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ABSTRACT

Motivation: Bioimaging techniques rapidly develop toward higher
resolution and dimension. The increase in dimension is achieved by
different techniques such as multitag fluorescence imaging, Matrix
Assisted Laser Desorption / Ionization (MALDI) imaging or Raman
imaging, which record for each pixel an N-dimensional intensity array,
representing local abundances of molecules, residues or interaction
patterns. The analysis of such multivariate bioimages (MBIs) calls
for new approaches to support users in the analysis of both feature
domains: space (i.e. sample morphology) and molecular colocation
or interaction. In this article, we present our approach WHIDE (Web-
based Hyperbolic Image Data Explorer) that combines principles
from computational learning, dimension reduction and visualization
in a free web application.
Results: We applied WHIDE to a set of MBI recorded using
the multitag fluorescence imaging Toponome Imaging System.
The MBI show field of view in tissue sections from a colon
cancer study and we compare tissue from normal/healthy colon
with tissue classified as tumor. Our results show, that WHIDE
efficiently reduces the complexity of the data by mapping each
of the pixels to a cluster, referred to as Molecular Co-Expression
Phenotypes and provides a structural basis for a sophisticated
multimodal visualization, which combines topology preserving
pseudocoloring with information visualization. The wide range of
WHIDE’s applicability is demonstrated with examples from toponome
imaging, high content screens and MALDI imaging (shown in the
Supplementary Material).
Availability and implementation: The WHIDE tool can be
accessed via the BioIMAX website http://ani.cebitec.

uni-bielefeld.de/BioIMAX/; Login: whidetestuser;

Password: whidetest.
Supplementary information: Supplementary data are available at
Bioinformatics online.
Contact: tim.nattkemper@uni-bielefeld.de
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1 INTRODUCTION
Bioimage informatics has been established as a new branch in
the tree of bioinformatics’ fields of research in the last 10 years.
The term bioimage comprises all kinds of images generated for
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biological samples in a biological or biomedical research context
using a large diversity of imaging techniques. The techniques range
from standard ones such as bright field imaging or phase contrast
to advanced technologies that enable recording many molecular
variables for each resolvable volume unit. The latter group of
technologies can also be referred to as multivariate bioimages
(MBIs; Herold et al., 2011). MBI belong to the so called high-content
imaging techniques which apply high resolution imaging in time
and/or space and/or variables to close those open gaps in systems
biology which cannot be bridged by standard, i.e. non-spatial omics
techniques (Megason and Fraser, 2007; Starkuviene and Pepperkok,
2007). While these can in principle resolve the almost complete
molecular composition in a sample on different levels (genomics,
transciptomics, proteomics and metabolomics) they have to leave
out the spatial domain. In contrast to that, bioimaging approaches,
which usually work with a lower level of molecular resolution, can
relate molecular information to spatial features such as morphology.

Typical examples for MBI are Matrix Assisted Laser Desorption
/ Ionization (MALDI) imaging (Cornett et al., 2007), vibrational
spectroscopy/Raman microscopy (van Manen et al., 2005) or
MultiEpitope-Ligand Cartography (MELC)/Toponome Imaging
System (TIS) (Schubert et al., 2006). The first two techniques
measure molecular features and interactions in localized spectra,
arranged in a pixel grid. The interpretation of the obtained images
aims at the identification of pixel groups that share particular or
similar spectral features (e.g. Alexandrov et al., 2010) where as
the final identification of molecules and a semantic interpretation
remains an unsolved problems for most applications. In contrast to
that, MELC/TIS (for the sake of compactness we will refer to this
technique with TIS) imaging aims at the imaging of a selected set
of N proteins using a library of N fluorescent labeled antibodies,
lectins or other specific ligands (referred to as tags, in general) in
combination with a cyclic protocol of staining, fluorescence imaging
and soft bleaching. To unfold the full potential of all these kinds of
MBI, new algorithms and software are needed that allow researchers
to visually explore the data and to identify the hidden regularities.
In this article, we will focus on images recorded using the TIS
technology, however our method is definitely applicable to other
MBI data recorded with a different multitag technology or MALDI
images as well.

