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Abstract
Aims—The objective of this study was to evaluate the antistaphylococcal effect and elucidate the
mechanism of action of orange essential oil against antibiotic resistant Staphylococcus aureus
strains.

Methods and Results—Inhibitory effect of commercial orange essential oil (EO) against six S.
aureus strains was tested by disc diffusion and agar dilution methods. The mechanism of EO
action on MRSA was analyzed by transcriptional profiling. Morphological changes of EO treated
S. aureus were examined by transmission electron microscopy. Results showed that 0.1% of cold
pressed terpeneless Valencia orange oil (CPV) induced the cell wall stress stimulon consistent
with inhibition of cell wall synthesis. Transmission electron microscopic observation revealed cell
lysis and suggested a cell wall-lysis related mechanism of CPV.

Conclusions—CPV inhibits the growth of S. aureus, causes gene expression changes consistent
with inhibition of cell wall synthesis and triggers cell lysis.

Significance and Impact of the Study—Multiple antibiotics resistance is becoming a serious
problem in the management of S. aureus infections. In this study the altered expression of cell
wall associated genes and subsequent cell lysis in MRSA caused by CPV suggests that it may be a
potential antimicrobial agent to control antibiotic resistant S. aureus.
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Introduction
In recent years methicillin-resistant S. aureus (MRSA) has appeared more in communities
outside the hospital settings and has emerged as a major public health concern worldwide
(Kennedy et al. 2008, DeLeo et al. 2010). Since infections caused by MRSA are increasing,

Correspondence: Steven C. Ricke, Center for Food Safety-Department of Food Science, University of Arkansas, Fayetteville, AR
72704, USA. Tel: 479-575-4678; Fax: 479-575-6936; sricke@uark.edu. Arunachalam Muthaiyan, Center for Food Safety-Department
of Food Science, University of Arkansas, Fayetteville, AR 72704, USA. Tel: 479-575-7110; Fax: 479-575-3941;
amuthai@gmail.com.

NIH Public Access
Author Manuscript
J Appl Microbiol. Author manuscript; available in PMC 2013 May 1.

Published in final edited form as:
J Appl Microbiol. 2012 May ; 112(5): 1020–1033. doi:10.1111/j.1365-2672.2012.05270.x.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



as are rates of antibiotic therapy failures, new measures to treat and prevent this infectious
pathogen are becoming inevitable (Pirri et al. 2009). One such approach to counter the
antibiotic resistance emphasizes the search of biologically active pharmacophores
possessing novel modes of action from natural resources (Saxena and Kumar 2002, Saleem
et al. 2010). Natural products have been investigated and utilized to alleviate disease since
early human history. Before the “synthetic era”, 80% of all medicines were obtained from
roots, barks, leaves, flowers, seeds and fruits (McChesney et al. 2007).

Numerous studies have discovered promising novel antimicrobial candidates from plant
derived essential oils (EOs). EOs are particularly interesting since some oils have been used
by native groups for curative purposes in the past (Saravolatz et al. 1982, Burt 2004). Also,
research data indicate that many EOs have antimicrobial activity. For instance, tea tree oil
obtained from Melaleuca alternifolia has been shown to be active against a wide range of
microorganisms (Gustafson et al. 1998, Hammer et al. 2006). In previous studies the
antimicrobial activities of other EOs have also been investigated and their actions against
various pathogens, including clinical MRSA isolates, have been demonstrated (Cox et al.
1998, Elsom and Hide 1999, Hammer et al. 1999, May et al. 2000, Takarada et al. 2002,
Edwards-Jones et al. 2004, Brady et al. 2006, Prabuseenivasan et al. 2006, Chao et al. 2008,
Doran et al. 2009, Tohidpour et al. 2010). There are also several clinical studies and case
reports noting the successful use of EOs in treating MRSA nasal carriage and wound
infections (Caelli et al. 2000, Sherry et al. 2001, Dryden et al. 2004, Sherry and Warnke
2004).

