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ABSTRACT The mechanisms that determine bacterial shape are in many ways poorly understood. A prime example is the
Lyme disease spirochete, Borrelia burgdorferi (B. burgdorferi), which mechanically couples its motility organelles, helical flagella,
to its rod-shaped cell body, producing a striking flat-wave morphology. A mathematical model is developed here that accounts for
the elastic coupling of the flagella to the cell cylinder and shows that the flat-wave morphology is in fact a natural consequence of
the geometrical and material properties of the components. Observations of purified periplasmic flagella show two flagellar
conformations. The mathematical model suggests that the larger waveform flagellum is the more relevant for determining the
shape of B. burgdorferi. Optical trapping experiments were used to measure directly the mechanical properties of these spiro-
chetes. These results imply relative stiffnesses of the two components, which confirm the predictions of the model and show
that the morphology of B. burgdorferi is completely determined by the elastic properties of the flagella and cell body. This
approach is applicable to a variety of other structures in which the shape of the composite system is markedly different from
that of the individual components, such as coiled-coil domains in proteins and the eukaryotic axoneme.
INTRODUCTION

Spirochetes constitute a unique group of motile bacteria, with

some members being highly virulent in humans. Although the

flagella of these bacteria are structurally similar to those of

other species, they are encased within the periplasmic space,

which lies between the cell wall complex (i.e., cell cylinder)

and the outer membrane. Although spirochetes vary tremen-

dously with respect to habitat, size, number of periplasmic

flagella attached at each end, and their mechanics of swim-

ming, DNA sequence analysis indicates that they all evolved

from a primordial protospirochete (1–3). Depending on the

species, the final shape of a spirochete is either helical or

a flat wave. As in other bacteria, the flagella serve an obvious

motile function as they are driven by rotary motors at their

base, but, in spirochetes, these organelles rotate between the

outer membrane and cell cylinder (3). Species such as Spiro-
chaeta aurantia and Treponema primitia swim by a mecha-

nism in which the flagella do not deform the cell cylinder

and do not influence cell shape (4,5). In contrast, in other

species, such as Leptospira interrogans and Borrelia burg-
dorferi (B. burgdorferi), the flagella are also skeletal organ-

elles; cells lacking flagella or with straight flagella have

altered shapes, and these mutants are also nonmotile (6–10).

Moreover, several models of spirochete locomotion indicate

that the skeletal function of the periplasmic flagella is essential

for their motility (3,6,11–13).

In these species of spirochetes, where the flagella serve

both skeletal and motile functions, shape and motility are
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intimately connected. In addition, mounting evidence sug-

gests a substantial link between motility and virulence in

B. burgdorferi. For example, preliminary results with two

B. burgdorferi targeted mutants isolated independently in

the periplasmic flagellar protein encoded by flaB found

the following: the flaB mutants were not infectious in mice

at an infectious dose 50 (ID50) of 5� 103 cells/mouse. Reiso-

lation of B. burgdorferi from the flaB inoculated mice tissues

also failed even when the animals received 200 times the ID50

(M. Motaleb, P. Stewart, A. Bestor, P. Rosa, and N. Charon,

unpublished). Artificially infected Ixodes scapularis ticks

were also unable to transmit the mutant organism from

their intestines to experimental mice. These results, although

preliminary, indicate that motility is required for infection

in vivo, irrespective of their route of infection (M. Motaleb,

P. Stewart, A. Bestor, P. Rosa, and N. Charon, unpublished).

These results are also consistent with the results of Botkin

et al. (14), who found that a putative flagellar motor mutant

was less infectious than that of wild-type cells. Taken

together, because the flaB mutants are nonmotile and are

rod shaped, and the wild-type cells have a flat-wave

morphology and are motile, we expect that the overall shape

of the cells, which is tied to motility, is an important factor

for virulence.

A complete picture for how spirochetes create and maintain

their shape is lacking. In some spirochete species, genetic

evidence indicates that the helical cell shape of the cell is asso-

ciated with the cell wall and is independent of the periplasmic

flagella (3,6,8–10,15). However, in others, the final shape

of the entire cell is due to complex interactions between

the cell cylinder and the periplasmic flagella. Specifically, the

Lyme disease spirochete B. burgdorferi, and possibly the
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syphilis spirochete Treponema pallidum (16), have flat-wave

morphologies. B. burgdorferi has a periodically undulating,

nearly planar shape (Fig. 1, a, b, e, f). Remarkably, cells lack-

ing FlaB, the primary constituent of the left-handed flagellar

filament, are rod-shaped (3,7,12,17) (Fig. 1, c and g). Thus,

the periplasmic flagella play a major role in creating the

flat-wave morphology in this species. Yet, the physics of

how this flat-wave morphology arises is not clear. Because

T. pallidum is unable to be continuously cultured in vitro,

we know very little about the factors that influence its shape.