For one selected field of view (FOV) in the sample, TIS records
one multivariate image T(s) which consists of a set of N aligned

images g(s)
a (x,y)a=1,...,N (with x,y as pixel coordinates) with

s (s=1,...,S) describing the ID of the TIS image/FOV and g(s)
a
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denoting the fluorescence gray value image for tag a. In practice,
a number of S TIS runs with one library of N >10 tags are applied
to record a set of S datasets. With gx,y = (g1,g2,...,gN )x,y we will
refer to the N gray values for the respective N tags assigned to one
pixel (x,y) in a TIS image T(s). To align the N fluorescence images
in one TIS image, phase contrast images are recorded in each cycle
and used as a reference.

One TIS image or a set of S TIS images resembles a
high-dimensional complex data structure that encodes hidden
relationships between colocation of proteins and the spatial
distribution pattern, which is also referred to as the toponome
(Schubert et al., 2006). While on the one hand, the gain in molecular
information through toponome data may undoubtedly have the
potential to lead to a new understanding of functional molecular
networks, the analysis of TIS data represents a new challenging
problem with a large number of open issues for bioimage informatics
on the other hand. It is evident that by visual inspection of each one
of the N single gray value images, colocation of proteins can hardly
be identified. Likewise, iteratively superimposing three out of the
N images or even all images to obtain RGB fusion images is not
feasible for protein network identification since an observer would
need to analyze a number of N !/(3!(N −3)!) visualizations and link
the results obtained for each image triplet, which is impossible for
human observers.

One straightforward way to reduce the complexity of the data
is to apply a threshold to each image. Schubert et al. (2006)
applied such a method for pixel-wise extraction of binary colocation
and anti-colocation vectors, termed combinatorial molecular

phenotypes (CMPs), by manually thresholding each image g(s)
a for

a combinatorial analysis. Random colors are subsequently assigned
to each of the n detected CMPs to construct so called toponome
maps which encode the spatial location of each CMP with its
individual color. Although the concept of binary CMPs has the
advantage of a fundamental reduction of data complexity and a clear
interpretation on the level of a single CMP, thresholding each image
by manual human interaction features several disadvantages. It is
quite time consuming and requires a high level of expertise to set
reasonable thresholds. Slight modifications of the threshold can lead
to different CMP lists, potentially affecting the interpretation of the
data. Furthermore, thresholding discards information inherent in the
data, so analyzing non-binarized gray value images may be better
suited to track protein locations in the cell (Friedenberger et al.,
2007). However, the CMP concept has successfully been applied in
several studies (Bhattacharya et al., 2010; Bonnekoh et al., 2006;
Eyerich et al., 2009; Ruetze et al., 2010), for example revealing
proteins controlling the molecular networks of tumor cell lines, or
finding CMPs to distinguish between healthy patients, patients with
psoriasis and patients with atopic dermatitis. But even regardless
of the aforementioned thresholding issue, we believe that the CMP-
based visualization concept should be reconsidered as follows. From
a visualization point of view, mapping the CMP to random colors
follows the idea to treat CMP as nominal variables. On the one
hand, this perspective on a colocation pattern is well motivated since
similar patterns (CMPs) can constitute different functions (similarity
may be quantified using the Hamming distance for binary patterns).
But on the other hand, one should also bear in mind that similar
patterns may also belong to the same functional group or to the
same hierarchically organized network. Another drawback of using
random colors for CMPs is that the morphological structure in a

random color map can be hard to interpret since the colorful map
can overburden the cognitive skills of a user. So an alternative
visualization concept is definitely needed, that maps similar patterns
to similar colors. In other words, one needs a pseudocoloring that
preserves the topology of the N-dimensional fluorescence colocation
feature space. In summary, a new method for visual data mining TIS
images is needed that features he following. First it has to provide
an overview on the entire image using a pseudocolor visualization.
Second, it has to support the identification and display of relevant
gray value-based protein colocation patterns, referred to as MCEPs
(Molecular Co-Expression Phenotypes). Third, the perception of
similarities and contrasts in the expressed MCEPs must be possible.
Fourth, filtering and zooming must be supported in both domains,
tissue morphology and protein colocation.