Fisher and Phillips (Fisher and Phillips 2006) studied the effectiveness of citrus EOs and
their components citral, limonene, and linalool against a number of common foodborne
pathogens Listeria monocytenes, S. aureus, Bacillus cereus, Escherichia coli O157, and
Campylobacter jejuni both in vitro and on food models. Previous studies in our laboratory
have demonstrated the inhibition of Salmonella (O’Bryan et al. 2008), Escherichia coli
O157: H7 (Nannapaneni et al. 2008), Listeria (Shannon et al. 2011) and Campylobacter
(Nannapaneni et al. 2009) by citrus derived cold pressed Valencia orange oil, terpeneless
Valencia orange oil, cold pressed orange terpenes, high purity orange terpenes, d-limonene,
and terpenes from orange essence. However, these oils were not tested specifically against
antibiotic resistant S. aureus. Therefore, the objective of this study was to evaluate the
inhibitory activity and mechanism of action of orange essential oil on S. aureus to determine
their potential for use as antistaphylococcal agents against MRSA.

MATERIALS AND METHODS
Bacterial strains and growth conditions

The following S. aureus strains were used in this study: methicillin-susceptible strain
SH1000 (Horsburgh et al. 2002), methicillin-resistant strains COL (Sabath et al. 1974),
13136 p−m+ (Brown and Reynolds 1980), and N315 (Kuroda et al. 2001), and methicillin-
and vancomycin intermediate-resistant strains 13136 p−m+ V20 (Pfeltz et al. 2000), and
Mu50 (Kuroda et al. 2001). Cultures were propagated in tryptic soya broth (TSB) (Difco
Laboratories, Inc. Detroit, MI). A loop of bacteria from a tryptic soya agar (TSA) (Difco
Laboratories, Inc.) was inoculated into a 10 mL tube of sterile TSB and subsequently
incubated for 18 h at 37 °C, after which a 100 μL aliquot was transferred into a fresh sterile
10 mL of TSB, which was incubated an additional 18 h before use.

Orange essential oils
All essential oils were obtained as commercially available products of Citrus sinensis (L.)
Osbeck from Firmenich Citrus Center, Safety Harbor, FL, USA and were stored per
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manufacturer’s recommendations at 4 °C prior to use. Oils tested included terpeneless cold
pressed Valencia orange oil (CPV), Valencia orange oil, cold pressed orange terpenes, high
purity orange terpenes, d-limonene, terpenes from orange essence, 5-fold concentrated
Valencia orange oil, and cold pressed citronellal.

Disc diffusion assay for screening the inhibitory effect of EOs
Disc diffusion assay was carried out by the method described by O’Bryan et al. (O’Bryan et
al. 2008). Overnight cultures of the S. aureus were streaked on sterile TSA (Difco
Laboratories, Inc.) by dipping a sterile cotton swab into the culture. The swab was used to
streak the agar plate to produce a lawn of growth by streaking the plate in 3 different
directions. The orange EOs (10 μL) were aseptically pipetted onto sterile 6-mm paper discs
(Becton Dickson, Franklin Lakes, NJ) and subsequently the paper discs were aseptically
placed on the agar. Diameters of zones of inhibitions were measured in mm after 24 h of
incubation at 37 °C. The assays were carried out on three independent experiments
conducted in duplicate.

Minimum inhibitory concentration assay (MIC)
The MIC of CPV for S. aureus strains was performed by modified agar dilution method. A
final concentration of 0.5% (v/v) Tween-80 (Sigma, St. Louis, MO) was incorporated into
the agar medium to enhance oil solubility. Different concentrations of oil were added to the
sterile TSA at 48 °C. Plates were dried at room temperature for 12 h prior to spot inoculation
with 5 μL aliquots of culture containing approximately 5 Log CFU per spot of each
organism in triplicate. Inoculated plates were incubated at 37 °C for 24 h and the MICs were
determined as the lowest concentration of oil inhibiting visible growth of organisms on the
agar plate. Experiments were carried out in three independent experiments in duplicate.
Inhibition of bacterial growth in the plates containing test oil was judged by comparison
with visible growth in control plates.

Growth inhibitory concentration (GIC) studies
Overnight grown cultures were used to inoculate (1% v/v) 20 ml TSB in 50 ml Erlenmeyer
flasks and were grown at 37 °C with shaking at 200 rpm. Two different concentrations (½,
and 1x of MIC) of EO were used in this study. After adding the EO to the log phase cultures
(OD600 approximately 0.4) growth was measured at 600 nm at regular intervals in a
Beckman DU65 spectrophotometer. A final concentration of 0.5% (v/v) Tween-80 (Sigma)
was used as a dispersing agent for EO.