The morphology and motility of B. burgdorferi has been

characterized in detail. High-voltage electron microscopy

(13) has been used to determine the typical cell dimensions:

the cell cylinder radius (a ¼ 0.17 mm), length (10–20 mm),

wavelength (l ¼ 2.83 mm), and undulation amplitude (h ¼
0.78 mm) (12,13). Attached subterminally to the ends of

the cell are between 7 and 11 flagellar filaments with a diam-

eter of 20–24 nm (13,18). Each filament is connected to

a rotary motor anchored in the inner membrane of the cell.

Spirochete flagellar motors, including those of B. burgdor-
feri, are similar to the motors found in other bacterial species

(19,20). Rotation of the periplasmic flagella of B. burgdor-
feri induces traveling-wave deformations of the cell cylinder,

which provide the thrust that drives the swimming of these

bacteria (12). Periplasmic flagella that are not constrained

by the cell cylinder have been observed to be left-handed

helical filaments with a helix radius R ¼ 0.14 mm and pitch

P ¼ 1.48 mm (21) (Fig. 1, d and h). In situ, the periplasmic

flagella shape is dramatically different, due to its interaction

with the cell cylinder. Although the flagella remain left-

handed, they wrap about the cell cylinder in a right-handed

sense and are stretched with R ¼ 0.19–0.20 mm, and with

a helical pitch of P ¼ 2.83 mm (note that P ¼ cell’s l) (13).

These observations suggest a model for the development of

the flat-wave morphology in B. burgdorferi. Enclosing the

flagella inside the periplasmic space causes an elastic defor-

mation of the cell cylinder, which in turn exerts a force back
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onto the periplasmic flagella, causing them to deform as

well. To explore whether this conceptual picture is sufficient

to explain the flat-wave morphology, we developed and tested

a mathematical model that treats the cell cylinder and the peri-

plasmic flagella as filamentary elastic objects, because the cell

cylinder and the flagella are much longer than they are wide.

This approximation assumes that the cross sections of the fila-

ments do not change appreciably during deformation, which

is typically valid for long, thin objects that bend on length

scales much longer than their diameter. As the flat-wave shape

is observed even in nonmotile cells, we explore the static

configurations of the model that is developed here.

MATERIALS AND METHODS

Bacterial strains

We used the high-passage B. burgdorferi senso stricto strain B31A, which

has been previously described (7,22).

Cell cylinder preparation

To remove the outer membrane of cells for use with the optical trapping

experiments, we centrigued 25 mL of late logarithmic phase cells (1 �
108/mL) of B. burgdorferi senso stricto strain B31A at 6000 � g for

20 min. The cells were then washed in 20 mL of 150 mM phosphate buffered

saline, pH 7.4 (PBS) and then centrifuged again at 6000� g for 15 min. We

resuspended the pellet in 10 mL of PBS with myristate detergent (final

concentration 1%), and the solution was shaken in a 37�C water bath for

12 min and then centrifuged at 6000 � g for 15 min, washed, and recentri-

fuged at 6000� g for 15 min. Finally, the pellet was resuspended in 2–3 mL

of water and a pipette was used to disperse the cells.

Measurement of the cellular morphology

Darkfield images of B. burgdorferi strain B31A with and without the outer

membrane were taken using a Zeiss Axioscope 2 (100 � oil immersion

objective) connected to a Hamamatsu digital camera (C4742-95). The

peak-to-peak amplitude and wavelength were measured using the ‘‘line

tool’’’ in Volocity 4 software (Improvision Inc., Coventry, UK). At least

8–12 individual cells were measured.
FIGURE 1 The morphology and architecture of B. burg-

dorferi, which has a planar, flat-wave morphology. (a, e)

When viewed from one perspective, the cell body appears

wave-like; (b, f) When rotated by 90�, the cell shape

appears straight. (e, f) Schematic of the cell construction

of B. burgdorferi. The cell cylinder is shown in green

and the perplasmic flagellar bundle in purple. The outer

membrane sheath is not shown. The flagella wrap around

the cell body, inducing a flat-wave shape, with a wave-

length of l and amplitude h. The shapes shown here

were produced by the mathematical model with parameters

a ¼ 0.2 mm and A ¼ 5. (c) Mutants lacking FlaB do not

produce flagella, and the cells are rod-shaped. Scale bar,

5 mm. Figure originally published in (3) and reproduced

with permission. (g) Schematic of the cell cylinder. The

radius of the cell cylinder is a. (d) Darkfield image of puri-

fied flagella from B. burgdorferi. Scale bar, 2 mm. Image

courtesy of S. Goldstein. (h) Purified flagella are helical

with a pitch, P and diameter 2R. (a, b) Scale bars, 1 mm.

Figures originally published in (12).
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Purification of the periplasmic flagella

Periplasmic flagella were purified using a method similar to that given in (19).