In this article, we present the visual data mining tool WHIDE
(Web-based Hyperbolic Image Data Explorer), which offers the
four functions listed above. The idea behind WHIDE is to identify
MCEP in TIS images using a special variant of the self-organizing
map, the hierarchical hyperbolic self-organizing map (H2SOM),
in combination with state-of-the-art internet browser technology
and information visualization concepts. Compared with standard
SOMs, hyperbolic SOMs have the potential to achieve much
better low-dimensional embeddings, since they offer more space
due to the effect, that in a hyperbolic plane the area of a circle
grows asymptotically exponential with its radius (see Supplementary
Material for details). This feature has been identified as a solution to
the so called focus and context problem in information visualization
(Ware, 2004) by other researchers as well, like in the famous
hyperbolic tree browser (Lamping et al., 1995). The tool is integrated
in our full-web-based online bioimage analysis platform BioIMAX
(BioImage Mining, Analysis and eXploration; Loyek et al., 2011)
which uses state-of-the-art web graphics tool kits to realize an
online bioimage analysis workbench as a Rich Internet Application
(RIA) (see access details given above and details given in the
Supplementary Material).

2 APPROACH
WHIDE combines principles from machine learning, scientific
visualization and information visualization that shows to be very
effective to analyze both aspects of TIS images: space and
colocation. H2SOM clustering (Ontrup and Ritter, 2006) is applied
to identify MCEPs as cluster prototypes which are organized
on a regular 2D grid, following the SOM topology preservation
principle. Each MCEP is displayed as a graphical icon called CIPRA
(Combinatorial Intensity PRofileArchetype), showing the individual
colocation signal characteristics. Using the grid position and the
CIPRA icons we are able to render a graphical display of one or
two TIS images in dynamic pseudocolor which can be interactively
explored in a web browser tool.

We show, how WHIDE is applied to a set of four TIS images
{T (c1),T (c2),T (n1),T (n2)}. The images were taken using tissue
sections from one colon cancer patient and the four visual fields
were selected. Two visual fields were selected in tissue that was
classified as normal according to histopathological analysis and two
TIS images were recorded (T (n1),T (n2)). The other two images were
recorded in tissue classified as cancerous and two TIS images were
recorded (T (c1),T (c2)). For all images, the following library of 11
tags (MUC1, Ep-CAM, DAPI, CD166, CD44, CD36, CD29, Ki-67,
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CK20, CK19 and CD133) was applied yielding N =11 fluorescence
images per TIS image. In the Supplementary Material A, we show
the 11 fluorescence image from one TIS image T (n1) plus one phase
contrast image. Each image was of size 1056×1026 with pixel
resolution of 206 × 206 nm/pixel.

3 METHODS
Before a H2SOM is applied, each TIS image is preprocessed in the following
manner: first, image registration is applied, i.e. the single images of one
TIS image are aligned. To this end, a phase contrast image is recorded
within each tag loop so the shifting parameters for the single images can be
computed straightforward using the corresponding phase contrast images.
Second, each image was preprocessed in three steps: first, a median filter
was applied to eliminate outliers. Afterwards, bilateral filtering (Tomasi
and Manduchi, 1998) was applied to smoothen homogenous regions while
preserving the edge information. The gray values in each image of a stack
were scaled to [0;1] using a tanh() squashing function which also introduces
a slight contrast enhancement to the images. The original gray values were
replaced computing ga(x,y)= tanh(0.5·E(ga)·ga(x,y)), with E(ga) as the
average gray value of image ga. Now, for each pixel the N gray values are
written to a colocation feature vector x= (x1,x2,...,xN )1. The feature vectors
from one image (or from a selected group of images) resemble a training set
�=x(ξ)

ξ=1,...,nt with nt as the number of training items. We refer to the set
of all colocation features from all four images with �∪.