RNA extraction and transcriptional profiling
Based on the GIC study ½ x MIC concentration of EO was added to the log phase cells for
15 min of challenge. Control culture was not challenged with EO and was also incubated for
15 min. RNA extraction and microarray hybridization was carried out as described by
Muthaiyan et al. (2008). Briefly, total bacterial RNA was extracted from 3 ml of culture
which was mixed with 6 ml of bacterial RNA protect solution (Qiagen, Valencia, CA) and
subsequently centrifuged to collect the cells. To extract the RNA, bacterial pellets were
resuspended in 1 ml of Trizol (Invitrogen, Grand Island, NY) and the cells were broken
using the FastPrep system (Qbiogene, Irvine, CA) at a speed setting of 6.0 for 40 seconds.
Extracted RNA was purified using the RNeasy mini kit (Qiagen). cDNA was generated from
DNase treated and purified RNA by using random hexamers (Invitrogen) as primers for
reverse transcription. The primers were annealed (70 °C for 10 min, followed by 1 min
incubation in ice) to total RNA (2.5 μg) and were extended with SuperScript III reverse
transcriptase (Invitrogen) with 0.1 M dithiothreitol 12.5 m mol dNTP/aa-UTP (Ambion,
Austin, TX) mix at 42 °C. Residual RNA was removed by alkaline treatment followed by
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neutralization, and cDNA was purified with a QIAquick PCR purification kit (Qiagen).
Purified aminoallyl-modified cDNA was subsequently labeled with Cy3 or Cy5 mono-
functional NHS ester cyanogen dyes (GE Healthcare, Piscataway, NJ) according to the
manufacturer’s instruction. Labeled cDNA was purified using a QIAquick PCR purification
kit (Qiagen) and the purified labeled cDNA was hybridized with S. aureus genome
microarrays version 6.0 provided by the Pathogen Functional Genomics Resource Center
(PFGRC).

Microarray data analysis
Hybridization signals were scanned using an Axon4000B scanner with Acuity 6.0 software
(Molecular Devices, Inc. U.S.) and scans were saved as TIFF images. Data analysis was
performed by TM4 microarray software suite (Saeed et al. 2003). Scans were analyzed using
TM4-Spotfinder software and the local background was subsequently subtracted. The data
set was normalized by applying the LOWESS algorithm using TM4-MIDAS software. The
normalized log2 ratio of test/control signal for each spot was recorded. Significant changes
of gene expression were identified with significance analysis of microarrays (SAM)
software using one class mode (Tusher et al. 2001). The differentially regulated genes were
further classified according to the functional categories described in the comprehensive
microbial resource of TIGR (http://cmr.tigr.org/tigr-scripts/CMR/shared/Genomes.cgi). As
per our standard transcriptional profiling protocol, to minimize the technical and biological
variations and to ensure that the data obtained were of good quality three independent
cultures were used to prepare RNA samples and each RNA preparation was used to make
probes for at least two separate arrays for which the incorporated dye was reversed
(Muthaiyan et al. 2008).

Microarray data accession number
The data discussed in this publication have been deposited in NCBI’s Gene Expression
Omnibus (GEO) and are accessible through GEO Series accession number GSE33465
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33465) (Edgar et al. 2002).

Electron microscopy
TSB grown exponential phase S. aureus COL was treated with ½ x MIC of the CPV for 30
min. Following the treatment, 2 mL of the culture was collected by centrifugation at 10,000
RPM for 10 min. The cell pellets were subsequently fixed in Karnovsky’s fixative for 2 h
under a weak vacuum. Samples were rinsed 3 times in 0.05 mol cacodylate buffer, pH 7.2,
post fixed in 1% osmium tetroxide (aqueous), rinsed with distilled water and stained with
0.5% uranyl acetate overnight at 4°C. The sample was dehydrated in a graded ethanol series,
followed by propylene oxide, and embedded in Spurr’s medium. Ultra-thin sections were cut
with a diamond knife on a MT2B Ultratome (Dupont Company, Newtown, CT). Sections
were placed on 300 mesh copper grid, and stained with 2% aqueous uranyl acetate, followed
by lead citrate. Grids were viewed at 80 kv with a JEM 100 CX transmission electron
microscope (JEOL, Tokyo, Japan).

