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Abstract

Climatic cooling and substantial tectonic activity since the late Miocene have had a pronounced influence on the
evolutionary history of the fauna of New Zealand’s South Island. However, many species have recently experienced dramatic
range reductions due to habitat fragmentation and the introduction of mammalian predators and competitors. These
anthropogenic impacts have been particularly severe in the tussock grasslands of the Otago region. The Otago skink
(Oligosoma otagense), endemic to the region, is one of the most critically endangered vertebrates in New Zealand. We use
mitochondrial DNA sequence data to investigate the evolutionary history of the Otago skink, examine its population genetic
structure, and assess the level of genetic diversity in the individuals in the captive breeding program. Our data indicate that
the Otago skink diverged from its closest relatives in the Miocene, consistent with the commencement of tectonic uplift of
the Southern Alps. However, there is evidence for past introgression with the scree skink (O. waimatense) in the northern
Otago-southern Canterbury region. The remnant populations in eastern Otago and western Otago are estimated to have
diverged in the mid-Pliocene, with no haplotypes shared between these two regions. This divergence accounts for 95% of
the genetic diversity in the species. Within both regions there is strong genetic structure among populations, although
shared haplotypes are generally evident between adjacent localities. Although substantial genetic diversity is present in the
captive population, all individuals originate from the eastern region and the majority had haplotypes that were not evident
in the intensively managed populations at Macraes Flat. Our data indicate that eastern and western populations should
continue to be regarded as separate management units. Knowledge of the genetic diversity of the breeding stock will act to
inform the captive management of the Otago skink and contribute to a key recovery action for the species.
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Introduction

Geological and climatic processes have acted to dramatically

alter the landscape of the South Island of New Zealand [1–3].

Throughout the Miocene the South Island was an eroded

peneplain dominated by rainforest vegetation [4–6]. However,

New Zealand straddles the boundary of the Indo-Australian and

Pacific plates, and tectonic activity along the fault line in the South

Island (Alpine Fault) that commenced during the Miocene, and

intensified during the Pliocene, resulted in the formation of the

Southern Alps (.3000 m) [2,3,7,8]. As New Zealand’s climate

cooled during the Pliocene-Pleistocene [9], the predominant

vegetation transitioned from rainforest to grassland and created

an expansive subalpine and alpine zone in the mountainous

regions of the South Island [1,6,10]. Extensive glaciers throughout

the South Island were evident during glacial maxima [9], and

repeated glacial cycles during the Pleistocene resulted in the

continual expansion and contraction of the distribution of the

resident biota [3,11]. These processes acted to fragment the range

of many species, and led to extensive speciation and phylogeo-

graphic structure within the South Island (reviewed in [3,11]).

Anthropogenic impacts, particularly since European settlement

,200 years ago, have resulted in the decline or extinction of many

native species in the South Island [12,13]. The introduction of a

suite of mammalian predators and competitors (e.g. rodents, cats,

rabbits, stoats, ferrets, weasels) has been a principal cause of many

population declines, with human activities (e.g. agriculture,

mining, housing developments) leading to decreased connectivity

between populations due to habitat degradation and fragmenta-

tion [11,13–15]. Such impacts appear to have been particularly

pronounced in the tussock grassland habitats of the central Otago

region of the South Island [14,16–19].

The Otago skink (Oligosoma otagense), listed as Nationally Critical,

is one of the most endangered vertebrates in New Zealand [20]. It

is a large-sized (up to 125 mm snout-vent length: SVL) viviparous

skink species that is endemic to the montane tussock grasslands of
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the Otago region [21–23]. The Otago skink is diurnal and inhabits

schist rock outcrops [22,23]. It exhibits a metapopulation

structure, and habitat fragmentation has been reported to limit

dispersal between rock outcrops [24,25]. The Otago skink has

experienced a substantial population decline since European

settlement, and is currently estimated to inhabit only 8% of its

former range [20,22,26,27] (Figure 1). The species is currently

restricted to two regions at the periphery of its former range: in

eastern Otago between Macraes Flat and Sutton, and a few

scattered populations between Lake Hawea and Lindis Pass in

western Otago [22] (Figure 1). The Otago skink is still declining,

with the local extinction of several populations occurring within

Figure 1. Distribution of the Otago skink and several closely related species of New Zealand skinks. The distribution of O. otagense
(black circles), O. waimatense (blue squares), O. acrinasum (green circles), O. infrapunctatum (red triangles), O. taumakae (orange square), and O.
pikitanga (purple circle) is indicated. Several localities mentioned in the text are highlighted, including the locations of the O. otagense and O.
waimatense samples used in this study. The dashed line indicates the estimated former distribution of O. otagense [26]. The distribution data is
adapted from the Department of Conservation’s BioWeb Herpetofauna database. Inset: Major geographic regions of New Zealand.
doi:10.1371/journal.pone.0034599.g001
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the last 40 years [22,26]. The largest populations occur in the

Macraes Flat region, although most extant populations are

extremely small (,60 individuals) [22]. It is estimated that fewer

than 5000 Otago skinks remain in the wild [22,24,26,28].