The training set �∪ is used to train a H2SOM of nr rings and a
branching factor of b. The foundations of the H2SOM are explained in the
Supplementary Material. To train a H2SOM with nr rings, the training is
divided into nr epochs (i.e. one epoch per ring) of length L(r). In each epoch
a new ring of nodes is initialized by adding b new branches with child nodes
to each parent node. The first ring contains eight nodes which are trained
using the SOM training algorithm: In each step, a training example x(ξ)

is selected and the prototype vectors {u(k)
k=1,...,7} are searched for the best

matching unit (BMU) u(κ), with κ=argmin
k

{‖u(k) −x(ξ) ‖2} and the learning

rule
u(k)(t+1)=u(k)(t)+hk,κ(t) ·(x(i) −u(k)),with

hk,κ(t)=e(t) ·exp
‖n(k) −n(κ) ‖2

2σ2(t)

is applied to the nodes. The parameters e(t) and σ(t) are monotonically
decreasing functions. After the first epoch is completed, each node is
expanded by b child nodes and a new epoch starts applying a beam search
for the BMU (see Supplementary Material B). This process is repeated until
all nr rings of nodes are adapted. A Poincaré projection is applied to map
the H2SOM grid to the unit disc. To manipulate the projection direction,
the Möbius transform is applied (details are given in the Supplementary
Material B).

To assess the quality of the H2SOM projection, we applied the approach
proposed by Venna and Kaski (2001) and computed the trustworthiness Tn

and the continuity Cn of the H2SOM projection. The two terms empirically
determine the projection quality by quantifying for each MCEP, how wide
its n most similar MCEPs are scattered across the grid (Cn) and how many
non-similar, i.e. false MCEPs have been wrongly mapped into the vicinity
in the grid (see the Supplementary Material B for details please).

3.1 CIPRA glyphs
Although clustering greatly aids in finding groupings inherent in the data, the
success and efficiency of knowledge discovery mainly depends on suitable,
linked visualizations of the feature domain, i.e. the clusters and prototypes,

1We refer to the feature vector with x to show, that the components differ
from the original gray values for the pixel g due to the applied preprocessing.

Fig. 1. The CIPRA glyph: for each H2SOM node, the prototype coefficients
uk

a are read (1) and for each protein a bar is plotted in alternating black/white
(2). The length and width of one bar k is scaled so it is proportional to uk

a
(3). The background color of the glyph is chosen depending on the grid
coordinates of the prototype in relation to the HS color scale plate (4). In the
bottom row five more examples for CIPRA glyphs are shown.

as well as visualizations of the image domain, i.e. the topological ordering
of the data items.

First we will focus on visualizations of the feature domain. Second a
pseudocoloring technique will be described. The interactive combination of
the two techniques showed to be a powerful approach to the analysis of TIS
data.

To visualize the feature domain we render a graphical display for each
MCEP cluster and we refer to this as the CIPRA glyph of the cluster. The
general reason to visualize the MCEPs, is that by focusing on the clustering
result, i.e. the CIPRAs, the data complexity is significantly reduced. The
main protein colocation characteristics of the data can be visually explored
in one rapid knowledge discovery attempt without the need of analyzing
single images gs. If interesting CIPRAs are found, the associated data items
can be analyzed in a subsequent step following the Ben Schneiderman
visualization mantra of ‘Overview first, zoom in and filter, details on demand’
(Schneiderman, 1996). However, a suitable CIPRA visualization is not as
straightforward as it seems. A simple strategy for the display of multivariate
data such as CIPRAs is an extension of the scatter plot to a generalized
drafter’s plot (Chambers et al., 1983), also referred to as scatter plot matrix.
Here, scatter plots for all possible pairs of features are displayed. A related
technique, termed dimensional stacking (LeBlanc et al., 1990), embeds one
coordinate system into another and bins the data. These techniques are
a straightforward extension of lower-dimensional displays, but are often
hard to interpret with increasing dimensionality. This holds especially if
a combination of more than two features contribute to an interesting pattern,
as it is likely the case in protein colocation studies. Another popular way
to display multivariate data are glyph or icon displays. According to Colin
Ware ‘A glyph is a graphical object designed to convey multiple data values’
(Ware, 2004, p.145). Each data feature is mapped to a different graphical
attribute of the glyph such as size, shape or color. For example Chernoff
faces (Chernoff, 1973), star glyphs (Chambers et al., 1983), color icons
(Levkovitz, 1991), or stick figures (Pickett and Grinstein, 1988) belong to
these types of displays.