RESULTS
Inhibitory effect of citrus oils against S. aureus

Of the eight EOs tested terpeneless cold pressed Valencia orange oil (CPV) and cold pressed
citronellal exhibited a high level inhibition against all S. aureus strains in disc diffusion
assays (Table 1). The MICs of CPV for six S. aureus strains were determined by agar
dilution method. CPV concentration at 0.18% caused complete inhibition for the strains
13136 p−m+ and 13136 p−m+V20. However, for strains COL, Mu50, and N315 0.21% CPV
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was required to inhibit the growth. Based on the MICs, growth inhibitory concentration was
determined for CPV to choose the concentration and duration of treatment for transcriptional
profiling studies. Two different concentrations (½ x and 1 x of MIC) of CPV were used to
determine the GIC. Both ½ x and 1 x of MIC concentrations caused significant growth
inhibition for strains SH1000, COL, 13136 p−m+, Mu50, and N315. However, the VISA
strain 13136 p−m+V20 exhibited reduced susceptibility to ½ x MIC of CPV (Fig 1).

Effect of CPV on the cell lysis related gene expression
S. aureus COL challenged with 0.1% CPV for 15 min showed upregulation of 431 genes
and down regulation of 551 genes from a variety of functional categories (Supplementary
Table S1 and S2). In the initial growth study, the CPV treated COL cells showed rapid lysis
within 60 min of the treatment; also 24 fold induced expression of cwrA (SACOL2571) in
the transcriptional profile supported the CPV induced cell wall damage. Therefore, we
particularly focused on the altered expression pattern of the cell wall related genes to better
understand the mechanism of the CPV action on S. aureus. In the transcriptional profiling
analysis about 62 and 36cell envelope-related genes were under- and over-expressed,
respectively. Some of the well recognized cell wall stress stimulon member genesinclude
penicillin binding protein pbp1, pbp2(mecA), pbp3, and murein sacculus and peptidoglycan
biosynthesis related murB, murC, muD, murE, murG, and autolysin related atl, lytM were
downregulated (-3 to -2 fold). pbp4 and capsular polysaccharide biosynthesis related genes
(cap) were upregulated in the cell envelope related category (Table 2).

Related to the cell envelope, classified under Cellular Processes, approximately 54 and 49
genes were down- and up-regulated, respectively. D-alanine-activating enzyme/D-alanine-
D-alanyl carrier protein ligase encoding dltA, dltB, dltC, dltD, cell division related divIB,
ftsA, ftsL, ftsW and, universal stress resistance family protein encoding SACOL1753,
SACOL1759, SACOL0552, drug resistance transporter EmrB/QacA subfamily encoding
SACOL2347 were downregulated (-11 to -2 fold). Two component response regulators
encoding vraS, vraR, arlS, arlR and transcriptional regulator tcaR, staphylococcal accessory
regulator sarA, sarV, sarY were upregulated between 2 to 5 fold (Table 2).

Another prominent category of genes altered by CPV treatment is the Protein Fate, set of
genes which includes chaperones and proteases. Some of the genes encoding the chaperones
and proteases are known as marker genes for cell wall stress condition. In this Protein Fate
category 24 genes were downregulated and 26 genes were upregulated by CPV treatment.
Most of the genes encoding for degradation of proteins, peptides, and glycopeptides were
down regulated between -4 to -2 fold. However, CPV induced the expression of clpB and
clpC (chaperone/protease), spsA and spsB (type 1 signal peptidases A and B), and
SACOL2683 (putative methionine sulfoxide reductase). In addition, expression of genes
encoding the major heat shock proteins GroEL, GroES, DnaK, DnaJ, GrpE had increased
between 2 to 5 fold (Table 2).