The conservation management of the Otago skink is focused on

,2400 ha of land (managed by the Department of Conservation)

near the Macraes Flat township [22]. A mark-recapture study has

been conducted in this region since the 1990s to monitor the

Otago skink populations [22]. Long-term intensive predator

control (i.e. trapping, baiting, shooting) has been conducted at

Macraes Flat, and several mammal-proof exclosures have been

constructed at the site in an effort to increase the size of the Otago

skink population [22]. Regular surveys for the Otago skink are also

conducted in the western Otago populations, and a reserve was

recently established to encompass the Glenfoyle Station popula-

tion [22]. There are currently ,100 Otago skinks in captivity, and

several generations of offspring have been successfully bred as part

of the captive breeding program [22,23]. Although the Otago

skink has been managed as a distinct taxon for several decades, it

was previously considered to comprise two subspecies (otagense,

waimatense; [29]) or forms (form ‘otagense’, form ‘waimatense’;

[30]). Oligosoma otagense and O. waimatense (scree skink; up to

110 mm SVL) were only formally recognised as distinct species in

1997, based on body shape and colour pattern [31]. Preliminary

allozyme work indicated that hybridisation may occur between the

Otago skink and scree skink [32], and the two species have been

observed to produce viable hybrids in captivity (D. Keall

unpublished data, [33]).

Here we use mitochondrial sequence data to examine the

phylogenetic history (ND2, ND4, Cytochrome b) and phylogeog-

raphy (control region) of the Otago skink. In particular, we

investigate the population structure within and between the two

regions (eastern Otago, western Otago), determine the level of

genetic diversity that is present within the captive breeding stock,

and examine whether there is evidence for hybridisation between

the Otago skink and scree skink.

Materials and Methods

Sampling
For our phylogeographic analyses, we obtained tissue samples from

63 Otago skinks, encompassing both the eastern (three sites at

Macraes Flat: Falcon, Wildlife and Alistair’s Gully; 45u269S,

170u259E) and western populations (Lindis Pass: 44u369S,

169u409E; Glenfoyle station: 44u439S, 169u199E) (Figure 1). The

Wildlife and Falcon sites are within the area that is intensively

managed by the Department of Conservation, while Alistair’s Gully is

on a privately owned farm with grazing and no predator control [23].

These samples were obtained from existing collections (National

Frozen Tissue Collection [NFTC], housed at Victoria University of

Wellington, New Zealand; Te Papa Tongarewa, National Museum

of New Zealand, Wellington) and tissues collected by the New

Zealand Department of Conservation during population surveys of

the species (1998–2003). In addition, tissue samples were collected

from 87 Otago skinks held in captivity (by zoos, nature parks, and

private breeders) as part of the captive breeding program. As the scree

skink is known to hybridise with the Otago skink in captivity [33], we

also obtained tissue samples from across the range of the scree skink (7

samples from the NFTC and Te Papa Tongarewa).

A recent molecular phylogeny for the New Zealand skink fauna

[34] indicates that the Otago skink is part of a monophyletic

lineage that also includes O. waimatense, O. acrinasum, O.

infrapunctatum, O. taumakae and O. pikitanga (also see [35–37]). Thus,

samples of these five species were included, along with 15

representative O. otagense samples, in the broader phylogenetic

analyses (Table 1). Oligosoma polychroma and O. oliveri, species from

other lineages within the New Zealand skink fauna [34], were used

as outgroups in the phylogenetic analyses.

DNA extraction, amplification and sequencing
Total genomic DNA was extracted from liver, muscle, toe or

tail-tip samples using a modified phenol-chloroform protocol [38]

or a Bio-Rad Aqua Pure Genomic DNA Extraction Kit (Bio-Rad,

Hercules CA, USA). For the phylogeographic analyses (i.e. Otago

and scree skink samples) we sequenced the mitochondrial control

region (,500 bp). For the broader phylogenetic analyses,

involving representative Otago skink samples and other species

from the same lineage, we sequenced portions of three

mitochondrial genes: ND2 (,600 bp), ND4 (,700 bp), and

Cytochrome b (,700 bp). These regions were targeted because

our previous work across several taxonomic levels in New Zealand

skinks has indicated useful levels of variability [34,39–50]. The

primers used to amplify and sequence these regions are provided

in Table 2. PCR and sequencing were conducted as outlined in

Berry & Gleeson [39] (control region) or Greaves et al. [40] (ND2,

ND4 and Cytochrome b). PCR products were purified using

ExoSAP-IT (USB Corporation, Cleveland, Ohio USA). The

purified product was sequenced directly using a BigDye Termi-

nator v3.1 Cycle Sequencing Kit (Applied Biosystems) and then

analysed on an ABI310 or ABI 3730XL capillary sequencer.

