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Abstract: Residue contacts predicted from correlated positions in a multiple sequence alignment

are often sparse and uncertain. To some extent, these limitations in the data can be overcome by
grouping the contacts by secondary structure elements and enumerating the possible packing

arrangements of these elements in a combinatorial manner. Strong interactions appear frequently

but inconsistent interactions are down-weighted and missing interactions up-weighted. The
resulting improved consistency in the predicted interactions has allowed the method to be

successfully applied to proteins up to 200 residues in length which is larger than any structure

previously predicted using sequence data alone.
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Introduction

The prediction of protein structure from sequence

data is a computational problem that has been pur-

sued over many years, employing a wide variety of

methods.1 One early approach that met with some

limited success was to combinatorially enumerate

different folds and evaluate the resulting models

using basic principles of protein structure.2,3 While

not being a pure ab initio (physico-chemical)

method, the combinatorial search over a fold-space

had the advantage that it did not include any infor-

mation from known protein structures, either in the

form of empirical potentials or more directly in the

form of structural fragments.4–6 Despite more recent

refinements,7,8 the combinatorial approach was lim-

ited to protein structures under 150 residues and

beyond this the possible combinations, while still

simple to enumerate, cannot be distinguished by the

generic measures used to evaluate them.

To improve the identification of the correct mod-

els, measures based on residue covariance have been

used9,10 which it was hoped would provide even just a

few specific constraints that would limit the possible

solutions to a small number, ideally one, including the

native (true) fold. Previously, such attempts were hin-

dered, principally, by a lack of sequence data; however,

with the recent acceleration in the accumulation of

known sequences, this limitation is becoming less of a

restriction. Recent attempts to use residue covariation

have been based on families of many sequences11 and

have met with greatly improved success.12

Although the accuracy of contacts predicted

from correlated positions has improved, their distri-

bution throughout any particular structure can be

Additional Supporting Information may be found in the online
version of this article.

Grant sponsor: MRC (UK); Grant number: U117581331.

*Correspondence to: William R. Taylor, Division of Mathematical
Biology, MRC National Institute for Medical Research, The
Ridgeway, Mill Hill, London NW7 1AA, UK.
E-mail: wtaylor@nimr.mrc.ac.uk

Published by Wiley-Blackwell. VC 2011 The Protein Society PROTEIN SCIENCE 2012 VOL 21:299—305 299



uneven which can lead to poorly constrained or

unconstrained regions in the constructed model. In

this article, we describe a method that allows the

distribution of predicted contacts to be refined to

anticipate missing constraints.

Results and Discussion

Overview of the methods with a ‘‘worked’’

example

Starting from a single (target) sequence, the PLATO

server7 generates many thousands of models. This pro-

cess, which is outlined in Figure 1, begins with a multi-

ple sequence alignment for the protein family which is

either compiled automatically or taken from a collec-

tion. The full alignment is used to calculate predicted

residue contacts from correlated positions (as

described in the Methods section) and in addition, a

smaller more diverse subset of sequences is used for

secondary structure prediction. As these predictions

seldom agree exactly, all variations are considered as a

basis for model construction. The numbers of predicted

b-strands and a-helices are used to select fragments of

idealized secondary structure lattices that could sup-

port them. For example: 5 strands and 5 helices could

be allocated as 2 a’s above and 3 a’s below a 5-stranded

sheet or 1 a above and 4 below. These ‘‘architectures’’ of

unconnected secondary elements are represented as 2-

5-3 and 1-5-4. Adding a third dimension (with a twist)

develops these abstract representations into 3D ‘‘stick’’

models which are used to enumerate (almost) all possi-

ble chain paths (folds) over the framework. As the

number of folds can reach many thousands, simple

‘‘rules’’ are employed to limit their numbers by avoid-

ing loop crossovers and left-hand connections. The

remaining folds, typically 1000, are ranked on generic

structural properties, such as hydrophobic burial. In

the current work, we also include a component from

the predicted residue contacts to score and rank the

models. From the initial ranking, called the ‘‘full list,’’

the top 500 models (called the ‘‘best list’’) were re-

ranked on just the degree of matching found for the

predicted contacts. In the results presented below, we

examine the top scoring folds in both the full and best

Figure 1. Data flow in PLATO. A multiple sequence alignment (colored by amino acid type) [a] is used to predict secondary