The CIPRA glyph combines visualization aspects known from bar charts
and star glyphs and is to some extend inspired by the sequence logo
display, which represents patterns in nucleotide or amino acid sequences
(Schneider and Stephens, 1990). In a sequence logo, for each position of
a set of aligned sequences, e.g. nucleotide sequences, the four nucleotides
are arranged on top of each other sorted according to their frequency at
that position. The character height represents the frequency of the according
nucleotide. Through this visualization, a rapid identification of prominent
sequence patterns can be achieved as high frequent nucleotides can directly
be ‘read’ from the logo. To construct a glyph for one CIPRA uk (k =1,...,K),
a horizontal box is drawn for each data feature (Fig. 1). The height, as
well as the length, of each box is scaled according to the feature’s value.
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Fig. 2. The WHIDE result for two TIS images from normal tissue T (n1),T (n2) is shown as a screenshot from the WHIDE tool in the BioIMAX system. On
the right, the color disc is shown with H2SOM nodes displayed as square icons at positions computed with a Poincaré projection. The size of the squares
encodes the size of the clusters. Moving the mouse over one square activates the display of its CIPRA. Alternatively, CIPRA displays can be activated in the
image. At the bottom of the screen, the history of selected CIPRAs is shown as bookmarks. In the upper left of each image display one fluorescence image is
shown for an overview and using the sliders below the user can change the opacity of the pseudocolor map and the zoom as it is demonstrated in the lower
screenshot. This way, the user can modify the display to relate the found clusters, i.e. MCEPs to individual fluorescence signals for a detailed analysis.

To increase differentiation between neighboring boxes, they are alternating
colored black and white. This follows C. Ware’s suggestion for star glyphs
or whisker plots to increase the number of dimensions by changing length
and width of the bars as well as using different luminance levels. To allow
for a fast identification of prominent proteins, the protein names are directly
incorporated into the visualization. To this end, the associated protein name
is written in each bar and scaled in height and length analog to the bar
itself. With this strategy, prominent protein co-localization can easily be
identified by ‘reading’ the CIPRA analog to the reading of a sequence logo.
The color background of the glyph is determined by the position zk in the
(Hue, Saturation)-color scale disc (see the following Section 3.2). Figure
1 gives an overview of the construction of the CIPRA display (top) and
shows six CIPRA examples that have been computed for one TIS image
with N =22. One can see, that the three blue CIPRA glyphs share a large
number of features but differ in some features as well (like high/low values
for DAPI and CD166). With changing color the differences in the CIPRAs
grow as well.

In the display of a CIPRA additional information about the corresponding
cluster is shown. In the upper right of a CIPRA display, the size of the
corresponding cluster in relation to the entire number of projected pixels
is shown as a percentage. If WHIDE is applied to two or more images,
one can expect a cluster of one MCEP prototype to include feature vectors
from more than one TIS image. This information may be important to users
since it could point to differences in MCEP abundances in different samples,
which can be an interesting feature resulting from different dynamics of
molecular networks. Thus, the information about the composition of each
cluster is encoded in a MCEP’s CIPRA as well by a graphical line symbol,
which encodes the different percentages as line segments. In a bookmarked
CIPRA, a mouse over provides the numerical information.