Approximately 250 mL of late logarithmic phase cells were centrifuged at

6000� g for 20 min (all centrifuation was done at 4�C). The pellet was washed

in 30 mL of sucrose solution (0.5M sucrose, 0.15M Tris-HCl, pH 8) and

recentrifuged at 6000 � g for 15 min. The pellet was then resuspended in

15 mL sucrose solution and stirred on ice for 10 min, 0.15 mL of lysozyme

(10 mg/mL) was slowly added, and then the solution was stirred on ice for

5 min. 1.5 mL EDTA (stock 20 mM) was added to a final concentration of

2 mM, and the solution was then stirred on ice for 20 min, and then stirred at

room temperature for 40 min. Approximately 1.5 mL myristate detergent (stock

10% in PBS) was added to a final concentration of 1%, and then it was stirred at

room temperature for 1 h. 0.3 mL MgSO4 (stock 0.1 M) was added and then the

solution was stirred at room temperature for 5 min. 0.3 mL EDTA (stock 0.1 M)

was added, then the solution was stirred for 5 min and centrifuged at 17,000� g

for 15 min. The supernatant was taken, and 2 mL PEG solution (stock 20% PEG

in 1M NaCl) was added, and then it was put on ice for 30 min. The solution was

centrifuged at 27,000� g for 20 min. The pellet was resuspended in 5 mL H2O

and then recentrifuged at 85,000� g for 30 min, and the pellet was resuspended

in 1 mL H2O and stored at 4�C.

Coverslip preparation

Two-micrometer-diameter polystyrene spheres were coated with poly-L-

lysine and placed in a 100 mM NaCl solution. The 2 mm spheres were

then flowed into a flowcell and let stand for ~10 min to allow them to settle

and stick to the surface of the coverslip to provide reference points and

spacers in the experiment. The fluid was then exchanged with dionized

H2O to remove excess, nonstuck spheres from the flowcell. The experi-

mental assay was then flowed into the chamber.

Optical trapping experiments

Our optical trapping system was constructed using an 800mW NdYg laser

(Santa Few Laser Co.) and a Nikon 60X 1.4 NA oil objective on a TE-2000

Nikon microscope. The average spring constant for the trap was 0.25 pN/nm.

The flagellar assay consisted of a dilution of purified flagella from

B. burgdorferi and 1 mm silica spheres coated with poly-L-lysine in 0.6%

methylcellulose solution with 100 mM NaCl.

The cell cylinder assay consisted of a dilution of spirochete cell cylinders

and 1 mm silica spheres coated with poly-L-lysine in 0.6% methylcellulose

solution with 50 mM NaCl added. The solution was pH adjusted to 7.5–8.9

using NaHCO3.

For individual flagellum measurements, the sample was searched for bead

flagellum pairs with one end of the flagellum spontaneously adherent to the

surface. The tethered bead was trapped and brought to a height of 0.8 mm

off the surface of the coverslip. In the case of surface tethered flagella, the

y position was adjusted to triangulate the point of attachment and determine

the length of the flagella.

For cell cylinder measurements, cells were found that had a 1 mm sphere

attached somewhere along the length. This sphere was attached to the

surface. A second bead was attached to the distal end of the cell and was

brought to a known height off the surface of the coverslip.

The piezo stage (MadCity Labs, Nano-H100) was driven with a triangle

wave (Agilent 33220A). The y position of the stage was adjusted such that

the stretching of the flagella or cell was purely in the x direction. The ampli-

tude, frequency, and offset position of the stage were adjusted so that the

stretching event occurred at an appropriate rate for tracking and to ensure

that the event included the unstressed configuration of the cell or flagellum

(nominally 50–100 mV, at 0.25 Hz).

A quadrant photodiode was used to image the trapped bead in the back

focal plane of the condenser and was used to monitor and adjust the position

of the bead in the trap. Trap calibration was done by taking 10 sets of 500

images of the trapped bead (at a specified height) with a 1 ms physical

shutter for calibration of the trap (Photometrics, Quantex 57). This exposure
time was necessary to match the characteristic time of a bead in the trap and

minimize overestimation of the trap stiffness. The calibration images were

reduced to remove optical and electronic noise (23) using Image J (24).

The positions of the beads were then tracked using ‘‘Track Particles’’ in

Metamorph (Molecular Devices) following the guidelines set out by Carter

et al. (25). The bead tracks were then used to calibrate the trap stiffness, K,

using the equipartition method (26).

The stiffness K was calculated for each bead in the calibration set and

averaged. The weighted average of all of the beads was then calculated

giving the average trap stiffness. In the case of surface stretching experi-

ments where the ‘‘test’’ bead could not be calibrated directly, the optical

trap stiffness was determined by the weighted average of all the K values

for a given height in a given experiment (n ¼ ~10).

The stretching angle in z was taken into account for determining the

cell/flagellum lengths and in the force calculations.