Sequence data were edited using CONTIGEXPRESS in VECTOR

NTI ADVANCE v9.1.0 (Invitrogen), and aligned using the default

parameters of CLUSTAL X v1.83 [51]. We translated all coding

region sequences to confirm that none contained premature stop

codons. Sequence data were submitted to GenBank [GenBank:

JN999929-JN999994] (Table 1).

Phylogenetic analyses
The concatenated ND2, ND4 and cytochrome b sequence data

was used for the phylogenetic analyses. Maximum Likelihood

(ML) and Bayesian tree building methods were used. We used

MODELTEST 3.7 [52] to identify the most appropriate model of

sequence evolution based on the Akaike information criterion

(AIC) [53]. MODELTEST, conducted in PAUP* 4.0b10 [54], was

also used to estimate base frequencies, substitution rates, the

proportion of invariable sites (I) and the among-site substitution

rate variation (G) [55]. These values were then used as settings in

PhyML 3.0 [56] to generate a ML tree with 500 bootstraps.

MRBAYES 3.1.2 [57] was used to complete Bayesian analyses.

We used MODELTEST to determine the most appropriate model of

sequence evolution for our dataset. We ran the Bayesian analysis

for five million generations, sampling every 100 generations (i.e.

50,000 sampled trees). We ran the analysis twice, using four heated

chains per run. We discarded the first 25% of samples as burn-in

and the last 37,500 trees were used to estimate the Bayesian

posterior probabilities. The program TRACER 1.5 [58] was used to

check for chain convergence and mixing.

Bootstrap values (500 ML bootstraps) and Bayesian posterior

probabilities were used to assess branch support. We considered

branches supported by bootstrap values of 70% or greater [59],

and/or posterior probability values greater than or equal to 0.95

[60] to be supported by our data.

We estimated the divergence time of the eastern and western

Otago skink populations using an evolutionary rate of 1.3–1.63%

sequence divergence per million years, based on mitochondrial

DNA calibrations from other squamate reptile groups (1.3%, [61];

1.42–1.63%, [62]; 1.55%, [63]; 1.62%, [64]; 1.63%, [65]). A strict

molecular clock (0.0065–0.00815 substitutions per site per million
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years), implemented in BEAST v1.6.1 [66], was used to estimate

the divergence times. The New Zealand skink lineage is estimated

to have originated ,20 mya [34,67], and this information was

used as the maximum age of the tree root. A GTR+I+G model of

evolution was employed with a speciation (Yule) tree prior. The

analysis was run twice, with 20 million generations per run (total

40 million generations after the two runs were combined using

LOGCOMBINER v1.6.1). The output was viewed in TRACER to check

that stationarity had been reached, and ensure that the effective

sample size (ESS) exceeded 200 [66].

Phylogeographic analyses: molecular diversity and
population structure

The control region dataset was used for the phylogeographic

analyses. Estimates of genetic diversity within Otago skink

populations (number of haplotypes, h; haplotypic diversity, Hd;

number of polymorphic sites, S; nucleotide diversity, p) were

calculated in DNASP v4.50 [68]. Tamura-Nei (TrN)-corrected

genetic distances within and among populations were calculated in

MEGA 4 [69]. Haplotype networks were created using TCS v1.21

[70]. Genetic differentiation among populations was estimated in

ARLEQUIN v3.5 [71]. Pairwise WST values (an analogue of Wright’s

fixation index FST) were calculated to estimate among population

differentiation. We conducted hierarchical Analysis of Molecular

Variance (AMOVA; [72]) to investigate the partitioning of genetic

variation within and among populations and regions. Both tests

used TrN genetic distances. Significance levels of all the estimated

values were calculated by 10,000 permutations, and adjusted

according to the Bonferroni correction procedure [73] for multiple

pairwise comparisons as described by Holm [74].

We used Tajima’s D [75], Fu’s Fs statistic [76] (calculated in

ARLEQUIN) and mismatch distributions to test for signatures of

Table 1. Locality information and GenBank accession numbers for samples used in the phylogenetic analyses.

