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ABSTRACT

Motivation: As an epigenetic alteration, DNA methylation plays an
important role in epigenetic controls of gene transcription. Recent
advances in genome-wide scan of DNA methylation provide great
opportunities in studying the impact of DNA methylation on many
human diseases including various types of cancer. Due to the unique
feature of this type of data, applicable statistical methods are limited
and new sophisticated approaches are desirable.
Results: In this article, we propose a new statistical test to
detect differentially methylated loci for case control methylation data
generated by Illumina arrays. This new method utilizes the important
finding that DNA methylation is highly correlated with age. The
proposed method estimates the overall P-value by combining the
P-values from independent individual tests each for one age group.
Through real data application and simulation study, we show that
the proposed test is robust and usually more powerful than other
methods.
Contact: Zhongxue.Chen@uth.tmc.edu
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1 INTRODUCTION
DNA methylation, as an alteration of epigenetic control, plays a
critical role in transcriptional regulation, chromosomal stability,
genomic imprinting and X-inactivation (Kuan et al., 2010; Rakyan
et al., 2008). It has been shown to be linked to many human diseases,
including various types of cancer (Baylin and Ohm, 2006; Feinberg
and Tycko, 2004; Jabbari and Bernardi, 2004; Jones and Baylin,
2002; Kulis and Esteller, 2010; Laird, 2010; Wang, 2011; Xu et al.,
1999).

With the BeadArray technology, Illumina GoldenGate and
Infinium Methylation Assays can generate genome-wide high-
throughput methylation data which are widely used in research.
After background correction and normalization for the raw
fluorescent intensities, for each locus, a summarized value (called
β-value) is generated based on ∼30 replicates in the same array:
max(M,0)/(max(M,0)+max(U,0)+100) , where M is the average
signal from a methylated allele and U is from unmethylated allele.
The range of the β-value is therefore, between 0 and 1, with 0
representing totally unmethylated and 1 representing completely
methylated.

∗To whom correspondence should be addressed.

To detect differentially methylated loci between two groups of
case and control, the commonly used statistical tests, such as t-test
and linear regression-based methods may not be appropriate as
the assumptions of those methods may not meet for this kind of
data. For example, in a linear regression model, we usually assume
the error terms are normally distributed with common variance.
However, it has been shown that the β-value is highly associated
with age; its mean and SD vary across subject’s age (Christensen
et al., 2009; Teschendorff et al., 2010). Simply treating age as a
covariate in the linear regression model does not guarantee that the
model assumptions are met.

Recently, Wang has proposed a model-based likelihood ratio test
to detect differentially methylated loci for case and control data
under the assumption that the β-value follows a three-component
normal-uniform distribution (Wang, 2011). Through simulation,
Wang showed that under some situations, their proposed test
outperforms the simple t-test. However, the commonly used t-test
cannot be the best test if data are from mixture distributions.

In this article, we propose a new statistical testing approach
to detect differentially methylated loci for case control Illumina
array methylation data. In the proposed test, we incorporate the
important recent finding that the β-value is correlated with age.
More specifically, we first group subjects into several age groups
based on their age; then for each age group, a statistical test such
as t-test will be conducted for the given locus and the two P-values
each from one-sided test (one from left-side and the other from
right-side) are recorded. An overall P-value for that locus will be
estimated through combining the two sets of P-values. Using a real
methylation data with two treatments and a simulation study, we
show that the proposed test is robust and usually more powerful
than other methods. In this article, all the t-tests used are based on
the unequal variance assumption.

2 METHODS
Suppose we have k age groups; for each age group, a statistical test, such
as t-test, will be used to detect the mean differences between the case and
control groups. We have k P-values from the left-sided test, denoted by
Pli(i= 1, 2, …, k), and k P-values from the right-sided test, Pri =1−Pli(i=
1,2, ...,k). Under the null hypothesis that there is no difference between the
two treatment groups, all of the above P-values from the same one-sided tests
are independent and identical uniform [0, 1] random variables. Therefore,
according to Fisher (Fisher, 1932), we have the following results:

T1 =−2
k∑

i=1

log(pli)∼χ2
2k (1)
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where χ2
2k is a chi-square random variable with df 2k; and

T2 =−2
k∑

i=1

log(pri)∼χ2
2k (2)

We define the following statistic:

T =max{T1,T2} (3)

Since statistics T1 and T2 are not independent, the null distribution of T is
not easy to find. However, we can estimate the P-value of T based on the
following theorem (Chen, 2011; Chen and Ng, 2012; Owen, 2009):

Theorem 1. Under the null hypothesis of no difference between the case
and control groups, the P-value of statistic T satisfies:

2α−α2 ≤Pr(T >x)�2α,where α=1−Fχ2
2k

(x),

and Fχ2
2k

is the cumulative distribution function ofχ2
2k . (4)

Therefore, we can approximate the P-value of T by its upper bound 2α:

Pr(T >x)≈2α (5)

For small α, the approximation is very accurate.
Theorem 1 can be proved by using the concept of associated random

variables due to Esary, Proschan and Walkup (Esary et al., 1967). More
details can be found in (Owen, 2009).