The composite two-filament model for
B. Burgdorferi

In B. burgdorferi, the periplasmic flagella reside at the surface of the cell

cylinder. Therefore, there is a relationship between the centerline coordinates

of the cell cylinder and those of the periplasmic flagella. Because the cell

cylinder and the periplasmic flagella are much longer than they are wide,

we treat them both as filamentary objects with circular cross-sections. There

are typically between 7 and 11 periplasmic flagella per end in B. burgdorferi

(18). The flagella form a ribbon-like structure when observed using cryoelec-

tron tomography (27). Because the flagella are circumferentially localized, we

treat the flagellar ribbon as a single filament, for simplicity. We define the cen-

treline of the cell cylinder as rc(s), where s is the arclength along the centreline

(Fig. 2). Likewise, rf(sf) is the centreline position of the periplasmic flagella,

where sf is the arclength along the flagellar ribbon (Fig. 2).

At all points along the centerline of the cell cylinder, we define an ortho-

normal triad be1;be2;be3gf , with be3 ¼ vrc=vs the tangent vector of the cell

cylinder. The unit vectors be1 and be2 point to material points on the surface

of the cell cylinder (Fig. 2). Curvature and twist of the cell cylinder causes

the material frame to rotate (28):

FIGURE 2 Schematic diagram showing a B. burgdorferi cell. The cell

cylinder is gray and the periplasmic flagella are treated as a single helical

filament, shown in black. The centerline of the cell cylinder, described by

the vector, rc, is depicted by the dashed line. rf is the vector describing the

centreline of the periplasmic flagella. (Inset) A close up view of a short

segment of the cell. be1 and be2 are unit vectors that point to the surface of

the cell cylinder. The flagella are located at a point abp1 from the centreline.

a is the angle from be1 to bp1.
Biophysical Journal 96(11) 4409–4417
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vbei

vs
¼ U � bei; (1)

where i ¼ 1,2,3. The vector U ¼ {U1, U2, U3} is the strain vector, which

describes the bending and twisting strain at a given point. U1 and U2 give

the curvature of the cell cylinder, and U3 is the twist density of the cell

cylinder about its tangent vector.

Because the periplasmic flagella lie at the surface of the cell cylinder, we

can describe the position of the flagella in terms of rc (Fig. 2),

rf ¼ rc þ a cos abe1 þ a sin abe2; (2)

where a is the radius of the cell cylinder and a is the angular position of the

periplasmic flagella with respect to be1. Using Eq. 2, it is possible to write the

curvature and twist of the periplasmic flagella in terms of U, a, and a rota-

tional angle for the flagella, b. A complete description of this derivation is

given in the Supporting Material.

When the flagella are not present, the cell cylinder has a straight, rod-

shaped morphology (3,7,12). As mentioned above, the flagella are helical

with a helix radius, R ¼ 0.14 mm and pitch P ¼ 1.48 mm (21). Therefore,

we treat the cell cylinder as a straight filament with no preferred curvature

or twist. Using the empirically determined helix radius and pitch, the

preferred curvature and torsion of the periplasmic flagella are

k0 ¼
R�

R2 þ
�

P
2p

�2� ¼ 1:86mm�1

t0 ¼
ðP=2pÞ�

R2 þ
�

P
2p

�2� ¼ 3:14 mm�1

: (3)

The internal elastic stresses of the cell cylinder exert a force Fc and a moment

Mc on the cross section at s. Balancing the forces and moments of an element

of the rod of length ds leads to (28)

vFc

vs
þ K ¼ 0;

vMc

vs
þ be3 � Fc ¼ 0;

; (4)

where K is the force per length that the periplasmic flagella exert on the cell

cylinder. Likewise, the elastic stresses of the periplasmic flagella exert a force

Ff and a moment Mf on the cross section of the flagella that lies at s. Force

and moment balance on an element of the periplasmic flagella of length
ffiffiffi
g
p

ds, where
ffiffiffi
g
p

is the ratio of an infinitesimal length of the flagella to that of

the cell cylinder, leads to

1ffiffiffi
g
p

vFf

vs
� 1ffiffiffi

g
p K ¼ 0;

1ffiffiffi
g
p

vMf

vs
þ b33 � Ff ¼ 0;

(5)

where b33 is the tangent vector of the periplasmic flagella.

We use linear elasticity theory to define the constitutive relations that

define the elastic restoring moments to the strain vectors. Therefore, the

bending moments are linearly related to the curvatures, and the twisting

moments depend linearly on the twist density. Because the cell cylinder

prefers to be straight and the periplasmic flagella prefer to be helical,

Mc ¼ AcU1be1 þ AcU2be2 þ CcU3be3;
Mf ¼ Af ðu1 � k0Þb31 þ Af u2b32 þ Cf ðu3 � t0Þb33;

(6)

where Ac and Af are the bending moduli for the cell cylinder and periplasmic

flagella, respectively. Cc and Cf are the twisting moduli for the cell cylinder

and periplasmic flagella. Here b31 and b32 are orthogonal unit vectors that are
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perpendicular to the tangent vector of the periplasmic flagella, and u is the

strain vector for the periplasmic flagella.