Species Lab Code Museum Voucher Tissue Code Locality GenBank Accession Numbers

ND2 ND4 Cytb

Oligosoma acrinasum OAC1 CD826 CD826 Fiordland EF033046 EF033060 EF071064

OAC3 RE1839 RE1839 Resolution Island, Fiordland EF033047 EF033061 EU567811

O. infrapunctatum OIF1 CD545 CD545 Stephens Island, Cook Strait EF033050 EF033058 EF071066

OIF2 RE5343 FT3749 Cobden Beach, West Coast EF033051 EF033059 EF071067

O. otagense OOT1 CD1053 CD1053 Macraes Flat, Otago EF033053 EF033064 EF071065

OOT2 — CD349 Macraes Flat, Otago EF033054 EF033065 EU567814

OOT3 — 4110 Falcon, Macraes Flat, Otago JN999935 JN999953 JN999971

OOT4 — 3101 Falcon, Macraes Flat, Otago JN999936 JN999954 JN999972

OOT5 — 0252 Falcon, Macraes Flat, Otago JN999937 JN999955 JN999973

OOT6 — 0324 Wildlife, Macraes Flat, Otago JN999938 JN999956 JN999974

OOT7 — 1210 Wildlife, Macraes Flat, Otago JN999939 JN999957 JN999975

OOT8 — 5505 Wildlife, Macraes Flat, Otago JN999940 JN999958 JN999976

OOT9 — 1201 Alistair’s Gully, Macraes Flat, Otago JN999941 JN999959 JN999977

OOT10 — 1140 Alistair’s Gully, Macraes Flat, Otago JN999929 JN999947 JN999965

OOT11 — 3501 Alistair’s Gully, Macraes Flat, Otago JN999930 JN999948 JN999966

OOT12 — OB420 Sandy Point Station, Lindis Pass, Otago JN999931 JN999949 JN999967

OOT13 — OB421 Sandy Point Station, Lindis Pass, Otago JN999932 JN999950 JN999968

OOT14 — OB424 Sandy Point Station, Lindis Pass, Otago JN999933 JN999951 JN999969

OOT15 RE5155 (S1520) RE5155 (S1520) 2 Miles SE Sutton, Otago JN999934 JN999952 JN999970

O. taumakae OBI2 RE5237 RE5237 Taumaka Island, Open Bay Islands EF033048 EF033062 EU567812

OBI3 FT311 FT311 Taumaka Island, Open Bay Islands EF033049 EF033063 EU567813

O. waimatense OWA1 CD1207 CD1207 Mt Ida, Otago EU567712 EU567742 EU567815

OWA2 CD1209 CD1209 Wairau River, Marlborough EF033056 EF033066 EU567816

OWA3 — CD760 Tekapo, Otago JN999942 JN999960 JN999978

OWA4 CD1208 CD1208 Mt Ida, Otago JN999943 JN999961 JN999979

OWA5 CD1214 CD1214 Little Mt Ida, Otago JN999944 JN999962 JN999980

OWA6 — FT3011 Rag & Famish Strm Valley, Marlborough JN999945 JN999963 JN999981

OWA7 — FT3012 Black Jacks Island, Lake Benmore, Otago JN999946 JN999964 JN999982

O. pikitanga SVS1 RE5315 FT7648 Sinbad Gully, Llawrenny Peaks, Fiordland EU567713 EU567743 EU567817

O. polychroma ONP1 — FT5252 Pukerua Bay EF033052 EF033068 EU567797

O. oliveri COL1 CD1034 CD1034 Aorangi Island, Poor Knights Islands EF033045 EF033069 EF081236

Samples with CD or FT codes were obtained from the National Frozen Tissue Collection (NFTC) housed at Victoria University of Wellington, New Zealand. Samples with
RE codes were obtained from ethanol preserved specimens housed at Te Papa, National Museum of New Zealand, Wellington (S codes refer to specimens from the
former Ecology Division collection, now housed at Te Papa).
doi:10.1371/journal.pone.0034599.t001
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population expansion (significance levels were calculated by

10,000 permutations). Significant and negative Tajima’s D and

Fu’s Fs statistic values are indicative of possible population

expansion. Mismatch frequency histograms were plotted in DNASP

to determine whether the populations exhibited evidence of spatial

range expansion or a stationary population history [75]. A smooth

bell shape signifies either population expansion or spatial range

expansion, whereas a multimodal distribution represents a long

history in situ [77–80]. To distinguish between these two types of

distribution, a raggedness index (RI, sum of the squared difference

between neighbouring peaks) and the sum of squared deviations

(SSD) between the observed and expected mismatch were

calculated using the methods of Schneider & Excoffier [81] in

ARLEQUIN. The spatial expansion hypothesis (both RI and SSD)

was tested using a parametric bootstrap approach (200 replicates).