We call the above proposed method ‘combined test based on one-sided
t-test’. Similarly, we can use Fisher’s method to combine independent P-
value from two-sided t-tests, each for one age group; we call this test
‘combined test based on two-sided t-test’.

A regression model with age as covariate is also conducted to compare the
treatment effect (case versus control); the P-value is obtained after adjusting
for the age effect. We also calculate the P-value from the single t-test, which
ignores the age information and uses pooled data.

3 RESULTS

3.1 Simulation study
In the simulation study, we assume there are six age groups; two
treatment groups each with sample size 30 are simulated from
normal distributions with standard deviations equal to 1. We assume
the effect sizes can take four different values: −0.5, −0.1, 0.1 and
0.5. Table 1 gives the settings for each scenario of the simulation
study. The degree of heterogeneity of the effect sizes decreases from
scenario 1 to scenario 7, where all the effects have the same size.
Scenario 8 is for the null hypothesis, where the effect sizes for all
age groups are zeros. Table 1 also reports the estimated power for
the single t-test, regression model adjusting for age effect and the
combined tests based on one- and two-sided t-tests at significance
level 0.05 using 104 replicates. The type I error rates (scenario 8)
from all the methods are close to the preset significance level of 0.05.

From the simulation study, we have the following observations.
First, the performances of the single t-test and the regression model
adjusting for age effect are very similar; the proposed method
(comb1) and the method based on one-sided t-test and permutation
test (perm) have very similar powers. Second, when the effects have
different directions and both have large sizes (e.g. scenarios 1–3),
the two combined tests have comparable power and both are more
powerful than the single t-test. Third, when the effects have different
directions but one direction has relatively small sizes (e.g. scenario
4), the proposed method based on one-sided t-test is more powerful
than that based on two-sided t-test and the single t-test. Fourth,

Table 1. Number of the given effect sizes for each scenario in the simulation
study and the estimated powers at significance level 0.05 using 104 replicates

Scenario Number of given effect Power

sizes in the simulation

−0.5 −0.1 0 0.1 0.5 Single t-test regression Comb1a Permb Comb2c

1 2 4 0.297 0.297 0.856 0.846 0.975

2 1 2 3 0.437 0.436 0.749 0.743 0.837

3 3 1 2 0.225 0.223 0.447 0.431 0.508

4 1 3 2 0.451 0.450 0.571 0.558 0.503

5 4 2 0.596 0.598 0.654 0.645 0.523

6 5 1 0.329 0.327 0.361 0.350 0.255

7 6 0.155 0.154 0.138 0.140 0.089

8 6 0.049 0.048 0.051 0.048 0.049

aCombined test based on one-sided t-test; bCombined test based on one-sided t-test
and permutation; cCombined test based on two-sided t-test.

Table 2. Number of subjects by age group and treatment group in the
UKOPS data set

Treatment Age group

50–55 55–60 60–65 65–70 70–75 75+

Control 14 63 64 35 63 20
Pre-treatment 15 18 17 17 25 25

when the effects have the same directions but different sizes (e.g.
scenarios 5–6), the proposed test outperforms the other two methods.
Fifth, when all the effects have the same sizes (e.g. scenario 7), the
proposed test and the single t-test have comparable power; both are
more powerful than the combined test based on two-sided t-test.

3.2 A real data set
The United Kingdom Ovarian Cancer Population Study (UKOPS)
(Teschendorff et al., 2010) with 274 controls and 131 pre-
treatment cases will be used to compare the performance of
the proposed test with the single t-test. All of the controls
and the cases are women. Those methylation data with 27
578 loci were generated by the Illumina Infinium Huamn
Methylaytion27 BeadChip and downloaded from the NCBI Gene
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under
accession number GSE19711.

For the data quality control, we remove 29 patient samples
(15 controls and 14 treatment cases) with low bisulphite (BS)
conversion efficiency (BS control intensity value <4000) or with
coverage rate <95% (Teschendorff et al., 2010). For each locus, we
perform a single t-test comparing the mean difference between the
two treatment groups: control and pre-treatment. We also separate
subjects into six age groups (50–55, 55–60, 60–65, 65–70, 70–75
and 75 and over), which was given by the original data, and calculate
the overall P-value of the proposed test using (5). Table 2 gives the
number of subjects in each treatment group by age group.