In addition to cell wall related genes, a variety of genes involved in DNA metabolism that
play a role in DNA replication, recombination, and repair were down- and up-regulated by
CPV challenge (Supplementary Table S1 and S2). Some of the known DNA metabolism
related genes affected by the CPV treatment encode DNA repair protein RecN, R subunit of
type I restriction-modification enzyme, M subunit type I restriction-modification enzyme,
DNA gyrase, single-stranded-DNA-specific exonuclease RecJ, ATP-dependent DNA
helicase PcrA, DNA polymerase, and DNA ligase.
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Electron microscopic analysis of CPV induced cell wall damage
Actively growing COL cells exhibited an ultra structure typical of S. aureus, with septa that
were normal in appearance and a trilaminar cell wall (Fig 2A), whereas, CPV (0.1%)
treatment for 30 min led to extensive cell lysis in COL cells (Fig 2B). In addition to cell
lysis, loss of cellular electron dense material, coagulation of cytoplasmic constituents,
deformed septum and lack of a distinct midline were observed. As a consequence of
profound structural alterations and breaks in the cell walls several ghosts of lysed cells
appeared after the CPV treatment (Fig 2B). Electron microscopic observation of cell wall
lysis in CPV treated cells substantiates the results of CPV induced altered expression of cell
wall- and cell division-related genes in S. aureus.

DISCUSSION
The infections caused by MRSA and VISA due to acquisition of resistance towards current
antimicrobials pose a serious challenge for therapy (Payne 2008). In an effort to explore the
potential use of orange EO against antibiotic resistant S. aureus, in this study inhibitory
effects and mode of action of CPV against MRSA and VISA strains were studied. The
inhibitory effect of CPV against each S. aureus strain varied in the disc diffusion screening
assay. The VISA strain 13136 p−m+ V20 exhibited greater inhibition (76.67 ± 4.08 mm) than
other MRSA strains. Similar to our results, inhibitory effects of various EOs against MRSA
and other bacteria have previously been confirmed by disc diffusion and agar dilution
methods (Prabuseenivasan et al. 2006, Chao et al. 2008, Fisher and Phillips 2006, Dorman
and Deans 2000, Burt and Reinders 2003, Abulrob et al. 2004, Nostro et al. 2004, Busatta et
al. 2008, Viuda-Martos et al. 2008, Goñi et al. 2009, Patharakorn et al. 2010).

In previous reports antimicrobial properties of EOs and their components have been
reviewed extensively (Burt 2004). However, only a few studies have reported the
mechanism of antibacterial action of EOs in great detail (Cox et al. 1998, Cox et al. 2000,
Fisher and Phillips 2006). Therefore, based on the significant inhibitory effect we observed
in our study, we selected CPV for the further experiments to study the mode of action on
MRSA.

Numerous studies have investigated the changes in gene expression patterns in response to
antibiotics at the sub-inhibitory concentration to obtain an in depth understanding of mode
of action of antimicrobials (Wecke and Mascher 2011). Accordingly, in our study S. aureus
genome microarrays were used to capture the genomic response of CPV treated S. aureus
cells. Transcriptional profiling revealed alteration of gene expression in a variety of
functional categories including amino acid biosynthesis, cell envelope, cellular processes,
central intermediary metabolism, DNA metabolism, protein synthesis, and signal
transduction. Specifically, the observation of 24 fold induced expression of cwrA
(SACOL2571) (equivalent locus SA2343 in strain N315) along with rapid lysis of S. aureus
cells during the CPV treatment supported the CPV induced cell wall damage in S. aureus. In
previous research high level upregulation of cwrA has been reported in a variety of
transcriptomic studies examining cell wall inhibition (McAleese et al. 2006, Sobral et al.
2007, Balibar et al. 2009) and recently, Balibar et al. showed that cwrA was robustly induced
by cell wall-targeting antibiotics: vancomycin, oxacillin, penicillin G, phosphomycin,
imipenem, hymeglusin and bacitracin, but not by antimicrobials with other mechanisms of
action, including ciprofloxacin, erythromycin, chloramphenicol, triclosan, rifampicin,
novobiocin and carbonyl cyanide 3-chlorophenylhydrazone (Balibar et al. 2010). Therefore,
we focused on the cell wall related genes to elucidate the mechanisms of action of CPV. In
support of our view in a similar study Cox et al. (2000) demonstrated that in Escherichia
coli and S. aureus the antimicrobial activity of tea tree oil results from its ability to disrupt
the permeability barrier of membrane structures. In a later study Carson et al. (2002)
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reported that the mechanism of action of tea tree oil on S. aureus is not specific on
cytoplasmic membrane but due to induction of the release of membrane-bound cell wall
autolytic enzymes and eventual cell lysis.