Results

Phylogeny and divergence time estimates
The edited alignment comprised 1834 characters (550 bp ND2,

671 bp ND4, 613 bp Cytochrome b), of which 588 (32%) were

variable and 438 (24%) were parsimony-informative. For the

ingroup only, the alignment contained 487 (27%) variable

characters, of which 397 (22%) were parsimony-informative. Base

frequencies were unequal (A = 0.3026, T = 0.2608, C = 0.3016,

G = 0.1350), but a x2 test confirmed the homogeneity of base

frequencies among sequences (df = 90, P = 1.0).

The AIC from MODELTEST supported the GTR+I+G substitu-

tion model as the most appropriate for our dataset. Parameters

estimated under this model were: relative substitution rates

(A«C = 2.16, A«G = 38.47, A«T = 1.50, C«G = 1.11,

C«T = 19.04, relative to G«T = 1.00), proportion of invariable

sites (0.6022), and gamma distribution shape parameter (4.132).

The topologies of the ML and Bayesian trees were identical,

therefore we present the optimal ML tree (2ln L = 7317.86919)

with ML bootstrap (BS) values and Bayesian posterior probabilities

(PP) indicating branch support (Figure 2).

There is extremely strong support for the monophyly of O.

acrinasum, O. infrapunctatum, O. pikitanga, and O. taumakae (100 BS

and 1.0 PP in all cases; Figure 2). Although two distinct genetic

lineages were evident within O. otagense, representing eastern (100

BS, 1.0 PP) and western populations (99 BS, 1.0 PP), several O.

waimatense individuals from the southern limit of its distribution

grouped with the eastern (Mt Ida population; OWA1, 4) or

western (Little Mt Ida and Black Jacks Island populations; OWA5,

7) lineages of O. otagense (Figure 2). In contrast, the O. waimatense

individuals from the remainder of the distribution (OWA2, 3, 6)

formed a well-supported lineage (100 BS, 1.0 PP), which was

genetically divergent (11.5% sequence divergence) from both O.

otagense lineages (Table 3). The mean genetic divergence among

recognised species (excluding OWA1, 4–5, 7) was 9.4–13.4%

(Table 3). The divergence between the eastern and western

populations of O. otagense was 4.9% and estimated to have occurred

3.7 mya (95% highest posterior density [HPD] confidence

interval: 2.8–4.6 mya).

Phylogeographic analyses: molecular diversity and
population structure

The edited control region alignment comprised 419 characters,

with 46 variable sites within the six haplotypes identified within the

Otago skink (Table 4, Figure 3a). No haplotypes were shared

between the eastern and western populations (Figure 3a). Four

haplotypes were found to occur within the Macraes Flat region,

with one present in all three populations (Haplotype B), another

present at Falcon and Alistair’s Gully (Haplotype A), and a further

two (Haplotypes C and D) found exclusively at the Wildlife site

(Table 4, Figure 3a). Two haplotypes were identified in the

western region (Haplotypes E and F), with both occurring in the

Lindis Pass population, but only Haplotype E was present in the

Glenfoyle Station population (Table 4, Figure 3a). Consistent

length variation was observed between the control region

haplotypes in the eastern (419 bp) and western (415 bp) regions

of the Otago skinks range. Both haplotype and nucleotide diversity

was generally low within each population (Table 4).

Substantial genetic differentiation was evident between the two

regions (10.6–11.5% sequence divergence, Table 5; pairwise

WST = 0.958), with 36 variable sites separating the eastern and

western populations (Figure 3a). Although the level of genetic

differentiation among populations within each region was lower

(0.2–1.5% sequence divergence, Table 5), significant pairwise WST

values were found among all five populations (Table 6). The

AMOVA confirmed that most genetic variation was partitioned

among regions (94.60%), rather than among populations in each

region (3.09%), or within populations (2.31%). There was no

strong evidence for recent range expansion in any of the five

populations (Table 4).

Five haplotypes, each originating from the eastern region, were

identified from the 87 captive Otago skinks (Tables 1 and 5;

Table 2. Oligonucleotide primers used in this study.

Gene Primer Name Sequence (59-39) 59 Position Source

ND2 L4437 AAGCTTTCGGGCCCATACC 3833 [92]

ND2r102 CAGCCTAGGTGGGCGATTG 4432 [93]

ND4 ND4I TGACTACCAAAAGCTCATGTAGAAGC 10771 [94]

ND4R-NZ CCAAGRGTTTTGGTGCCTAAGACC 11670 [40]

tRNA-Leu TACTTTTACTTGGATTTGCACCA 11691 [94]

Cytochrome b mtD-25 CCATCCAACATCTCAGCATGATGAAA 14202 [95]

SkCytBR TAGGCAAANARRAAGTAYCAYTCTGG 14940 [40]

Control region tRNAp-L GCTAACCCCTCGTCACTAACTCC [39]

