS cells, we observed that the control groups of these diseases
were similar to one another. Although the sizes (normalized
perimeter) of the control nuclei were significantly different due to
species differences (mouse vs. human cells), other parameters of
the control groups had statistically similar values. However, each
disorder was completely unique in its deformation: XFE nuclei
were characterized by elongation and increase in size, HGPS
nuclei were characterized by multiple small blebs, which caused
the nuclei to be smaller and rounder.

Geometric approach and principle component analysis
(PCA). The FSA described above has been reproducibly used to
obtain relevant biological information from image data, but it
assumes that the chosen set of features includes information
relevant to analyzing the data. An alternative is to use a geometry-
based approach with the entire contour information from each
nucleus obtained from the segmentation and pre-processing
steps described above. Geometric analysis compares variation in
coordinate locations, with respect to a reference set of coordinates
(Fig. 3). First, for each segmented nuclear contour, all the points
along this contour are converted to a polar coordinate system with
respect to the center of mass, and points are sampled with equal
angle intervals. Each nucleus in a set (including both disease and
control) is thus defined by an (x,y) in the polar coordinate system
(Fig. 3, left). The corresponding points in each contour are then
averaged to produce a representative average shape (Fig. 4, left).
The coordinates of all the nuclear contours (again, both disease
and control) are then analyzed with respect to this average using
principal component analysis (PCA).

In PCA, the corresponding (x, y) coordinates are analyzed to
extract the main modes of variation for each sample from the
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average (Fig. 3) simultaneously for all coordinates. The purpose of
utilizing this approach is to derive 2-dimensional “features”
relevant for analyzing the phenotypes based on the data itself
rather than trying to use a priori assumptions as in FSA. The
principle modes (i.e., main variations from the average) are
computed from these 2-dimensional graphs (Fig. 3, right) by
finding vectors which best represent the data (Fig. 3, red lines).
The degree of variation from the average, along the bisecting line,
is used to quantify the degree of shape change, called the variance.
Each principal variation from the average can be quantified to
understand the main modes of variation present in the data
(Fig. 4, left). The significant modes of variation can then be
analyzed for their significance in finding a statistically significant
difference between two sets of nuclei, the control and the disease.
To that end, each nuclear contour is “projected” onto the
direction, and the standard student’s t-test can be used to measure
significance between two groups. The benefit of this system is that
multi-dimensional parameters can be added to the machine-
learned sorting including fluorescence intensities and distributions
of intensities. The algorithm is able to determine the metrics of

sorting as well as when information is not sufficiently different to
allow statistical certainty of the sorting.

PCA analysis of nuclei. To determine PCA of nuclei, as
described above, the control and disease nuclei of each group were
first analyzed together to provide an average nuclear shape (Fig. 4,
red box around the averages). XFE, HGPS and WS nuclei, as well
as their control analogs, all had similar average elliptical shapes
with one pole slightly narrower than another, like an egg. The
similarity in average nuclear shape may reflect that all cell types
were fibroblasts, and the average shape of WS and HGPS were the
most similar because they were both human fibroblasts. The PCA
technique was then applied to show how the data set differs from
the average. The first 8 modes of deformation typically were able
to provide features describing how the sample group varied from
the average shape. These modes were determined from two-
dimensional shape variations calculated from every shape in the
data set, and there is no pre-processing bias. In many cases the
differences appear small, but the statistical difference is provided
by the algorithm. We can comment qualitatively on the modes,
but exact features cannot be interpreted from the shapes. This

Figure 1. Automated pre-processing of nuclear images. (A) Raw images were collected with multiple fluorescence channels (see methods): red and blue
channels for Lamin A/C and DNA, respectively. (B) Matlab code segmented the Lamin A/C channel using a level set active contour algorithm to delineate
individual borders; here, after 320 iterations. (C) The code then showed the raw and computed nuclear image and allowed input from user to adjust
the contour manually by dilating and eroding. Multiple views of the segmented nucleus (left to right: binary segmentation, segmentation with an outline
and the result after segmentation) allowed rapid visualization and the possibility for manual adjustment after the auto-segmentation. Pop-up boxes
allowed user to confirm segmentations. Only satisfactory results were used for computation.
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variance from the average was different for the average and control
samples (Fig. 4), and the distribution of shapes within this modal
set was different in control and diseased nuclei (Fig. 5).

