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ABSTRACT

Summary: Rapid identification of non-human sequences (RINS)
is an intersection-based pathogen detection workflow that utilizes
a user-provided custom reference genome set for identification
of non-human sequences in deep sequencing datasets. In <2 h,
RINS correctly identified the known virus in the dataset SRR73726
and is compatible with any computer capable of running the
prerequisite alignment and assembly programs. RINS accurately
identifies sequencing reads from intact or mutated non-human
genomes in a dataset and robustly generates contigs with these
non-human sequences (Supplementary Material).
Availability: RINS is available for free download at http://khavarilab.
stanford.edu/resources.html
Contact: abhaduri@stanford.edu or kqu@stanford.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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The appeal of searching for pathogen sequences in high-
throughput sequencing data has grown as massively parallel
sequencing capabilities have developed (Shendure and Ji, 2008) and
sequencing has identified pathogens such as the Merkel cell polyoma
virus as a contributing factor in Merkel cell carcinoma (Feng et al.,
2008). Algorithms such as PathSeq (Kostic et al., 2011) have
emerged that apply computational subtraction to the task of pathogen
detection. These algorithms are computationally intensive and thus
still require cloud computing scale resources. Here, we present rapid
identification of non-human sequences (RINS), an alternative to
computational subtraction that can efficiently identify the presence
of pathogens from a custom reference in high-throughput sequencing
datasets. The speed and local computing-based nature of RINS
makes it attractive for hypothesis-driven discovery of pathogens in
large datasets. The accessibility of a workflow such as RINS opens
the door for extensive pathogen discovery in a variety of contexts
such as cancer and other difficult to treat diseases.

RINS employs intersection analysis with a user provided
reference set, as opposed to computational subtraction. The latter
is a process that maps first to the reference organism’s genome
and then attempts to assign all unmapped reads to a non-reference
organism. Because mapping algorithms require intense RAM to
store these unmapped reads, computational subtraction is slow and
requires cloud scale resources. While both methods ultimately filter
through a reference organism (e.g. human) and look for pathogenic
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Fig. 1. RINS uses intersection (marked by asterisks), not subtraction, to
identify non-human reads. The workflow intersects the reads in the dataset
with a reference of non-human genomes of interest using Blat to align non-
overlapping 25 mers for each read. Reads with >80% homology are aligned
to the human genome and reads with >97% homology are removed from the
read set. Remaining reads are complexity filtered with an LZW compression
ratio of 0.50 and mate pairs for sufficiently complex reads are identified.
This read set is then assembled into pathogen sequence contigs.

sequences, RINS first maps to a query dataset, thereby lowering the
computational requirements. It can use any non-human reference
set, including genomes of viruses, bacteria or other pathogens. This
set is used as the template for the RINS initial search. The reference
genome set included with the RINS package contains viruses of all
known classes that infect a variety of organisms in order to offer the
broadest template to identify pathogens.

The workflow starts by generating non-overlapping 25 mers of
each read that maximize the sensitivity of the alignment with Blat
(Kent, 2002) against the reference genomes(s) provided, using an
80% match threshold (Fig. 1, RINS Step 1). This threshold was
optimized for sensitivity and specificity performance on a randomly
mutated test set. Step 2 of RINS removes duplicates that may have
been generated by Step 1 alignment and filters the longest-associated
read for each mapped 25 mer for complexity using a Lempel–
Ziv–Welch (LZW) (Welch, 1984) compression ratio of 50% (RINS
Step 2). The LZW compression method (Yozwiak et al., 2010)
uses a dictionary-based approach to quantitate the complexity of a
sequence by adding to the dictionary a new ‘word’ for every unique
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string of characters, eliminating repeat regions. These repeats are
frequently found in both humans and microbes, making organismal
origin difficult to pinpoint. This complexity ratio was optimized
to minimize loss of non-human reads while further filtering the
data for potentially confounding repetitive sequences. The filtered
reads are then mapped against the human genome using Bowtie
(Langmead et al., 2009) (RINS Step 3), and after this intersection,
reads that mapped to the human genome are removed from the
read set. Remaining reads, with their mate pairs (if the dataset is
paired end) are assembled into contigs with the de novo assembler
Trinity (Grabherr et al., 2011) (RINS Step 4). Using a local version
of BLAST to classify contigs (RINS Step 5), those contigs with
minimal homology to human sequences are then extended by
mapping the original read set back to the contig. The process of
identifying mate pairs and assembling the contig is repeated as
before. This method of extension allows for reads that are part
of the contig but were eliminated by other filtration methods to
be reincorporated into the contig to increase the sensitivity and
specificity of the results. RINS will then output a tab-delimited
text file detailing the candidate contigs that have been generated,
presented with the number of supporting reads and a BLAST e-value.
Parameters used here are modifiable by the user if desired.