structure elements (SSEs, H ¼ a, E ¼ b) [b] and residue contacts [c]. From the variation in the SSEs, combinations are

generated by permuting the type of the ambiguous elements (in brackets) and each is mapped to a set of idealized

architectures (called Forms) which are identified by the number of SSEs in each layer above, in and below the b-sheet. The
structures of three Forms are selected as examples (2-5-3, 3-6-3, and 2-5-2) but typically many hundreds are used in

practice [d]. For each Form, the SSE ‘‘sticks’’ (red ¼ a, green ¼ b) are connected in all possible ways consistent with the

predicted order of SSEs and some simple topological and geometric rules, giving rise to many thousands of folds. Each fold

is scored by general principles of protein structure and, in addition, by the predicted contacts, giving rise to a set of ranked

folds, only one of which is shown [e]. The top 500 folds are then re-ranked on the predicted contacts alone which are shown

in the ‘‘dot-plot’’ where red dots are predicted and green dots are observed contacts.
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lists along with the top folds in the re-ranked best-list

as this ranking gives greater emphasis to these more

specific contact data, having excluded models that

were poorly constructed. Before considering the overall

results, we will illustrate the process by considering

one protein in detail.

Figure 2(a) shows the multiple sequence align-

ment for the MnmE G-domain (2gj8A) which is a

member of the Ras G-protein superfamily but with

an additional edge b-strand. From this, the second-

ary structure is predicted and summarized as H (a)
and E (b). The third element, however, is ambiguous

and could be either a or b. The folds generated when

this secondary structure element (SSE) is taken as a
tend to be Rossmann-like, following the alternating

ab pattern [Fig. 2(b)] whereas when taken as a b-
strand, Ras-like folds are made [Fig. 2(c)]. The more

regular Rossmann pattern scores best in the initial

ranking (full and best lists), however the contact

map (Fig. 1) contains a clear b-hairpin between the

4th and 5th elements (seen as an anti-diagonal bar

around residue 50) and pairings of the first strand

that are not consistent with a Rossmann-like fold.

Taking greater account of these in the re-ranked list

gives preference to the correct Ras-like fold.

‘‘Training’’ test set

The method was applied to the five proteins that have

been used previously. Although these are described as

a training set, there is no component in the current

method that has the capacity for memorizing structure

but since the current protocol has been developed with

these proteins, they do not constitute an independent

sample. The earlier version of our method had pro-

duced good results with these proteins and in this sec-

tion, we check that the current changes to the method

do not result in any deterioration in performance.

The results for the five ‘‘training’’ proteins are

shown in Table I where it can be seen that the selec-

tion of the true folds dominate the top ranked positions

with roughly 50% of the folds being correct in the top

10–20 ranked models. This is an improvement over

the previous results. The combined packing/contact

score gave the best results, with little gain being made

by re-ranking the best list using just the predicted con-

tacts. In the absence of predicted contact data, only

the Chey-Y like protein (3chyA, 128 residues) had any

correct folds in the top 20 ranked models.

Target test set
The protocol outlined in the Methods section was

applied to the proteins in the target set without any

alteration from their application to the ‘‘training’’ set.

All that was given to the automatic protocol was the

sequence of the target protein and the non-redundant

protein sequence data collection from which a multi-

ple sequence alignment was compiled and used with-

out intervention. The results of these runs are sum-

marized below in which the true topology is

represented as a string (see Table II for a summary

and Supporting Information for structure superposi-

tions and Fig. 2 for an interpretation of the topology

strings). In the absence of contact data, the correct

fold did not appear in the top 20 ranked models for

any of the proteins considered below except 3guvA.

A domain of fruA from Bacillus subtilis

2r4qA (102) ¼ þBþ0.�Aþ0.þB�1.�aþ0.þBþ1.

þBþ2.�Aþ1

The top scoring folds under all ranking schemes

had the correct b-sheet topology for this protein but

under the combined packing/contact score, the termi-

nal helix was flipped. Re-ranking the best list by just

the contact score brought the correct fold at the top.

Ginkbilobin-2, an antifungal protein from

Ginkgo biloba

3a2eA (108) ¼ þBþ0.�Aþ0.þBþ4.�Bþ3.þA�1.