The force and moment balance equation (Eqs. 5 and 6) along with the rela-

tionships between the cell cylinder material frame and the periplasmic material

frame comprise a system of 12 equations in 12 unknowns. In the Supporting

Material (Eqs. S25 and S38), we show that there are a number of conserved

quantities that can be used to simplify the system of equations, and we discuss

the method of solution that is used to solve for the equilibrium morphology of

B. burgdorferi.

RESULTS

B. burgdorferi periplasmic flagella
are polymorphic

In samples of purified flagella, we observed two different

morphologies of the flagella. Roughly 90% of the flagella

had a helix pitch of 1.4 � 0.1 mm and helix diameter of

0.4 � 0.1 mm, which is comparable to the published values

(21). The other flagella were observed to have a larger helix

pitch and diameter with values of 2.0 � 0.1 mm and 0.8 �
0.1 mm, respectively. This alternative conformation of the

periplasmic flagella was independently discovered by S. Shi-

bata and S-I. Aizawa (S. Aizawa, University Hiroshima,

personal communication, 2008), and our measurement of

the helix pitch and helix diameter was confirmed using

dark-field microscopy (S. Goldstein, University Minnesota,

personal communication, 2008). This larger waveform of

flagella has preferred torsion and curvature of 1.2 mm�1 and

1.5 mm�1. In some circumstances, a flagellum was observed

to have both morphologies in different regions along its length

(Fig. 3). Therefore, like the flagella of other bacteria, the peri-

plasmic flagella of B. burgdorferi are polymorphic (29). We

denote the smaller waveform as the normal form and the larger

waveform as the wide form.

FIGURE 3 Polymorphism of the flagella of B. burgdorferi. A B. burgdor-

feri periplasmic flagellum with one end in the normal helical form (small
arrow) and the other end in the wide form (large arrow). Other flagella

are shown that are in the normal form. Scale bar, 2 mm. Image courtesy of

S. Goldstein.
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Theoretical model

The energy required to twist or bend a filamentary elastic

object is determined by the two elastic moduli, which are

each determined by a material property such as the Young’s

modulus and the radius of the filament. Using the force and

moment balance equations described previously (Eqs. 5 and

6), the equilibrium shape of the composite system of cell

cylinder and flagella can be determined. Our model assumes

that the flagella are localized at one position about the circum-

ference of the cell cylinder and that they are free to slide. A

similar model was used previously to describe the shape and

dynamics of the Leptospiraceae (30); however, this model

ignored the effects of the finite radius of the cell cylinder,

which are necessary to describe the shape of B. burgdorferi.
For most materials, the ratio of the twisting to bending

modulus is between 2/3 and 1 (28). Therefore, we assume

that the ratios Cc/Ac ¼ Cf/Af ¼ 1. Then, there is only one

free parameter in the model, the ratio A ¼ Af/Ac, which

was varied to determine the range of shapes predicted by

the model. In addition, we used the model to examine the

cell morphology for the two different observed flagellar

conformations.

We began by examining the morphologies that are pre-

dicted by the model using the preferred curvature and torsion

of the normal form of the periplasmic flagella. When the cell

cylinder is much stiffer than the flagella, the cell is nearly

straight and the flagella wrap about it with a pitch that is larger

than P. As the ratio A increases, the cell cylinder deforms into

a flat-wave shape whose deformation amplitude increases

while the wavelength decreases (Fig. 4, a and d). In this

flat-wave shape, the model predicts that the periplasmic

flagella should wrap about the cell cylinder in the opposite

sense of their own handedness; i.e., a left-handed flagellum

should wrap about the cell cylinder in a right-handed fashion,

which agrees with previous experimental measurements (13).

In addition, for values of A larger than 1.0, there can be a

noticeable axial rotation of the flat-wave morphology

(Fig. 4 a), a precession about the cell axis that is often

observed (12). The extent of precession depends on the rela-

tive positions of flagellar attachment points at the two ends.

However, we find that the amplitude and wavelength of the

flat-wave shape are always less than those observed experi-

mentally. The largest value of the wavelength is ~2.0 mm,

which occurs at small values of A. When A is equal to 3, we

find an amplitude of 0.54 mm and a wavelength of 1.7 mm

(Fig. 4 d). At larger values of A, the amplitude increases

slightly, but the wavelength decreases, and as A goes to

infinity the wavelength goes to the pitch of the normal form

of the flagella. We also found that the shape of the cell did

not depend strongly on the values of the twisting moduli

(results not shown). Therefore, using the parameters for the

normal form of the periplasmic flagella, there is no value of

A that reproduces the observed amplitude and wavelength

of the flat-wave shape.
Using the helix parameters for the wide form of the peri-

plasmic flagella, we find good agreement with the experimen-

tally observed flat-wave shapes. When A ¼ 2, we found an

amplitude of 1.2 mm and a wavelength of 3.6 mm (Fig. 4 b),

which agrees well with the value of the amplitude and wave-

length that we measure for cells with the outer membrane

removed (see below). As A increases, the amplitude remains

roughly constant, and the wavelength decreases. When the

flagella are in this larger waveform configuration, the shape

of the cell is not a true flat wave, but rather is a flattened-helical

form (Fig. 4 c). Indeed, for values of A> 6, the shape becomes

much more helical and does not resemble a flat wave. As

A gets larger, the shape becomes more helical and there

is a larger precession of the shape about the central axis

(Fig. 4 b). Thus the model implies that the ratio A is between

2 and 6.