CR-Rev-3 GCACCTGACACTAGTAACGG This study

The letters L and H refer to the light and heavy strands. Values in ‘5’ position’ refer to the position of the 59 position in the complete Eumeces egregius mtDNA sequence
[96].
doi:10.1371/journal.pone.0034599.t002
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Figure 3b). Two of these corresponded to haplotypes currently

present at Macraes Flat (Haplotypes A, B), but the other three

haplotypes (Haplotypes G, H and I) do not appear to occur in the

populations that are intensively managed by the Department of

Conservation (Figure 3b). Indeed, the majority (83%) of captive

Otago skinks were found to have haplotypes (G: n = 1; H: n = 64;

I: n = 7) that are not evident in the managed sites at Macraes Flat

(Figure 3b). The level of genetic differentiation among these three

haplotypes from captive animals and those present at Macraes Flat

was low (G: 1.2–1.7%; H: 1.7–1.9%) to moderate (I: 4.7–5.3%)

(Table 5).

Three unique control region haplotypes were identified in the

four scree skinks (Haplotype J: OWA5; Haplotype K: OWA7;

Haplotype L: OWA1, OWA4) which appeared, based on our

phylogenetic analyses, to derive from lineages that had experi-

enced past introgression with the Otago skink (Table 1; Figures 2

Figure 2. Maximum Likelihood (ML) phylogram for the New Zealand skink lineage containing the Otago skink (Oligosoma otagense).
The lineage contains five other species: O. waimatense, O. acrinasum, O. infrapunctatum, O. pikitanga, and O. taumakae. The phylogeny is based upon
1834 bp of mitochondrial DNA sequence data (ND2, ND4 & Cytochrome b). Two measures of branch support are indicated with ML bootstraps (500
replicates) on the left and Bayesian posterior probabilities on the right (only values over 50 and 0.7, respectively, are shown).
doi:10.1371/journal.pone.0034599.g002

Table 3. Mean model-corrected genetic distances (ND2, ND4, Cytochrome b) between the Otago skink and several closely-related
species.

O. otagense- E O. otagense- W O. waimatense O. acrinasum O. infrapunctatum O. pikitanga O. taumakae

O. otagense- E —

O. otagense- W 0.049 —

O. waimatense 0.115 0.115 —

O. acrinasum 0.117 0.110 0.106 —

O. infrapunctatum 0.115 0.111 0.119 0.116 —

O. pikitanga 0.134 0.127 0.125 0.130 0.132 —

O. taumakae 0.106 0.097 0.110 0.094 0.100 0.114 —

doi:10.1371/journal.pone.0034599.t003
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and 3c). This introgression appears to have occurred with both the

eastern (Haplotype L) and western (Haplotypes J and K) Otago

skink populations (Figure 3c). None of the scree skink haplotypes

are currently found in the wild or captive Otago skink populations

(Figure 3), with low to moderate levels of genetic differentiation to

the Otago skink haplotypes present in the respective regions

(Table 5).

Discussion

Our study indicates that the Otago skink exhibits substantial

genetic divergence (9.7–13.4%) from its closest relatives in the

South Island (O. acrinasum, O. infrapunctatum, O. pikitanga, O.

taumakae, O. waimatense). The diversification of this lineage has

previously been estimated to have occurred during the late

Table 4. Estimates of genetic diversity (mitochondrial control region) within Otago skink populations and regions.

Pop/region n h Hd M(S) p Tajima’s D Fu’s Fs RI SSD

Eastern 48 4 (A–D) 0.717 6(6) 0.004 0.663 2.539 0.094 0.029

Falcon 18 2 (A,B) 0.209 1(1) 0.001 20.529 20.011 0.382 0.001

Wildlife 17 3 (B–D) 0.618 6(6) 0.006 1.732 4.005 0.653 0.165*

Alistair’s Gully 13 2 (A,B) 0.282 1(1) 0.001 20.274 0.240 0.270 0.001

Western 15 2 (E,F) 0.419 6(6) 0.006 1.269 5.710 0.689 0.130

Lindis Pass 5 2 (E,F) 0.400 6(6) 0.006 21.146 3.022 0.680 0.118

Glenfoyle Stn 10 1 (E) NA NA NA NA NA NA NA

Overall 63 6 (A–F) 0.805 47(46) 0.039 NA NA NA NA

Captive animals 87 5 (A,B,G–I) 0.437 23(22) 0.011 NA NA NA NA

n = sample size, h = number of haplotypes (the specific haplotypes present are indicated), Hd = haplotypic diversity, M = total number of mutations, S = number of
segregating (polymorphic) sites, p= nucleotide diversity, RI = raggedness index, SSD = sum of squared deviations. Asterisks indicate significant Tajima’s D, Fu’s Fs
statistic, RI and SSD values.