In XFE nuclei, the disease group showed more variation in
shape than the corresponding control group (Fig. 4A), suggesting
altered nuclear shape could be a hallmark of the disease, possibly
due to division defects. The first mode, related to size, suggested
that the control group is both smaller and of more regular size

than the disease group. This heterogeneity of size for XFE agreed
with the FSA result, which was shown by higher standard error for
all parameters. The second mode illustrated an elongation from
the normal to the diseased nuclei but no thinning, similar to FSA.
For modes greater than three, there was no significant difference
between the disease and control groups (Fig. 5A).

Similar to XFE, the diseased group of HGPS showed a greater
variance than the control group (Fig. 4B). The first mode
suggested that the disease group is smaller and rounder. The
second mode confirmed that the control group was more
elongated. However, this mode did not also include differences
in size, as it had in XFE. In the third mode, slight blebbing and
invaginations were seen in the disease group (Fig. 5B). In WS,
there was no significant difference between the control and the
disease group in any modes or variance (Figs. 4C and 5C). This
result agreed with the FSA results.

Passage dependence of HGPS cells. The abnormal nuclear
phenotypes of HGPS fibroblasts become most obvious at late
passages.14,26,33 To investigate changes in morphology over passage
number in HGPS nuclei, we analyzed HGPS nuclei at three
different passages (p13, p22 and p30). The general trend was that
diseased nuclei were smaller and rounder than normal nuclei. In
examining the first mode of each passage group, the control and
diseased nuclei were similar at passage 13 (Fig. 6A) but showed
significant deviation at the passage 22 (Figs. 6B and C). By
passage 30, there was little change from passage 22 (Figs. 5 and
6D). However, at late passages control nuclei were also showing
variance. We were able to take this into account, but in FSA there
is no way to “subtract out” changes associated with altered control
morphology with increased passage number.

Numerous passages produced more dysmorphic behavior both in
the HGPS cells and their controls. We calculated Dvariance, the
difference between the disease and the control variances, for the first
8 modes (i.e., if the variance of the control is greater than the
variance of the disease, Dvariance is negative). At early passage, the
control group varied more. This could be because the HGPS nuclei
only had a small number of dysmorphic nuclei at early passage. The
averaging process of PCA among hundreds of images could not
easily detect subtle and complex deformation. For later passages,
the disease group had greater variance (Fig. 6D). For the first few
modes, the late passage had the largest Dvariance.

Discussion

Automated image analysis and comparison of methods. Here we
used automated segmentation and both feature space analysis
and geometric analysis with PCA to compare differences among
HGPS and WS patient cells, along with cells from the Ercc1
knockout mouse model of accelerated aging. Segmentation
enabled quick analysis of large sets of data through an automated
process but still allowed manual correction to ensure the quality of
segmentation. The quality of segmentation was dependent upon
the quality of imaging and preparation. However, the high-
throughput methodology may also produce bias in the system.
The segmentation program was less likely to provide satisfactory
results for complicated boundaries, and complex images may have

Figure 2. Feature space analysis of nuclei in aging disorders. Segmented
nuclei were analyzed for shape factors (Table 2), and perimeter was
normalized to the average perimeter of the corresponding control
group. (C and D) indicate control and disease groups, respectively. Bars
are color-coded by the parameters. Solid bars indicate that the control
and disease groups are statistically different, and outlined bars indicate
that they are statistically similar based on a confidence of p , 0.01.
The error bars represent the standard error of the mean. Representative
images of each group are shown on the left of the graph, all to scale.
(A) Nuclei in cells from the Ercc12/2 mice, a model of XPE, showed altered
circularity, perimeter and eccentricity. (B) HGPS patient cell nuclei at
passage 22 showed differences in all features. (C) WS cell nuclei showed
no differences to control nuclei.
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been discarded. Also, large sample size resulted in small standard
errors for samples, but severe minority events may have been lost.
For example, nuclei from HGPS patients can show dramatic
outward blebbing and dilation,26 but these events are a very small
percent of nuclei. Thus, there is a benefit to both visualization by
eye and high throughout analysis.