In earlier studies, based on the results of transcriptional profiling experiments after the
exposure of S. aureus to cell wall-active agents a set of cell wall-associated genes were
identified and assigned as a “cell wall stimulon”. These genes have been used as marker
genes for cell wall related gene response (Kuroda et al. 2003, Utaida et al. 2003, Wilkinson
et al. 2005, Gardete et al. 2006). In our study we observed the altered expression of several
cell wall stimulon member genes in CPV treated S. aureus cells and those genes are
discussed in the following sections.

The PBPs are membrane-associated proteins that catalyze the final step of murein
biosynthesis of cell-wall peptidoglycan in S. aureus. PBP1 (pbp1) is essential and important
for cell division (Pereira et al. 2007) and PBP2a, encoded by mecA, is responsible for
methicillin resistance in S. aureus (Pinho and Errington 2005). It has been reported that
inactivation of pbp3 caused a small but significant decrease in autolysis rates. Cells of
abnormal size and shape and disoriented septa were reported when bacteria with inactivated
pbp3 were grown in the presence of cell wall active antibiotic methicillin (Pinho et al. 2000).
In our study downregulation of these PBPs encoding genes could very well be involved in
the observed lysis of CPV treated S. aureus cells. Additionally, we believe that the observed
upregulation of PBP4 encoding pbp4 and capsular polysaccharide related cap genes could
be a protective response of S. aureus during the CPV induced cell wall damage. In support
of our view it was recently demonstrated that PBP4 may play an important role in cell wall
antibiotic resistance (Memmi et al. 2008, Navratna et al. 2010).

The S. aureus cell wall has been reported as a structure composed of highly cross-linked
peptidoglycan, a complex structure composed of sugars and amino acids (murein),
teichoicacids, and cell wall-associated proteins (Dmitriev et al. 2004). We observed the
repression of these murein sacculus and peptidoglycan biosynthesis related murB, murC,
muD, murE, murG, murAB genes upon the CPV treatment. Cell wall autolysis related atl
and lytM genes were also downregulated by CPV treatment. Downregulation of atl and lytM
has previously been reported in S. aureus exposed to cell wall-active agents and viewed as a
response of the cell to preserve peptidoglycan when challenged with cell wall-active agents
(Kuroda et al. 2003, Utaida et al. 2003, Wilkinson et al. 2005, Muthaiyan et al. 2008).

Along with cell envelope related group, genes belonging to S. aureus cellular processes were
affected by CPV treatment. D-alanine-activating enzyme/D-alanine-D-alanyl carrier protein
ligase encoding dltA, dltB, dltC, dltD were reportedly down regulated in CPV treated cells.
dltABCD operon controls the alanylation of wall teichoicacids which are involved in the
control of autolysin activity in S. aureus. Previous research by Peschel et al. (1999; 2000)
demonstrated that mutation in dlt genes lead to failure of alanylation in the teichoic acids
and consequently S. aureus cells become sensitive to human defensin HNP1–3, animal-
derived protegrins, tachyplesins, and magainin II, and to the bacteria-derived peptides
gallidermin and nisin, and cell wall antibiotics. Thus, the repression of dlt genes by the CPV
could be viewed as one of the reasons for the rapid lysis of CPV treated cells.

Genes involved in cell division and stress resistance were also downregulated in the CPV
treated cells. In previous transcriptional profiling studies cell division proteins encoding
genes were shown to be induced by cell wall antibiotics but downregulated by membrane
active compounds (Muthaiyan et al. 2008). Downregulation of these genes in response to
CPV treatment indicates that CPV potentially acts on both cell walls as well as membranes
of the S. aureus cells.
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In S. aureus vraSR is a two-component system that positively regulates a number of genes
involved in cell wall synthesis and arlSR is an another two-component system involved in
several cell wall activities including rate of autolysis as well as the attachment to a polymer
(Fournier and Hooper 2000, Kuroda et al. 2003). Induction two component of these response
regulators along with arlSR associated accessory regulators sarA, sarV, sarY in response to
CPV treatment could be contemplated as a S. aureus protective response to the cell wall
damage caused by the down regulation of cell wall synthesis associated genes.