Figure 3. Control region haplotype network for the Otago skink. Each circle represents one haplotype and the size indicates the number of
individuals with each haplotype. The lines indicate one base pair change between sequences. The different colours indicate the population(s) in
which each haplotype is found. A) Wild Otago skink populations, B) Wild and captive Otago skinks, C) Wild Otago skinks and introgressed scree skinks.
doi:10.1371/journal.pone.0034599.g003
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Miocene [34], corresponding to the commencement of tectonic

activity along the Alpine Fault and the uplift of the Southern Alps

[2,3,7,8]. At present, these six species have non-overlapping

distributions in the South Island (Figure 1), which may indicate

that the diversification of this lineage during the late Miocene

occurred through allopatric speciation [34].

However, both our phylogenetic and phylogeographic datasets

indicate that hybridisation has occurred historically (i.e. introgres-

sion) between the Otago skink and scree skink in the northern

Otago-southern Canterbury region. Incomplete lineage sorting is

unlikely to explain our results given the deep divergence between

the two species, the restriction of the pattern to the southern end of

the scree skinks range, and the ability for the two species to

produce viable hybrids in captivity. Hardy [30] hypothesized that

the divergence between these two species occurred during the

Pleistocene, with the two species retreating to isolated refugia in

Otago (Otago skink) and Canterbury (scree skink) during glacial

maxima, and expanding their ranges during interglacials.

Although the divergence between the two species occurred earlier

in the late-Miocene [34], they appear to have hybridised when

they came into secondary contact in the northern Otago-southern

Canterbury region during Pleistocene interglacials. Our data

suggests that the scree skink hybridised with both the eastern and

western lineages of the Otago skink. This might have involved

Otago skink populations that have since gone locally extinct (i.e.

scree skinks were found to have haplotypes that are not currently

present in the wild or captive Otago skink populations).

Alternatively, the scree skink haplotypes may have diverged since

the introgression event. Interestingly, we detected no evidence of

scree skink haplotypes occurring in either the eastern or western

lineages of the Otago skink. Although the two species do not

currently occur in sympatry, they have the capacity to produce

viable hybrids in captivity (D. Keall unpublished data, [33]). This

not only has important implications for selection of breeding stock

for the Otago skink captive breeding program, but also for the

conservation management of both species in the wild (e.g. [82]).

Future studies should use nuclear markers (e.g. nuclear genes,

microsatellites) to further investigate the patterns of introgression

between the Otago and scree skink.

Two main lineages were evident within the Otago skink, with

the divergence between the populations in eastern Otago and

western Otago occurring during the Pliocene (mean 3.7 mya,

range 2.8–4.6 mya). Phylogeographic breaks of an equivalent age

have been reported in this region for the sympatric grand skink (O.

grande, 3.8 mya; [39]), McCann’s skink (O. maccanni, 3.6 mya; [45]),

green skink (O. chloronoton, 5.3 mya; [40]), and cryptic skink (O.

inconspicuum, 2.7 mya; [50]). These divergences in South Island

skink species are concordant with the Nevis-Cardrona fault system

(marked by the Cardrona and Nevis rivers) that has been active

since the Miocene and delineates a topographic boundary between

eastern Otago (undulating grassland habitats) and western Otago

(deeply-eroded rugged mountainous habitat) (reviewed in [83]).

However, the extinction of the Otago skink from this boundary

region makes it difficult to identify the exact position of this split.

The consistent length variation in the control region haplotypes,

and the lack of shared haplotypes between eastern and western

Table 5. Mean TrN genetic distances between control region haplotypes.

Hap A Hap B Hap C Hap D Hap E Hap F Hap G Hap H Hap I Hap J Hap K Hap L

Hap A —

Hap B 0.002 —

Hap C 0.002 0.005 —

Hap D 0.010 0.012 0.012 —

Hap E 0.109 0.106 0.106 0.106 —

Hap F 0.115 0.112 0.112 0.112 0.015 —

Hap G 0.012 0.014 0.014 0.017 0.115 0.121 —

Hap H 0.017 0.019 0.019 0.017 0.109 0.115 0.005 —

Hap I 0.050 0.047 0.053 0.053 0.122 0.127 0.045 0.045 —

Hap J 0.121 0.118 0.118 0.118 0.015 0.015 0.127 0.121 0.127 —

Hap K 0.115 0.112 0.112 0.112 0.030 0.035 0.120 0.115 0.131 0.040 —

Hap L 0.017 0.020 0.020 0.017 0.106 0.112 0.012 0.007 0.050 0.118 0.112 —

doi:10.1371/journal.pone.0034599.t005

Table 6. Pairwise WST among the five Otago skink populations.