There are several successful methods for analyzing the geometry
of cellular shapes developed over the past two decades including
point-based principal component analysis (the method we use),
independent component analysis, Fourier descriptors, and several
others.34 Generally, no method is superior for nuclear shape,34 so
we chose PCA for simplicity and wide popularity in shape analysis
from other biomedical applications including radiography. We
analyzed the segmented nuclear shapes by the broadly used FSA
as well as contour-based geometric approach. By using multiple
cell types, the two methods to analyze nuclear morphology were
directly compared and the advantages and disadvantages of the
new contour-based imaging technique were determined. With
a combination of contour-based geometric approach and PCA,
shape changes were directly visualized from disease to control.
We also computationally eliminated orientation and size dif-
ferences and purely examined changes in nuclear morphology.
However, the geometric approach was computationally intense,
requiring a longer analysis time and more powerful hardware
than FSA. Also, the contour-based approach with PCA was based
on averaging shapes and gave results that were reflected in most
dominant directions, so minor changes were not reflected.
For example, features of the nuclear blebs associated with
HGPS14,26,33 were not well captured with geometric analysis.
PCA results are also difficult to compare with other published
work without raw data.

Conversely, geometric analysis is well suited to be used in pre-
analysis situations where visualization of average shapes and

deviations of morphology may be useful to motivate further
analysis. For example, an automated segmentation and geometric
analysis can be applied as a global diagnostic tool especially when
combined with high throughput genomic studies such as for
drug studies or cells from the International Knockout Mouse
Consortium (IKMC). Also, geometric analysis has the potential to
include integration of multiple features, such as lamin concen-
tration and chromatin heterogeneity.35

Comparison of nuclei in three aging disorders. Two
independent analytical techniques yielded similar conclusions
regarding nuclear dysmorphology for cells from three distinct
progeroid patients or mice and their matched controls. Nuclei
of primary Ercc12/2 fibroblasts, from a mouse model of XFE
progeroid syndrome, were similar in size to the control nuclei
but were statistically elongated. This may reflect stiffening or
reorganizing of the DNA inside cells, reminiscent of the
hemoglobin polymerization and red cell sickeling observed in
sickle cell disorder. Loss of ERCC in mice results in reduced
repair of DNA crosslinks, which may result in a global change in
nucleoplasmic stiffness. Growing primary fibroblasts at 20% O2

induces cellular senescence.36 Hence the nuclear morphologic
changes observed in Ercc12/2 fibroblasts were likely characteristic
of senescent cells and could offer a rapid screening endpoint for
quantifying senescent cells.

HGPS nuclei were smaller and rounder. This morphological
change could be related to the over-accumulation of lamin
proteins which causes a lamina-dominated shape which is in
equilibrium as a spheroid. Interestingly, nuclei from patients with
WS, which is caused by loss of a functional DNA helicase, showed
no statistical difference from the control. This suggests that the
nuclear changes associated with altered helicase function do not
affect global nuclear structure sufficiently to be detected by
morphological imaging. However, we examined early passage cells

Figure 3. Schematic of principal component analysis (PCA) in geometric space. Two dimensional shapes are assigned polar coordinates (x,y) so that
many, disparate shapes can be statistically compared on one graph. From this graph, the principal components of variation can be determined by which
lines best identify the largest variance of the data (red lines).
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in this study and it was possible that more divergence between
and control and WS cellular nuclei might be observed with
increasing passage, as we reported for HGPS nuclei. Consistent
with this, patients with WS develop premature aging features
later in life compared with the Ercc12/2 mice, XFE progeroid
syndrome patients, and patients with HGPS.20