3.2 H2SOM pseudocolor map
The CIPRA glyphs are used to display colocation features of pixel groups,
i.e. it shows features of the N-dimensional colocation space. However, as
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outlined above, the morphological features need to be explored as well.
Thus, WHIDE uses the H2SOM training result to visualize a TIS image in
pseudocolor. To this end, the Poincaré projection is applied to map the node
coordinates of the H2SOM prototypes {u(k)} to coordinates {zk} in a unit disc
(see Supplementary Material B for full details). These new coordinates are
then used to pick up colors in a circular color scale with radius R=1. In this
work, we choose the basic plate of a HSV (Hue, Saturation, Value) color
cone as a color scale disc, i.e. the color hue changes with the angle α and
the saturation changes with the radius R. One may argue, that isoluminant
color scales should be preferred to avoid tendencies for a human observer
to perceive contrast of different intensities dependent on the particular color
scale region. However, we found that isoluminant color scales have strong
negative effect on a human observers ability to resolve smaller structural
features. Thus, we use the (Hue, Saturation)-disc and allow the user to rotate
the H2SOM projection on the disc to individually choose, which clusters
are to be displayed in blueish (lower contrast sensitivity for humans) or in
reddish (higher sensitivity) colors.

3.3 Implementation and Web Application
The H2SOM learning and the WHIDE visualization are implemented as
modules of the BioIMAX platform and can be applied by all registered users.
The H2SOM learning and mapping is realized in a client–server architecture
as described in Langenkämper et al. (2011).

To enable the previously described continuous visual exploration of
complex datasets and benefit from the tight integration with the BioIMAX
infrastructure, WHIDE was designed as a RIA. RIAs resemble classic
desktop applications with regards to the richness of the user interface and
computational power, but are more independent from hardware or system
limitations and require no extra installation procedures or setup routines. This
is achived by executing most of the application’s computation, presentation
and interaction in a client-side browser plugin, thereby leveraging the local
hardware resources and reducing client–server traffic.

The open-source RIA framework choosen for the implementation of
WHIDE is Flex.2 It is already employed by the BioIMAX platform, which
enables easy access to the H2SOM mapping results, and deploys consistently
on most systems due to the high penetration rate of the Adobe Flash Player,
which is the properitary browser plugin used for its client-side execution.
Furthermore, Flex offers a good selection of predefined but extensible user
interface components, e.g. the CIPRA glyph is build upon the standard
charting components.

WHIDE has only a short inital communication phase with the server-side
of the BioIMAX platform to retrieve the necessary H2SOM mappings as
well as image data. All H2SOM mapping data is transfered in a compressed
and space optimized file in JSON3 format for fast transfer and parsing. After
that the tool needs no further server connections and runs solely on the client-
side. Depending on the number of rings in the H2SOM result and the amount
of concurrently viewed TIS images the tool may take a while to construct
all data structures needed for fast data look-up and interface manipulation.
This approach is necessary because all available data are needed right from
the start to enable the user to switch rapidly between a coarse overview and
focus of arbitrary details.

Computation of interaction relevant data on the server-side would result in
high client–server traffic and notable delays in the visualization, hampering
the desired free and continuous exploration.

4 RESULTS
The dataset was built by extracting the multidimensional (N = 11)
intensity values for each pixel (|�∪| = 1 083 456). A H2SOM was