FIGURE 4 Predictions of the mathematical model. (a) The shape of the

cell when the flagella are deformed with respect to the normal form for

A ¼ 0.5, 2, and 6. Increasing the stiffness of the periplasmic flagella leads

to larger deformations of the cell cylinder. When A is between 1 and 5,

the flat-wave shape precesses about the long axis of the cell morphology,

which leads to a nonplanar waveform (bottom figure). (b) The shape of

the cell when the flagella are deformed with respect to the wide form for

A ¼ 0.5, 2, and 6. (c) For the larger waveform of the periplasmic flagella,

the morphology is not a true flat wave, but rather is a flattened-helical

form. Top panel shows a side view of the shape with A ¼ 1 and the bottom

panel shows an end-on view. (d) The model predicts that increasing the ratio

A leads to a decrease in the wavelength of the cell cylinder deformation, l,

and an increase in the amplitude, h. The solid line shows the results for the

wide form of the flagella and the dashed line is the results for the normal

form. (e) Effect of changes in the cell radius. For small values of the cell

radius, a, the shape of the cell is helical. As the cell radius increases, the

shape becomes more flattened. Here, values for a are given in microns.
Biophysical Journal 96(11) 4409–4417
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The flat-wave shape of B. burgdorferi is due to a matching

between the helical radius and pitch of the flagella and the

radius of the cell cylinder. If the flagella are stretched, then

this matching depends on the current configuration of the

flagella, not their preferred shape. Our mathematical model

suggests that the flat-wave shape arises when the radius of

the cell cylinder, a, times the square of the torsion of the peri-

plasmic flagella is roughly equal to the curvature of the

flagellum: at2 ~ k (see Eq. S52 in the Supporting Material).

For the normal form of B. burgdorferi periplasmic flagella,

we find that this relation is satisfied for the preferred torsion

and curvature, t0 and k0. Therefore, we expect that for large

values of A, the flat-wave shape should arise when the flagella

are in the normal form, which is what is predicted by the

model. To illustrate how the cell shape depends on this match-

ing condition, we treated the cell radius a as a free parameter

and examined the shape of the cell when the flagella are in the

normal form. When the cell cylinder’s radius is much smaller

than that of the flagella, the cell is also helical (Fig. 4 e).

Increasing the radius of the cell leads to a flatter morphology

(Fig. 4 e).

The preferred shape of the cell cylinder

Our mathematical model assumes that the shape of the cell

cylinder is a straight rod when the flagella are not attached.

This assumption is based on the finding that B. burgdorferi
cells that are lacking FlaB (the primary constituent of the

flagellar filament) are rod-shaped (7,12,17). However, this

result does not preclude the possibility that the presence of

the periplasmic flagella alters cell wall growth such that

the cell cylinder takes on a nonrod-shaped morphology.

Therefore, we treated cells with detergent to remove their

outer membrane and then treated cells with low pH buffer

(pH 2.8–3.2) to dissociate the periplasmic flagella into

monomer. These cells became rod-shaped, which confirms

the hypothesis that the preferred shape of the cell cylinder

is a straight rod.

Measurement of the elastic parameters of the cell
cylinder and the periplasmic flagella

To test the mathematical model, we measured the stiffness of

the cell cylinder and the periplasmic flagella using optical

trapping methods. For studies of the cell cylinder, detergent

was used to remove the outer membrane of cells of B. burg-
dorferi senso stricto strain B31A, which exposes the cell

wall. With the outer membrane removed, the flagella often

remain intertwined about the cell cylinder. To determine

whether removing the outer membrane plays a significant

role in determining the cell morphology, we measured the

cell morphology before and after detergent treatment. Before

detergent treatment, we measured the cell wavelength to be

3.2 � 0.2 mm and the amplitude was 1.0 � 0.1 mm, which

is comparable to what has been measured previously (12,13).

After detergent treatment, the wavelength was 3.6 � 0.2 mm
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and the amplitude was 1.3� 0.1 mm. Therefore, the presence

of the outer membrane has a small effect on the morphology of

the cells, but the gross morphology is not altered. Presumably,

removing the outer membrane allows the flagella to pull away

slightly from the cell cylinder.