Figure 1 plots the negative log10 P-values from the combined test
with one-sided t-test (i.e. the proposed test), the combined test with
two-sided t-test, the regression model with covariate age and the
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Fig. 1. Negative log10 P-values from pair of methods when comparing
controls and pre-treatment cases. (a) The proposed combined test based on
one-sided t-test and the combined test based on two-sided t-test; (b) The
proposed test and the regression model with covariate age; (c) The proposed
test and the single t-test; (d) The regression model with covariate age and
the single t-test. The proposed combined test statistic was obtained by (3)
with k =6 (six age groups).

single t-test. Figure 1a plots the –log10 P-values from the combined
test based on one- and two-sided t-tests. It can be seen that for
most loci with small P-values, the combined test based on one-
sided t-test has smaller P-value, indicating it is more powerful than
the combined test based on two-sided t-test. Figure 1b compares
the P-values from the proposed test and those from regression
model after adjusting for age. When a locus has small P-value from
the regression model, it usually also has small P-value from the
proposed method. However, there are many loci with small P-values
from the proposed method while their P-values from the regression
model are very large. For those loci, the proposed method is more
powerful. Figure 1c compares the P-values from the proposed
method with those from the single t-test. In the regression model, the
single t-test is less powerful for many loci when compared with the
proposed test. Figure 1d plots the P-values from the single t-test and
the regression model. It shows that the regression-based method and
the single t-test have very similar P-values. We therefore compare
the proposed test mainly with the single t-test.

Indeed, the proposed method detects much more differentially
methylated loci than the single t-test. Table 3 lists the number of loci
detected by either and both of the two tests at different significance
levels; 10−3, 10−4, 10−5 and 10−6. Clearly, most loci detected by
single t−test are also detected by the proposed method. However,
there are a lot of loci detected by the proposed method but not by
the single t-test for given cutoff P-values.

Table 4 lists the estimated mean, standard deviation, effect size for
each age group and those of pooled data for the five loci with P>0.01
from the single t-test and <10−8 from the proposed test. The effect
size is defined as (m1 −m2)/s, where m1 is the mean of control,

Table 3. Number of loci with P-values smaller than the given cutoff P-value
from the single t-test and combined test when comparing control with pre-
treatment

Cutoff P-value Single t-test Combined test Both

10−3 1869 3215 1755
10−4 1360 2329 1298
10−5 1091 1707 1043
10−6 902 1334 866

Fig. 2. Histogram plots for a locus with large P-value from single t-test but
small one from the combined test.

m2 is the mean of pre-treatment group and s is the pooled standard

deviation s=
√

((n1 −1)s2
1 +(n2 −1)s2

2)/(n1 +n2 −2), ni and si are
the sample size and estimated standard deviation for group i (i = 1, 2).
It shows that the effect sizes vary across age groups. Furthermore,
the effects may even have different directions among the six age
groups. Interestingly, the estimated effects from the age group of ‘75
and over’ for the five loci are all negative (control-pre-treatment) and
their sizes are relatively small compared with other age groups. In
addition, except for the age group of ‘75 and over’, all effects of the
same locus from the other five age groups have the same direction.
The single t-test fails to detect those loci with small overall effect
sizes from the pooled data; however, the combined test can detect
the mean differences by comparing the two treatments within each
age group, where data are more homogeneous.

Figure 2 plots the distribution of the β-value of locus cg04956511,
one of the five loci listed in Table 4, for both treatment groups by
age group.

To investigate how well the proposed method controls type I error
rate, for each age group, we randomly assign half of the controls into
one group and the remaining controls into another group; then we
apply the single t-test and the proposed method to the data of the two
randomly assigned control groups. Since both groups contain only
controls, the null hypothesis is true and not many small P-values
should be expected from appropriate statistical tests. Figure 3 plots
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Table 4. Estimated mean, standard deviation, effect size for each age group
and those of pooled data for the five loci with P > 0.01 from the single t-test
but <10−8 from the proposed test