2http://www.adobe.com/products/flex/
3http://www.json.org/

initialized with a branching factor of 8 and 3 rings (not counting the
central node) yielding a total number of 160 nodes. The H2SOM was
trained in 30 ·P steps following the training algorithm described in
Section 3. Training took 4 h, after training for each TIS image a
BMU index image was computed, mapping each pixel to the index
of the BMU in the H2SOM, which took <1 min per image. The
trustworthiness and the continuity indices were computed at start and
stop of each training period and plotted (see Supplementary Material
B for details). One can see, how these indices increase over time and
the H2SOM approaches a stable state which seems to show no drastic
topologic distortions such as wrong folds. Using the WHIDE tool
the results have been visually analyzed regarding different aspects.
First, the topology preservation is qualitatively analyzed by moving
the mouse cursor along the border of color disc. One can observe the
continuous changes in the MCEP patterns while the color changes.
Some example CIPRAs are shown as bookmarks in Figure 2. One
can see, that with changing color (from blue to green to yellow
to red) some markers go up (such as DAPI) and some are going
down and up again (such as EpCAM or CD133) or vice versa (such
as KI-67). The color mapping did not show any strong distortions,
such as CIPRAs with similar colors but different colocation pattern.
The second interesting aspect was how the WHIDE tool reacts to
strong noise in the data. In image T (n2), a strong noise signal can be
observed for the CD29 marker showing a large star-shaped group of
fully saturated pixels. Such noise can be observed from time to time
in TIS imaging and from a data mining point of view these signals
form false outlier data clouds in the high-dimensional colocation
signal space. The right image of T (n2) in Figure 2 shows this case
and some magenta/blue spike of the noise pattern can be observed
in the right half of the image. However, the pattern does not have
an influence on the global color mapping, since both cases, T (n1)

and T (n2), show equivalent color mappings of their morphology and
their MCEP patterns. Third, we investigated WHIDE’s potential to
reveal differences in MCEP statistics and spatial distribution for
cancer and normal tissue. To this end, we apply the special WHIDE
feature of a continuous interactive tuning of the color mapping.
The color mapping is changed in two ways: the color disc can be
rotated as shown in Figure 3, where we rotate the color disc, so
some regions are drawn in yellow, which are visible in T (c1) and
T (c2) as a small number of cellular/sub-cellular objects, marked with
white ellipsoids. The motivation to move these regions to yellow is
that human observers can perceive more color details in the green–
yellow–red interval of the color spectrum than in the bluish region.
So the observer might discriminate more colors, i.e. different MCEPs
for these regions now. In addition, the Möbius transform is applied
to move the nodes from the yellow region toward the center, thereby,
squeezing the opposing nodes all into the blue region of the color
scale disc (see Fig. 3, a lower row on the right). Please note, that the
colors of the bookmarked CIPRAs are adapted accordingly. This
transformation has two important consequences: the majority of
MCEPs are drawn blue with a low color contrast (so the human
observer does not perceive many structural features) and the color
contrast for a comparably small subregion of the 11-dimensional
colocation feature space, spanned by the rest of the MCEPs is
strongly enhanced. The selected individual MCEPs of the selected
regions can now be distinguished more easily and analyzed in detail.
This way, we enable a kind of a zoom in an N-dimensional space
which is interactive and continuously, so the user does not loose the
context.
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Fig. 3. The H2SOM architecture provides the structural basis for a synchronized interactive dynamic pseudocoloring of TIS images. In the upper row, the
four TIS images T (c1),T (c2),T (n1) and T (n2) from left to right. The bottom row shows a small set of selected bookmarked CIPRAs. On the right, the color disc
is shown with its control buttons below. To change the coloring, the user can combine two functions. First, using the rotate-button, the user can turn the color
disc so that of the H2SOM grid which is of less interest is mapped to the blue area (since human observers are more sensitive to non-blue colors). Second, the
user can use the arrow buttons to change the Möbius projection, i.e. to move H2SOM nodes toward the center and squeeze the opposing nodes into a small
cloud. In this example, the nodes from the upper right are moved to enhance the color contrast for a chosen region of interest in one image (marked with
white ellipsoids).

For comparison we show results obtained with a Principal
Component Analysis (PCA). The PCA was performed on the
same dataset �∪ and the feature vectors were projected onto
the eigenvectors of the three largest eigenvalues to map each
pixel to three new coordinates (v1,v2,v3) which were used for
a RGB pseudocolor mapping for each image (see Supplementary
Material C). While we again made the observation of a difference
in colocation feature statistics between normal tissue and cancer
tissue, the PCA approach does not feature the structural advances of
the H2SOM which allow resolving non-linear features and dynamic
interactive manipulation of the colors.