Polylysine-coated silica beads (1 mm diameter) were

attached to two points along the length of the purified cell

cylinder. One of the beads was then anchored to a coverslip

by attachment to another bead (Fig. 5 a). The second bead

was positioned in an optical trap. A quadrant photodiode

was used to measure and align the position of the bead in

the optical trap as well as to calibrate the spring constant of

the trap; all calibrations were done in Metamorph using video

tracking of trapped beads imaged with very short (1 ms)

shutter speeds (26). The microscope stage was oscillated

and the displacement of the trapped bead with respect to

the position of beads affixed to the coverslip was measured.

Using this procedure, the force required to stretch the cell

cylinders was determined (Fig. 5 b). The shape of B. burgdor-
feri is roughly sinusoidal (12,13), and the force-displacement

curves are well-fit by assuming that the cell cylinder behaves

like an elastic sine wave (see Sec. 2 in the Supporting Material

for more details). The effective bending modulus found using

this fitting procedure is 42 � 24 pN mm2. We attribute the

significant uncertainty in this fit to arise mostly due to varia-

tion in the number of periplasmic flagella per cell. By stretch-

ing the cell cylinder, bent regions where the periplasmic

flagella are still wrapped about the cell body are straightened.

Therefore, this bending modulus accounts for the combined

effect of the cell cylinder and the periplasmic flagella. Our

mathematical model predicts that the bending modulus that

is measured by this experiment is Ac þ 0.6Af (see Eq. S37

in the Supporting Material).

Using a similar experimental procedure, we attached poly-

lysine coated microspheres to single, purified flagella and

measured the stiffness of the periplasmic flagella using our

optical trap. Fig. 5 c shows four representative force-displace-

ment curves. We fit these data to theoretical curves generated

numerically for stretching and compressing an elastic helix.

From these fits, the bending modulus for the periplasmic

flagellum was estimated to be 6.7 � 3.7 pN mm2. This value

is of the same order as measurements of the bending modulus

of flagellar filaments from Salmonella enterica serovar

Typhimurium performed using quasielastic scattering of light

(31), extensional flow (32,33), and optical trapping experi-

ments using repolymerized flagellar filaments (34). Using

a flagellar diameter of 20 nm, we estimate the Young’s

modulus of the flagellum to be 700 MPa. Therefore, if there

are 8 periplasmic flagella along the length of B. burgdorferi,
Af would be ~53 pN mm2. From this result and the results

from the cell stretching experiments, we can conclude that

the bending modulus for the cell cylinder is no more than

a few 10s of pN mm2. For an elastic tube, such as the cell

wall, the Young’s modulus, E, is related to the bending

modulus as A ~ pEa3t. Here t is the thickness of the cell
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FIGURE 5 Experimental measurement of the stiffness of

the cell cylinder and the periplasmic flagella. (a) Schematic

of the experimental setup. Polystyrene beads are attached

to two points on the cell cylinder of Triton-X treated cells

or a purified flagellum. One of the beads is anchored to the

coverslip via adhesion to another bead. The other bead is

trapped in an optical trap. Oscillation of the microscope

stage deforms the cell cylinder or flagellum. A quadrant

photodiode detector is used to measure displacement of

the bead in the trap. Video images are used to measure

the displacement of the trapped bead with respect to fixed

beads on the surface of the coverslip. (b) Six representative

plots of the force vsersus displacement of the cell cylinder

(see Experimental Procedure in text as well as in Support-

ing Material). Different colors represent data from different

experiments. The black lines show the fits to the data. The

parameters used to fit the data ranged from A¼ 21 pN mm2

to 91 pN mm2. (c) Four representative experiments for

stretching purified flagella. Black circles are the experi-

mental data. Solid lines show the fits to a model for deform-

ing a linear elastic helix. The parameters used for these fits

are A ¼ 1.1 pN mm2 (top left), 7.7 pN mm2 (top right), 11.6

pN mm2 (bottom left), and 5.8 pN mm2 (bottom right).
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wall, which we estimate to be ~6 nm based on cyoelectron

tomography (27). Therefore, the Young’s modulus of the

cell wall of B. burgdorferi is no larger than 0.5 MPa, which

is comparable to that measured for Magnetospirillum gryphis-
waldense (35) and Myxococcus xanthus (36) but substantially

lower than what has been estimated for Escherichia coli and

Bacillus subtilis (37,38). As this Young’s modulus is on the

low end of what has been measured for bacteria, we expect

that the actual Young’s modulus is not significantly less

than a 100 KPa. Using this value, we estimate the bending

modulus of the cell cylinder to be ~10 pN mm2, which implies

that A z 5, in good agreement with the results from the math-

ematical model.

DISCUSSION

We have shown that the mechanical coupling of the helical

periplasmic flagella to the rod-shaped cell cylinder is suffi-

cient to determine the flat-wave morphology of B. burgdor-
feri. Interestingly, we find that to match the experimentally

observed amplitude and wavelength of the flat-wave morpho-

logy, the flagella must be in a wide form configuration that is

only observed in a small percentage of purified flagella. In

addition, we have measured the elastic parameters of both

of these structures. Coupling of helical flagellar filaments to

a rod-shaped cell cylinder naturally leads to a flat-wave shape.