Falcon Wildlife Alistair’s Gully Lindis Pass Glenfoyle Station

Falcon —

Wildlife 0.477* —

Alistair’s Gully 0.687* 0.284* —

Lindis Pass 0.986* 0.942* 0.983* —

Glenfoyle Station 0.996* 0.961* 0.996* 0.835* —

Asterisks indicate statistical significance following Bonferroni correction (adjusted significance level 0.005).
doi:10.1371/journal.pone.0034599.t006
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Otago, indicates that there has been no geneflow between the

remnant Otago skink populations in the two regions for a

substantial period of time. This is exemplified by our finding that

the divergence between the eastern and western regions accounts

for ,95% of the genetic variation within the Otago skink.

However, given the recent extinction of the populations in central

Otago it is unknown what pattern of geneflow (e.g. isolation by

distance) was evident throughout the species range prior to its

decline.

Substantial genetic structuring was also evident within both the

eastern (three Macraes Flat populations) and western (Lindis Pass,

Glenfoyle station) populations of the Otago skink. Despite this, the

presence of shared haplotypes within each region indicates that

there has been recent geneflow among adjacent populations. This

pattern of population structuring is consistent with that observed

in the grand skink [39], a species that has similar habitat

preferences (i.e. rocky outcrops in montane tussock grassland), and

a near identical distribution (both historical and current

distribution) and conservation status (Nationally Critical)

[20,22,84]. Similar to the recommendations for the grand skink

[39], we suggest that the eastern and western populations of the

Otago skink should continue to be treated as separate manage-

ment units (e.g. [85–87]). Although a reserve was recently

established at Glenfoyle Station and Otago skink survey work is

regularly conducted in the western populations, the populations in

the Macraes Flat region are subject to the most intensive

management by the Department of Conservation [22,84]. Our

study indicates that these managed populations (Wildlife, Falcon)

contain all of the haplotypes known from the eastern region, but

only a small proportion of the species total genetic diversity.

Considerable genetic and haplotypic diversity was evident in the

Otago skinks in the captive breeding program. All captive animals

had haplotypes that originated from the eastern region. The initial

founders of the captive breeding program were sourced from near

Sutton in the 1980s–1990s (A. Hutcheon, personal communica-

tion), and this accounts for most captive animals having haplotypes

(i.e. Haplotypes G, H, I) that originate from outside of the

intensively managed populations at Macraes Flat. Given the recent

population declines of the Otago skink in the Sutton region

[22,26], the captive breeding stock may contain haplotypes that

have since gone extinct in the wild. Although the recent additions

to the captive breeding program have been sourced from the

Macraes Flat region, only two (A, B) of the four haplotypes from

the region are represented in the captive populations.

The Department of Conservation is in the process of

establishing a separate captive breeding program for the western

populations of the Otago skink (A. Hutcheon, personal commu-

nication), and continues to implement in-situ conservation

management actions at the Glenfoyle station reserve [22]. As

these populations represent a distinct management unit, the

captive breeding stock should help to safeguard the full extent of

genetic diversity that is evident in the species. Indeed, the current

recovery plan aims to maximise the genetic diversity present in

captivity populations to enable the reintroduction of individuals to

the wild [22]. However, as discussed previously by Connolly &

Cree [23], the Otago skink breeding program should consider the

phenotype, or ‘quality’ (i.e. morphology, parasite load, body

condition, growth rate, sprint speed), of the captive animals, rather

than just the genetic diversity represented in the breeding stock.

Conclusions
The Otago skink has experienced a drastic reduction in its

distribution over the last ,200 years and now persists in two

remnant regions in the periphery of its original distribution

[22,26]. A consistent pattern in conservation biology has been that

during range decline, most species are able to persist in the

peripheral regions of their historical range after the local extinction

of the populations from the interior of the geographic distribution

[88,89]. Compared to the core of the species range, populations

occurring at range margins are usually exposed to suboptimal

environmental conditions (reviewed in [90]), and therefore

remnant populations may not be representative of the species

habitat preferences and population genetic structure (reviewed in

[89]). This may be true in the Otago skink, as the haplotypes

present in the captive animals and the introgressed scree skinks

indicate that there has been a significant recent reduction in

genetic diversity present across the species range. It may also

indicate that the Otago skink currently persists in suboptimal or

atypical habitats, and might benefit from translocations (within

predator-proof exclosures) to areas near the core of the species’

historic range. Hybridisation with the scree skink is another

potential concern for the future conservation management of the

Otago skink. Although there is currently limited opportunity for

hybridisation between the two species as their ranges do not

overlap, as many species are anticipated to shift their distributions

as a result of climate change [91], there is the potential for

hybridisation in the future if the scree skink expands its range

southwards into the distribution of the Otago skink.
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