�Bþ1.þBþ2

The PLATO server made many models with the

correct 0-5-2 architecture* for this protein but the

native protein contains a left-handed bab connection

combined with a pair of crossing loops, both of which

are filtered-out by PLATO.

A protein of unknown function MTH1491 from

Methanobacterium thermoautotrophicum

1l1sA (111) ¼ þBþ0.�Aþ0.þB�1.�A�1.þB�2.

þB�3.�aþ0.þBþ1

Ranked on the combined score, the top models were

based on a small Form with 1-3-2 architecture and de-

spite having the correct overall fold, the edge strands

and some helices were poorly constrained. The re-

ranked best list however had a model with the more

complete 1-5-2 Form in top position with the correct fold.

A resolvase family site-specific recombinase

from Streptococcus pneumoniae. 3guvA (149)

¼
þBþ0.�Aþ0.þB�1.�aþ0.þBþ1.�aþ1.þBþ2.(�Aþ1)

Under all rankings, the top folds corresponded

to the native with the exception of the orientation of

the long terminal a-helix, which does not pack on

the b-sheet but forms a coiled-coil in the dimeric

native structure. Excluding this helix after the chain

break in the structure (leaving 121 residues) the top

models were all correct.

The MnmE G-domain from Escherichia coli

2gj8A] (161) ¼ þBþ0. �Aþ0.�B�2.þB�1.�aþ0.

þBþ1.�aþ1.þBþ2.�Bþ4.þBþ3.�-Aþ1

*By ‘‘architecture’’ we mean the number of undirected, uncon-
nected SSE ‘sticks’ in layers. For three layers these are summar-
ized as a-b-a or if there are two b-sheets, as a-bþb-a. Any outer
layer count can be zero (see Figure 1).
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The top models under the combined score were

a good approximations to this Ras-like protein

except that the irregular amino terminal edge of the

domain had been predicted in a more regular (Ross-

mann-like) way. The re-ranked best list, however,

reproduced the Ras-type topology on this edge with

the one slight deviation of linking an exposed loop

as a short extra strand on the edge of the sheet.

A modulator of drug activity B from Esche-

richia coli

2amjA (180) ¼ þBþ0.�Aþ0.þB�1.�aþ0.þBþ1.

�aþ1.þBþ2.�aþ2.þBþ3.�Aþ1

The same model was ranked top in both the full

and best lists and had the correct fold. The top folds

in the re-ranked best list, however, all included an

extra edge strand resulting in a rearrangement on

Figure 2.
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the C-terminal edge of the domain with the correct

fold being displaced to rank 60.

A putative Zn-dependent hydrolase of the

metallo-b-lactamase superfamily from Thermo-

toga maritima

1vjnA (194)

Unlike the proteins considered above, 1vjnA has

two b-sheets, forming a three-layer bba architecture

(0�6þ7�3), with a helix on the empty face bringing

it close to a 4-layer architecture. The PLATO server

considered all three and four layer Forms with the

dominant selections being the 4-layer abba architec-

ture, resulting from the prediction of the helix and

some other loops as a-helices. The combinations of

almost 20 secondary structure elements over this

size of Form are ‘‘astronomic’’ and the correct fold

was not found.

L-Fuculose-1-phosphate aldolase from Bacter-

oides thetaiotaomicron

1opiA (202) ¼ �Aþ0.þBþ0.�B�1.þB�2.þaþ0.

�Bþ1.�Aþ2.þBþ4.�aþ1.�Bþ2.þBþ3.�Aþ1

The same fold was top of both the full and best

list and was a good approximation to the native fold

with the exception of a swap between the first and

third (edge) b-strands. Although this seems reasona-

ble on the basis of their relative hydrophobicity, the

predicted contacts linked the first strand to deeper

SSEs and in the re-ranked topology the top fold cor-

responded to the native.