Even though both the helix and the cell cylinder have axial
symmetry, the breaking of this symmetry arises from the

fact that the flagella are not evenly distributed about the

circumference of the cell cylinder. Therefore, the attachment

point of the flagella breaks this axial symmetry and can

produce a planar morphology. As we showed in the Results

section, as the radius of the cell cylinder goes to zero the shape

becomes more helical, and, indeed, the equilibrium shape

when the cell cylinder radius is zero is a helix.

In spirochetes, because the interaction between the peri-

plasmic flagella and cell cylinder is quite intimate, these

organelles may have coevolved to achieve optimal motility

and for survival in nature. It is not clear why some spirochete

species are helical and others are flat waves. However, there

are two obvious advantages to being a spirochete. First, all

known spirochetes can swim efficiently in highly viscous

gel-like media that slow down or stop other species of

bacteria (3,39,40). Second, because the periplasmic flagella

are intracellular, these organelles are protected from harsh

environments including specific antibodies (3). Evidently,

each species evolved in a manner that maintained these attri-

butes to best adapt to its specific ecological niche.

If the shape and dynamics of B. burgdorferi have evolved

to allow for optimal motility and/or the ability to invade host

tissue, then it is interesting to speculate about the physical

consequences of our findings. Our results suggest that there

are two major factors that can be adjusted to modify B. burg-
dorferi’s cell morphology, the geometric parameters of the
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helical flagella and the ratio of the stiffness of the periplasmic

flagella to that of the cell cylinder. We find that the stiffness

of an individual flagellum of B. burgdorferi is comparable

to the stiffness that has been measured in other species,

such as Salmonella enterica serovar Typhimurium (31–33).

Therefore, it may be that bacterial flagellar stiffness is not

evolutionarily tunable. However, some bacterial flagella

have a sheath around the flagellum or have glycosylated or

sulfated residues on the flagellum, which could be a method

for increasing flagellar stiffness, but the stiffnesses of these

flagella have not yet been measured (41–45).

The other ways that a spirochete could modify the stiffness

ratio would be to alter the number of the flagella or the stiff-

ness of the cell cylinder. Indeed, bacterial cell wall stiffness

varies dramatically between bacterial species, as does the

number of periplasmic flagella in spirochetes. Comparison

of our measurements of the stiffness of the B. burgdorferi
cell cylinder to theoretical estimates for Leptonema illini
suggests that B. burgdorferi’s cell cylinder is considerably

less stiff than that of L. illini (30). Because the stiffness of

a group of periplasmic flagella should increase with the

number of filaments, this is another parameter that can be

varied between species. If this line of reasoning is correct,

then an individual spirochete could adjust its number of

flagella in response to physical parameters of the environ-

ment to optimize its motility. Although other explanations

are possible, this hypothesis could explain why in vitro

culturing of Borrelia garinii results in a decreased number

of periplasmic flagella and decreased motility in gel-like

media (46). In fact, the flagella could even act as the regula-

tory sensor. In Vibrio parahaemolyticus, the polar flagellum

acts as a mechanosensor that is sensitive to fluid viscosity

and triggers lateral flagella synthesis for efficient swimming

in highly viscous environments and on surfaces (43,47).

Morphology of B. burgdorferi is implicitly connected

with motility. Moreover, motility is likely to be essential

for these organisms to cause disease (3,14,46). How rotation

of the flagella produces the undulating motions that drive

motility and enables translocation through host tissues

remains unknown. However, the description of the physical

interaction between the flagella and the cell cylinder devel-

oped here provides a basis for a quantitative model of the

mechanism of motility in B. burgdorferi and will likely serve

as a foundation for eventually understanding the motility of

T. pallidum.

Many biological structures are composed of interconnected

filamentary objects. At the single protein level, a helices often

intertwine into helix bundles, such as the coiled-coil structure

(48), and many receptor and motor proteins have large coiled-

coil domains. At the molecular level, DNA, F-actin, microtu-

bules, and the bacterial flagellum are all composed of multiple

connected polymer strands or protofilaments. And, at the

cellular level, the axoneme, which is the primary component

of eukaryotic cilia and flagella, is composed of a cylindrical

array of nine microtubule doublets, crosslinked by dynein
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motors (49,50). The mathematical model that is presented

here describes the complex physics of conjoined elastic fila-

ments and should therefore be applicable to many of these

structures. Indeed, simplified models have already been

used to describe the dynamics of cilia (51), the configuration

of the bacterial flagellum (52), and the structure of alpha-

helical bundle proteins (53,54).

SUPPORTING MATERIAL

Fifty-four equations and one figure are available at http://www.biophysj.org/

biophysj/supplemental/S0006-3495(09)00745-0.
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