5 DISCUSSION
The WHIDE tool shows significant advantages compared with other
approaches to MBI analysis. First, it is able to resolve and embed
non-linear data structures. This can be seen by browsing the CIPRAs

on the H2SOM visualization on the color disc. Moving the cursor
slowly across the discs shows the CIPRAs of neighboring clusters.
The CIPRAs show, that similarity in cluster prototypes is reflected by
vicinity in the H2SOM grid, i.e. the N-dimensional data topology is
preserved regarding local neighborhoods. A second striking feature
is the H2SOM visualization using the Möbius transform which
allows change of zoom in the N-dimensional feature space by
mapping a smaller number of neighboring clusters to a larger area
in the color scale. This way, particular groups of MCEPs can be
pseudocolored in higher color resolution whereas the rest of the TIS
image is colored with a very small part of the color scale, i.e. with
low contrast. Another positive feature of the WHIDE approach is
the reduction of the TIS data using vector quantization as performed
by the H2SOM algorithm which has shown to resolve even small
clusters and organize the clusters in a hierarchical structure. If the
CIPRA visualization is compared with two classic methods such
as bar graphs and star glyphs, it is evident that in the CIPRA
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display the association of proteins to individual graphical attributes
is much easier. Furthermore, besides being able to rapidly identify
the dominant proteins, an advantage of the CIPRA display is that
only features with high values allocate space, whereas low value
features are squeezed. Thereby, space is only allocated proportional
to the importance of the protein and the total size of the CIPRA
reflects the amount of information provided by the prototype. In
some applications, this might not be a desirable feature so that bar
graphs, or CIPRAs with constant bar width would be more suited
but in our current project this has not been the case yet. Last but not
least we must address the issue of preprocessing here although this
is not part of the WHIDE tool. The performance and effectiveness
of any data mining approach to MBI depends substantially on
the preprocessing applied to the data. Maybe the most important
preprocessing step is local alignment of the fluorescence images, if
volume stacks are recorded alignment must be applied in (x,y,z). If
the images are not aligned well, i.e. the image registration failed, the
feature vectors extracted for each point display fluorescence values
(i.e. molecular signals) from close but different anatomical sites.
As a consequence, the H2SOM clustering assigns vectors into false
clusters which reflect the misalignment. This would lead to false
interpretations and must be avoided. The problem would be even
more serious if two or more datasets are analyzed in comparison
(like in this study) but the registration fails only in a subset of the
data. This could lead to the false assumption that the false clusters
are biologically very interesting since they separate this subset of
TIS images from the others. Thus, the necessity for an accurate
alignment of the data cannot be overstressed. As a consequence
we developed a novel registration algorithm which is based on an
alignment of square subimages on the phase contrast images (Raza
et al., 2012). Another kind of small false signal variations can be
noise caused by the imaging chip which can be reduced by filtering
(as explained in Section 3). Another, sometimes more critical kind
of noise is a locally described over-saturation of imaging elements
leading to a nova-like artifact as in the case of this study in the CK19
tag image and in the CD29 tag image as well. We have tested the
effect of such kind of distortions to the WHIDE performance and
showed, that these do not have a strong influence in the result so
masking these areas may not be necessary in many cases. However,
we recommend masking such regions and exclude this data from a
study.

6 CONCLUSION
Due to advances in machine learning research, present-day internet
connection bandwidths and state-of-the-art web graphics technology
a new level of MBI analysis is enabled. Web-technology allows
a direct connection of researchers to the tools and the result
visualizations, independent from their whereabouts and their
computer system. Modern RIA technologies allow web-based
visualizations to be interactive and dynamic, which are prerequisites
for the analysis of MBI data such as TIS. Although, we presented
the WHIDE tool in the context of TIS analysis it is evident that the
tool is applicable to other MBI data such as MALDI images as well.
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