Sensitivity of RINS was evaluated with a randomly mutated
test set of viral genomes, which served as a stringent measuring
system. In this test set, mutations occurred randomly throughout
the genome without any conserved regions that are often found
in nature. With this test set, it was shown that using the 25 mer
reads promotes identification of mutated non-human genomes
(Supplementary Fig. S1a). Specifically, at mutation rates >25%,
mapping to the custom reference with these shorter read segments
is significantly better at identifying genomes than with the full length
reads (Supplementary Fig. S1b). This indicates known pathogens are
identified with confidence, and genomes with >50% homology to
the reference genomes can be extracted from the data using RINS.

A positive control was used to test RINS accuracy and speed
(Supplementary Table S1). Sequencing data from the CA-HPV-10
prostate cancer cell line (SRR073726) (Prensner et al., 2011) was
analyzed with RINS and accurately retrieved only HPV serotype
18 (the transforming virus) with a 570 bp contig (Supplementary
Tables S1 and S2). RINS took <2 h to perform this analysis on a
dual core machine with 8 GB of RAM and a 2.93 GHz processor.
Accuracy of RINS was further tested in RNA sequencing data
from Sézary syndrome, SRA046736 (Lee et al., manuscript in
preparation) where a contig with homology to vector constructs
and HIV was generated (Supplementary Table S2). Using PCR
amplification and Sanger sequencing (data not shown), the existence
of this laboratory contaminant in the cDNA of the relevant sample
was confirmed.

Comparisons of RINS to the pathogen discovery algorithm
PathSeq show similar performance, with better speed and lower
cost for RINS. PathSeq sensitivity and specificity are derived from
statistics presented by the authors in their work using an analogous
test set of randomly mutated viral genomes. The sensitivity of
PathSeq was 99.22% at a mutation rate of 0%, and drops to 0% at a
mutation rate of 50% (Kostic et al., 2011, Table S3 and Figure S3a).
RINS has a similar sensitivity of 99.78% based upon test set read
recovery at a mutation rate of 0%. The RINS sensitivity drops to
0% at any mutation rate >50%, though at 50% there is a minimal
sensitivity of 0.5–1% (Supplementary Fig. S1). Specificity for the

test set is 100% for PathSeq. RINS also has no false positives for
the test set and no false positives were identified from the CA-HPV-
10 data or the Sezary syndrome data, giving RINS a specificity
of 100%. The additional rigor of PathSeq would confidently allow
identification of novel pathogens, though the ability of RINS to
identify reads with up to 50% divergence from the reference genome
suggests this could also be feasible with RINS if the novel pathogen
has at least 50% homology to one or more of the custom reference
genomes. PathSeq requires 13 h of cloud computing time and costs
to process 10 million reads, whereas RINS takes <2 h for the 13
million reads in SRR073726. Importantly, RINS scales up well and is
able to complete the six high-throughput datasets from SRA046736
with an average read depth of 112 million reads in <4 h each at no
additional cost beyond access to a computer. The lower cost and
faster speed are significant for accessibility to researchers interested
in either hypothesis driven queries of datasets or queries of many
different datasets in a reasonable timeframe.

RINS is optimized for mate-paired high-throughput sequencing
data with reads at least 36 bp and up to 500 bp, and can be run
on sequencing data from any species. Non-paired end sequencing
data can also be used, though contig generation and extension will
be less robust. As the read length and number of reads increases,
the computational time required to complete RINS will increase as
Blat and Trinity processing speeds will decrease. Included in the
online package are 32 102 viral genomes of all classes curated by
GenBank (Benson et al., 2008) and the International Committee
on Taxonomy of Viruses (ICTV), retrieved through the National
Center for Biotechnology Information (NCBI). Also provided are
all scripts to run the processes, with options for user control of
all default parameters. The user must provide other open source
softwares referenced above.
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