Some of the known cell wall stress stimulon genes encoding the chaperones and proteases
were affected during exposure to CPV. Electron microscopic analysis of CPV treated cells
revealed that CPV acted on S. aureus cell walls and caused profound cell wall damage and
cell lysis. Treatment of S. aureus cells with cell wall-active agents is considered to result in
the accumulation of misfolded and damaged proteins (Utaida et al. 2003, Wilkinson et al.
2005, Muthaiyan et al. 2008). Presumably in an attempt to counter the CPV mediated
peptidoglycan biosynthesis inhibition and subsequent cell lysis S. aureus increased the
chaperones to restore the lysed proteins. Therefore, we speculate that the genes associated
with degradation of proteins and peptides clpB and clpC (chaperone/protease), spsA and
spsB (type 1 signal peptidases A and B), and SACOL2683 (putative methionine sulfoxide
reductase) and genes encoding the major heat shock proteins GroEL, GroES, DnaK, DnaJ,
GrpE were induced in CPV treated cells.

In addition to cell wall related genes, DNA-replication, -recombination, and -repair related
genes were also apparently down- and up-regulated in CPV treated cells. In previous studies
some of these genes have been identified as members of the cell wall stress stimulon. In S.
aureus altered expression of genes involved in DNA metabolism has been recognized as a
characteristic mode of cell-wall active agent’s action and reported as a part of SOS response
(Maiques et al. 2006). Also, in E. coli it has been reported that transcription of genes
encoding DNA polymerase and DNA repair, is induced during the inhibition of cell wall
synthesis caused by β-lactam antibiotics (Perez-Capilla et al. 2005). Interestingly, in our
study approximately 31 genes related to DNA replication and repair were repressed and 20
genes were upregulated upon CPV treatment. Therefore, we speculate that along with cell
wall damage CPV may possibly repress the S. aureus SOS system that normally used by the
bacterial cells to survive during the adverse condition.

The electron microscopic observation of cell morphology of CPV treated cells confirmed the
transcriptional response of CPV treated S. aureus cells exhibiting down regulation of cell
envelope related genes and corroborated the cell wall active and lytic effect of CPV on S.
aureus. Electron micrographs illustrated the cell wall and membrane damage and loss of
cytoplasmic materials and several cell-wall ghosts that accompanied in CPV treatment of S.
aureus cells. Similar cytoplasmic losses have also been reported in tea tree oil treated S.
aureus cells (Carson et al. 2002). Apparently the down regulation of the autolysis related
gene observed in the transcriptional profiling may serve as a protective response of cells
from the CPV mediated cell wall lysis observed in the electron microscope.

Results of this in vitro study indicate that CPV effectively inhibits the S. aureus by affecting
the cell wall. While the MRSA is becoming a significant public health problem, the findings
of the present study are promising and reveal the potential of CPV as an alternative natural
therapeutic antimicrobial agent against MRSA. However, prior to the use of CPV for MRSA
decolonization issues of safety and toxicity will need to be addressed.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Growth inhibitory effect of CPV on S. aureus strain SH1000 (a), COL (b), 13136 p−m+ (c),
13136 p−m+V20 (d), Mu50 (e), and N315 (f). ◇, control; △, 1x MIC; □, ½ x MIC.
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Figure 2.
Electron micrograph of ½ x MIC of CPV treated S. aureus COL cells. A, control; B, cells
after 30 min of CPV treatment. Magnification, × 30,000, 1 mm = 33.33 nm.
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Table 1

Inhibitory effect of terpeneless cold pressed Valencia orange oil (CPV) and citronellal against S. aureus strains
determined by a disk-diffusion assay

S. aureus strain Inhibition Zone (mm)a

CPV Citronellal

SH1000 31.50 ± 3.02 9.20 ± 0.84

COL 65.83 ± 3.76 19.83 ± 1.33

13136 p−m+ 65.67 ± 4.59 18.83 ± 1.33

13136 p−m+V20 76.67 ± 4.08 11.00 ± 1.26

N315 65.83 ± 3.76 11.17 ± 0.98

Mu50 32.50 ± 2.74 8.33 ± 0.82

a
Inhibition zones are average values of three independent trials ± the standard deviation (SD, n=6) of the mean.
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