Materials and Methods

HGPS and WS cell culture. The HGPS and control cells were
human dermal fibroblasts HGADFN167 and HGADFN168,
respectively, obtained from the Progeria Research Foundation
at passage 9. HGADFN167 was taken from 8.5-y-old male

Figure 4. PCA of nuclei in aging disorders. Principal component analysis was performed on control and disease groups of each disease. The panels
on the left show the average nuclear shape of both the disease and control groups (red box) and the first 8 modes of PCA for each group. The x-axis
shows image variations from the average shape of the nuclei. The graphs on the right show the variance of the control and disease group from the
average shape (x-axis) per mode (y-axis). (A) In XFE nuclei, the most significant deformation modes were size and elongation, and the disease group had
greater variation; (B) HGPS nuclei showed higher variation and deformation modes of size and elongation, and modes with bumps; (C) WS control and
disease groups has similar variations in all modes.
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patient, and HGADFN 168 was taken from the 40.5-y-old
father of HGADFN167. The fibroblasts were cultured in
Dulbecco’s Modification of Eagles Medium (DMEM; Invitro-
gen 11960–044) with 15% fetal bovine serum (FBS), 1%
penicillin/streptomycin, and 2 mmol L-glutamine per foundation
protocol.

The WS and control cells were human dermal fibroblasts
AG00780 and AG11747, respectively, obtained from the Coriell
Institute Cell Repository. AG00780 was from a male donor with
confirmed C1336T mutations in both WRN alleles leading to a
truncated protein lacking helicase activity. The control AG11747
cells were from a normal male donor. Both WS and control cell
lines were from cultures that underwent a minimal number of
population doublings, 8 and 16, respectively. Culture media and
conditions were similar to the HGPS cell lines.

Ercc12/2 primary cells. Ercc12/2 primary mouse embryonic
fibroblasts were generated from day 12 to 15 embryos produced
from crossing inbred C57BL/6 mice heterozygous for Ercc1 null
allele and genotyped by PCR, both described previously.16,37

The cells were grown in F10 and DMEM (1:1) supplemented
with 10% FBS and 1% penicillin/streptomycin at 5% CO2.
At passage 5, the cells were plated on glass coverslips at a density
of 2.5 x 104. The following day, the cells were fixed using 2%
PFA for 10 min, rinsed with phosphate-buffered saline (PBS), and
mounted with Vectashield with DAPI to label nuclei (Vector
Labs, Burlingame, CA).

Immunofluorescence. In preparation for imaging, the HGPS
and WS cultured fibroblasts were fixed in 3.7% solution of
formaldehyde in PBS, permeabilized with 0.2% solution of
Triton-X 100 in PBS, and blocked using 2% bovine serum

Figure 5. Comparison of control and disease group using PCA. The distribution of control and disease groups in the first three modes of PCA is shown.
The x-axis represents the variation from the average, and the corresponding nuclear shape is shown below the x-axis. The y-axis represents the frequency
of occurrence. (A) The XFE disease group was statistically larger (Mode 1) and more elongated (Mode 2) and had greater variation (width of
the distributions); (B) the HGPS disease group was rounder and slightly more variant; (C) the WS disease and control groups were very similar.
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albumin (BSA) in PBS. To label Lamin A/C, the fibroblasts were
incubated in the primary antibody solution of 1:100 (mouse
monoclonal IgG, Santa Cruz Biotechnology, sc-7292) and then
in the secondary solution of 1:200 (Alexa fluor 555 rabbit anti-
mouse, Invitrogen). DNA was labeled using a 1:4000 1 mg/mL
DAPI solution. The prepared cells were imaged on Leica DMI
6000B fluorescence Microscope at 63x (1.4 NA) and imaged with
Leica DFC350 camera. Red and blue channels represented Lamin
A/C and DNA, respectively.