Conclusions
The prediction of protein topology using predicted

contacts has allowed the application of the combina-

toric method to identify the fold of proteins up to

200 residues in length—well above anything that

has been achieved previously from sequence data

alone, which includes fragment-based methods and

the PLATO method itself. Above 200 residues, suc-

cess was only partial and further improvement in

the methods will be required, including a more

detailed analysis of the balance between the contri-

butions of the generic packing and the specific con-

tacts. Rather than over-optimize such features in

the current work, we have presented the results for

both protocols which indicate a preference towards

placing a greater emphasis on the predicted con-

tacts. In its current form the method has some prac-

tical limitations that can be overcome by refinement,

however, a more fundamental limitation is the

extent to which structural constraints can be

extracted from the multiple sequence alignment and

before any refinements are implemented, additional

effort will be directed to improving the prediction of

the underlying residue contact data.

Methods

Residue contact prediction

Residue contacts were predicted by sparse inverse

covariance matrix estimation, an improvement of

our previous technique of calculating the full matrix

inverse of the mutual information matrix.12,13 Co-

variance matrices were estimated from multiple

sequence alignments generated using iterated HMM

searches and inverted using the graphical Lasso

method,14 essentially as described in Jones et al

(2011).15 Our version of the method differs in a few

minor respects: the choice of regularization parame-

ters (rho ¼ 0.001 was used for off-diagonal elements,

rho ¼ 1.0 for diagonal elements) and we did not

apply shrinkage.

Secondary structure prediction

The prediction of SSEs followed that implemented

in the PLATO server7 (Fig. 1), which applies

PSIPRED16 to a diverse alignment of around 15

sequences, generating a set of prediction variations.

In the current application, these were augmented by

the prediction of secondary structure from the

Figure 2. Example application to 2gj8A. (a) A multiple sequence alignment leads to predicted SSEs with the 4th element

predicted as half a (red, H) and half b (green, E). Of the two smallest b strands, marked with an ‘‘e,’’ the first is not seen in the

native structure and the second is not typical of the superfamily. Given 7 or 8 strands with 4 or 5 helices, the top scoring

folds constructed by PLATO were based on 2-7-3 and 2-8-2 Forms with the top scoring (incorrect) fold shown in (b) as a

topology diagram (a ¼ circle, b ¼ triangle with up being towards and down away from the viewer). However, for reasons

discussed in the text, re-ranking with just the contact data gave preference to the more correct fold shown in (c). This differs

from the native topology only in the addition of a short edge-strand (small triangle) which does not affect the remaining

topology. The SSEs in each topology diagram are labeled with a simple coordinate with A, B, a designating the upper a, b
and lower a layers, respectively, followed by a number giving the SSE position relative to the first element in the layer and

prefixed by a sign with ‘‘þ’’ ¼ towards and ‘‘�‘‘ ¼ away directions. When read in sequence, these coordinates constitute the

‘‘topology strings’’ used below to summarize protein folds. (The fold in (c) ¼ þBþ0.�Aþ0.þB�3. �B�2.þB�1. �aþ0.þBþ1.

�aþ1.þBþ2. �Bþ4.þBþ3. �Aþ1.). Parts (d) and (e) show the superposition of the two models on the native structure

colored from red for close similarity to blue for weak similarity. By RMSD, the models are almost indistinguishable (7.8/157

and 7.4/155, Angstroms/residues) which illustrates that RMSD is a poor indicator of topological equivalance [Hollup et al.

(2011) Comp Biol Chem 35:174–188). However, a good match (yellow–red) can be seen across all six core strands in the

model with the correct topology (e) whereas the left side of the model in (d) is all blue–green indicating weak or no similarity.

The models are in the same orientation as their corresponding topology diagrams in parts (b) and (c).
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predicted contacts. Any contact between residues i

and iþ4 is indicative of an a-helix but can also arise

from non-hydrogen bonded contacts in a more gen-

eral coil region. To implement these biases, the

strength of each contact was summed over its i...iþ4

span and the resulting profile used to bias the

PSIPRED predictions.

The values of the 1,4 contact profile were set to

have zero mean and the propensity to predict each

structure type was altered by shifting the level of

the PLATO scores by a factor w for a, w/2 for coil

and �w/2 for b structure. The size of the scaling fac-

tor w was determined empirically to have a value

commensurate with the RMS range of the PSIPRED

values, giving a marked, but not dominating, contri-

bution to the predictions. The resulting set of modi-

fied predictions was then added to the original

predictions with the removal of any that were

unmodified.