Age group cg04956511 cg07380496 cg12998614 cg19168338 cg26728422

50–55 Control Mean 0.0663 0.0406 0.1014 0.0865 0.1149

SD 0.0188 0.0132 0.0243 0.0158 0.0273

Pretreat Mean 0.0618 0.0335 0.0847 0.0656 0.0752

SD 0.0178 0.0102 0.0206 0.0158 0.0258

Effect size 0.2338 0.5829 0.7148 1.2677 1.4381

55–60 Control Mean 0.0655 0.0405 0.0898 0.0756 0.0931

SD 0.0192 0.0162 0.0243 0.0176 0.0264

Pretreat Mean 0.0478 0.0344 0.0765 0.0664 0.0747

SD 0.0087 0.0066 0.0233 0.0175 0.0360

Effect size 0.9981 0.4107 0.5443 0.5203 0.6307

60–65 Control Mean 0.0634 0.0430 0.0917 0.0779 0.1000

SD 0.0241 0.0177 0.0224 0.0170 0.0305

Pretreat Mean 0.0466 0.0307 0.0711 0.0575 0.0720

SD 0.0108 0.0053 0.0154 0.0103 0.0288

Effect size 0.7554 0.7653 0.9611 1.2707 0.9172

65–70 Control Mean 0.0656 0.0473 0.1018 0.0711 0.0985

SD 0.0186 0.0185 0.0328 0.0189 0.0330

Pretreat Mean 0.0508 0.0368 0.0793 0.0593 0.0666

SD 0.0206 0.0084 0.0217 0.0151 0.0156

Effect size 0.7496 0.6433 0.7431 0.6493 1.0924

70–75 Control Mean 0.0644 0.0456 0.0991 0.0683 0.0877

SD 0.0212 0.0243 0.0301 0.0154 0.0269

Pretreat Mean 0.0510 0.0349 0.0782 0.0645 0.0785

SD 0.0131 0.0072 0.0207 0.0196 0.0249

Effect size 0.6828 0.5067 0.7421 0.2225 0.3457

75+ Control Mean 0.0708 0.0391 0.0979 0.0694 0.0926

SD 0.0271 0.0126 0.0306 0.0122 0.0303

Pretreat Mean 0.0753 0.0582 0.1040 0.0717 0.0985

SD 0.0946 0.1048 0.1267 0.0850 0.1475

Effect size −0.0611 −0.2370 −0.0614 −0.0355 −0.0514

Alla Control Mean 0.0651 0.0432 0.0954 0.0739 0.0954

SD 0.0214 0.0188 0.0273 0.0172 0.0293

Pretreat Mean 0.0564 0.0393 0.0834 0.0647 0.0791

SD 0.0461 0.0491 0.0613 0.0414 0.0718

Effect size 0.2773 0.1234 0.2910 0.3365 0.3458

aCompare two groups: control and pre-treatment using pooled data.

the negative log10 P-values from both the single t-test and the
proposed method for each locus. As expected, only a few loci have
P<103 from either tests. This result indicates both the single t-test
and the proposed method can control type I error rate well at small
significance levels.

4 DISCUSSION
The assumption that the β-value is normally distributed with
constant variance across age may not be always appropriate; if this
assumption is violated, the commonly used t-test and the regression
method will lose power and alternative methods are desirable. It has
been shown that the β-value is an age related measurement, both
its mean and standard deviation may vary across age; we would
expect that it is more homogeneous for subjects with similar age.
Based on this idea, we propose a new statistical approach which
separates subjects based on their age, conducts one-sided statistical
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Fig. 3. Negative log10 P-values from the single t-test and the proposed test
when comparing two controls groups with randomly assigned controls.

test for each individual age group, and then combines P-values
to obtain an overall P-value. The proposed method uses the one-
sided, instead of two-sided tests for each age group because most
of the time, the direction of the effects are expected to be the same
(negative or positive). If the direction of the effects is the same
and known for all age groups, we can even improve the power by
only using test T1 or T2. However, in practice, the directions may
be unknown even if they are the same; the proposed method is
still powerful for this situation. From the results of our simulation
study and the real data application, we can see that the proposed
test is robust in the sense that it has reasonable power when the
effects have different directions. In contrast, the single t-test will
lose power dramatically when it is applied to the pooled data
where the effects have different sizes and/or their directions are
different.

The proposed method is based on the effect modifier: age,
which is by far the strongest demographic risk factor for cancer
(Teschendorff et al., 2010). However, there is no difficulty to extend
the proposed method to other factors which are associated with
methylation.

In this article, we use the commonly used t-test to compare the
case and control groups for each age group; however, it can be
replaced by any other appropriate test. Except for the Fisher’s test,
there are many different ways to combine P-values from independent
tests (Chen, 2011; Chen and Nadarajah, 2011; Cousins, 2008;
Whitlock, 2005); however, there is no uniformly most powerful
approach. It remains an open topic to find the most appropriate
approach for this kind of data. We recommend using Fisher’s test
since it is robust and is very powerful under many situations.

In summary, we have proposed a new approach to detect
differentially methylated loci for case control Illumina array
methylation data. Through simulation study and a real data
application, we have shown that the proposed method is more
powerful than the commonly used t-test and regression-based
method.
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