Nuclear segmentation. Segmentation codes were developed in
Matlab based on the semiautomatic method described else-
where.35,38,39 Briefly, the random field graph cut method was used

to obtain a rough contour, which incorporated both region and
boundary information of the image. Then an efficient level set active
contour algorithm38 was applied to refine the contours obtained via
graph cut.35,40,41 Finally, the segmented results were reviewed
manually. The segmented result could be manually adjusted by
dilating and eroding, and the satisfactorily segmented nuclei were
manually selected for the analysis (Fig. 1). Before the analysis, the
images were pre-processed as in our previous works39 to eliminate
variations due to arbitrary rotation, translation, and coordinate
inversions of each nucleus. The procedure included normalization by
the center of mass, rotation by major axis reorientation, and coordi-
nate “flips” set up within a least squares minimization problem.

Figure 6. Changes in nuclear shape in cells from HGPS patients with increasing passage. Shapes of HGPS nuclei were compared for multiple passages.
For each passage, the distribution of nuclei in the first mode, variances of the first 8 modes, and average shapes of control and disease groups are shown,
respectively. The nuclear images are to scale. (A) At early passage (p13), there was some variation between the control (C) and disease (D) group.
(B) At passage 22, the difference became larger. (C) At late passage (p30) there were still differences between control and disease, but the control cell
nuclei began to show greater cell-to-cell variability. (D) The difference in variance between the control and disease groups for the three passages
(DVariance = Variance disease – Variance control) show a similarity for passage 22 and 30, which are significantly different than passage 13.
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During this decision making process, 1 – 50% of the
segmentation results were discarded, based primarily on the
quality of sample preparation and imaging. Specifically, image
quality is dependent on magnification and numerical aperture,
focusing on the plane of the nucleus, and uniformity of the cells:
most images have numerous nuclei per image and some may be
out of focus. Labeling of the nucleoskeleton, including the lamins
(as a rim-stain), also allowed better segmentation of nuclei. The
useable sample sizes determined after the decision making process
are listed in Table 1. In the feature space analysis, all satisfactory
segmentation results were included. However, in the principal
component analysis, the random subsets of images were chosen to
maintain equal sample sizes for the control and disease groups as
to not bias the distributions.

Feature space analysis. Segmented nuclear images were
analyzed using a set of pre-programmed numerical features. The
shape parameters used in the feature space analysis of this group of
nuclei from aging disorders were solidity, circularity, normalized
perimeter, and eccentricity. Definitions and equations of the
parameters are listed in Table 2. The parameters were selected
based on commonly used deformation modes in nuclear morpho-
logy.11,15,42 Features of the diseased group with the respective
control were compared statistically using Students t-test unpaired
with 2 tails. Samples with a Student’s t-test value of p , 0.01
were considered statistically different. More than 100 nuclei from
at least 2 independent experiments, each, were pre-processed; an
experiment is defined as independent fixation, labeling and
imaging of cells within one passage of the replicate. No significant
difference was noted between the analyzable nuclei from the
independent experiments and data was combined. Samples were
technical replicates since, for each disease type, only one disease
cell line and one control cell line was imaged.

Geometric approach. Segmented images were also analyzed
using a contour-based geometric approach43,44 to characterize the
shape of the nuclei. As a result, each nucleus could be mapped to a

point in a linear vector space f I X X Ri i i
m   ; , where m is the

dimension of the linear space (see Wang et al. 2011 for more
details). The Principle Component Analysis (PCA) was applied to
find the principle modes of variations for the data set. Nuclear
images were analyzed by PCA to calculate deformation modes of
the nuclei M M Rj j

m;  , and we also regenerated new samples to
interpret the jth mode of variation in the data set including disease

group and the control by X X Mj
j     where X

N
Xi

i

N



1

1
. By

analyzing the data in this linear geometric space, we could
visualize the principle modes of variation and interpret how data
was distributed for different data set.
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