Secondary structure packing

Despite the improvements in the data processing

described in the previous section, the accuracy of the

contact prediction at the level of residue interaction

remains only around 50% over the number of con-

tacts expected in a small protein (around 300–500).

To reduce sensitivity to accuracy at this level, it was

found that the analysis of contacts at the level of

SSEs led to in improvement in fold recognition.13

This method grouped the contacts associated with a

SSE pair into an overall interaction strength and an

orientation component based on the asymmetry of

residue interactions between the amino and carboxy

halves of the two SSEs. Of these measures, the

interaction strength is the more robust but the ori-

entation is often very clear for strongly interacting

pairs of long SSEs.

Bipartite graph matching. The problem of map-

ping a set of secondary structure interactions onto a

given three dimensional structure is isomorphic with

the comparison of two protein structures where the con-

nectivity of one chain is unknown.17 When the connec-

tivity of both chains is known, then a variation of the

dynamic programming algorithm, termed double

dynamic programming (DDP), can be used to find a

good solution as a path through the matrix.18 Without

any chain connectivity, then an intuitive ‘‘greedy’’ algo-

rithm would be to match the strongest pair as meas-

ured by the similarity of their interactions, then pick

the second strongest and so on until all pairings are

made. A more robust and less greedy implementation of

this approach is the stable marriage algorithm (SMA).

The SMA was applied in a similar manner to

dynamic programming in the DDP algorithm: given

that SSEs m and n are equivalent, then how similar

are their interactions? Say, helix m has a strong pack-

ing with helix i in the predicted contact matrix and

we know that helix n packs with helix j in the struc-

ture, then a matrix is constructed in which position i,

j has a high value. When all i, j level pairs are calcu-

lated, the SMA identifies the best match-up of pairs to

give the highest score which provides a guide to how

good the original pairing was of m with n. The process

is repeated for all m and n and as with DDP, the

resulting high-level matrix could be presented again

to the SMA to extract the final pairings. However, as

this considers only pairwise information the evalua-

tion of packing between all established pairings was

used to assess the selection of the next pairing.

Table I. Fold Recognition Over the ‘‘training’’ Decoy Sets

PDB code

Number of
decoy models

Full list true
folds in

Best list true
folds in

Reranked best
true folds in

Full Best Top 10 Top 20 Top 10 Top 20 Top 10 Top 20

2trx 11,478 1633 8 14 8 14 6 13
1coz 3892 616 2 2 2 3 0 0
3chy 6821 1123 10 20 10 20 10 18
1f4p 7767 1396 8 10 8 10 4 5
5p21 17,417 2497 4 6 6 12 8 12

Table II. Fold Recognition Over the Test Decoy Sets

PDB code

Number of decoy
models

Full list
true folds in

best list true
folds in

Reranked best true
folds in

Full Best Top 10 Top 20 Top 10 Top 20 Top 10 Top 20

2r4q 7836 1355 4 8 4 8 10 16
1l1s 2337 857 0 1 0 2 3 3
3guv 11,695 1982 10 20 10 20 10 19
2gj8 42,040 1915 0 0 0 0 10 20
2amj 4313 931 4 4 6 6 0 0
2opi 2374 1044 0 0 0 0 1 1
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Packing consistency refinement. Application of

the double stable marriage (DSM) algorithm

described above to SSE contact data and a secondary

structure lattice (‘‘stick’’ model) will produce a single

unique highest scoring solution but because the stick

model has several equivalent pairings, there will be

equally many solutions with scores that are almost

as good. To get a reasonable sample over these, we

ran the DSM algorithm 100 times with a small ran-

dom component (65%) added to each pair interac-

tion at the low-level. The resulting set of pairings

were then re-scored using a combination of a sum of

their pair-wise interactions, their predicted exposure

(by PLATO) and the length of the chain path. This

combined score was used to weight the observed

SSE interactions and their connections over the

stick lattice into a weighted sum over the 100 trials.

Protein data

‘‘Training’’ test set. The set of five proteins used

previously12 was employed again in the current

work to provide a direct comparison with the earlier

results.

Target test set. Proteins in PFAM were considered

in order of decreasing family size and any all-alpha,

repetitive or multi-domain proteins were excluded,

along with any that were less than 100 residues in

length.

The predicted contact data can be found in the

Supporting Information.
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