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Abstract

Cholestasis is frequently related to endotoxemia and inflammatory response. Our previous investigation revealed a
significant increase in plasma endotoxin and CD14 levels during biliary atresia. We therefore propose that
lipopolysacharides (LPS) may stimulate CD14 production in liver cells and promote the removal of endotoxins. The aims
of this study are to test the hypothesis that CD14 is upregulated by LPS and investigate the pathophysiological role of CD14
production during cholestasis. Using Western blotting, qRT-PCR, and promoter activity assay, we demonstrated that LPS
was associated with a significant increase in CD14 and MD2 protein and mRNA expression and CD14 promoter activity in C9
rat hepatocytes but not in the HSC-T6 hepatic stellate cell line in vitro. To correlate CD14 expression and endotoxin
sensitivity, in vivo biliary LPS administration was performed on rats two weeks after they were subjected to bile duct ligation
(BDL) or a sham operation. CD14 expression and endotoxin levels were found to significantly increase after LPS
administration in BDL rats. These returned to basal levels after 24 h. In contrast, although endotoxin levels were increased in
sham-operated rats given LPS, no increase in CD14 expression was observed. However, mortality within 24 h was more
frequent in the BDL animals than in the sham-operated group. In conclusion, cholestasis and LPS stimulation were here
found to upregulate hepatic CD14 expression, which may have led to increased endotoxin sensitivity and host
proinflammatory reactions, causing organ failure and death in BDL rats.
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Introduction

Cholestasis, impairment of bile outflow, occurs in a wide variety

of human liver diseases [1–3]. Endotoxemia, which is a frequent

complication of cholestasis, can also be caused by a decrease in

bile flow promoting bacterial translocation from the gut [4].

Lipopolysacchaides (LPS), which make up parts of the outer

membranes of Gram negative enterobacteria, provoke proinflam-

matory responses and cause hepatocellular injury by promoting

liver dysfunction and fibrogenesis, ultimately leading to liver

failure [5]. Using an animal model of bile duct ligation (BDL), it

has been shown that low levels of intestinal bile acids may account

for the high frequency of endotoxemia in the portal and peripheral

blood during cholestasis [6]. The liver is the major organ

downstream of the gut and is responsible for LPS clearance by

both parachymal cells (hepatocytes) and nonparachymal cells

(hepatic stellate cells and Kupffer cells) [7]. Kupffer cells have been

found to modulate LPS for rapid internalization within hepato-

cytes to clear through bile flow and prevent systemic distribution

and widespread inflammatory reactions during endotoxemia [7,8].

In previous reports, LPS and bacterial clearance from the liver

were found to be reduced in BDL compared with sham-operated

animals through the impairment of phagocytic ability and an

inability to kill intracellular bacteria in Kupffer cells [9–11].

However, the mechanisms underlying the impaired endotoxin

clearance capacity of hepatocytes during cholesatasis are not

clearly defined.

CD14 is thought to be the important LPS receptor and exists

in membrane (mCD14) and soluble (sCD14) forms [12,13].

Expressed on the surface of monocytes, macrophages and

immune cells, mCD14 is a 50–55 KDa receptor linked to the

cell surface by a glycosyl-phosphatidyl inositol (GPI) anchor.

Soluble CD14 can be released by shedding via protease-

dependent or independent pathways, or secreted directly after

synthesis [14]. Human hepatocytes were demonstrated to

produce CD14 by a mechanism similar to producing acute-

phase proteins [10,11]. In liver tissue, Kupffer cells and

sinusoidal endothelial cells express mCD14, while hepatocytes

are the main producers of sCD14 in plasma [15]. Billiar et al.

demonstrated that CD14, TLR4, and MD2 form a multi-

receptor complex within the lipid rafts of hepatocytes for LPS
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uptake and signal activation [16]. Our previous investigation

revealed a significant increase in plasma endotoxin and sCD14

levels during biliary atresia. In addition, we also found that both

endotoxin and CD14 levels were significantly increased in the

liver tissues of rats following BDL [17]. We therefore propose

that LPS may stimulate CD14 production in liver cells during

the early stage of biliary atresia, promoting endotoxin removal,

and that endotoxin signaling likely induces liver injury and

impairs CD14 synthesis during the later stages.

Although mouse and human hepatocytes have also shown

increased expression of CD14 during endotoxemia, CD14

production in the liver and the subsequent effects on endotoxin-

induced liver injury during obstructive jaundice remain unclear

[15,18]. The aims of this study are to test the hypothesis that

CD14 is upregulated by LPS for endotoxin clearance and to

investigate the pathophysiological mechanisms and roles of CD14

production during cholestasis. We evaluate the in vitro effect of LPS

on TLR4, CD14, and MD2 expression in hepatocytes and a

hepatic stellate cell line and on endotoxin sensitivity during

cholestasis by BDL animals.

Results

Effects of LPS treatment on CD14 and MD2 expression in
rat hepatocytes

To evaluate TLR4, CD14, and MD2 protein expression in

liver cells after LPS treatment, Western blot analysis was

performed on protein from C9 rat hepatocytes and HSC-T6

cells stimulated with various concentrations of LPS. Lysate from

C9 rat hepatocytes treated with LPS for 6 h contained 2 fold

more CD14 than control cells and the CD14 levels declined to

levels comparable to baseline 24 h after treatment. MD2 protein

was significantly increased only after treatment with 1,000 mg

LPS, but no difference in TLR4 protein levels was observed

(Figure 1A). In contrast, for HSC-T6 cells, CD14, and MD2

protein expression showed no significant fluctuations after 6 h or

24 h of LPS treatment (Figure 1B), and barely a trace of TLR4

was detected at any time.

Effects of LPS treatment on mRNA expression of
hepatocyte CD14 and MD2

C9 rat hepatocytes and HSC-T6 cells were incubated with

different concentrations of LPS (10 ng/mL, 100 ng/mL, and

1,000 ng/mL) and total RNA was extracted from harvested cells

at different points in time. For C9 hepatocytes, quantitative RT-

PCR analysis showed the expression of CD14 mRNA was

increased at 2 h, 3 h, and 6 h after treatment with 10 ng/ml,

100 ng/ml, and 1,000 ng/mL of LPS, showing a remarkable 7.5-

fold increase at 6 h after administration of 1,000 ng/mL LPS. The

expression of MD2 mRNA was increased at 2 h, 3 h, and 6 h after

treatment with 1,000 ng/mL of LPS. However, TLR4 mRNA

levels did not significantly change (Figure 2A). In contrast, TLR4,

CD14, and MD2 mRNA expressions did not significantly change

in HSC-T6 hepatic stellate cells at any point in time after LPS

treatment (Figure 2B)

Effects of LPS treatment on CD14 promoter activity
induction in rat hepatocytes and hepatic stellate cells

After sequence analysis revealed some putative binding motifs

within 21139 bp to +80 bp upstream of the transcription

initiation site of the CD14 promoter region (Figure 3A), serially

deleted CD14 promoter-driven luciferase reporter gene constructs

at 449, 376, 300, and 232 bp upstream of the transcription

initiation site and control pGL3 basic-LUC vector were transfect-

ed into C9 rat hepatocytes and HSC-T6 cells. The relative

luciferase expression ratios of each reporter gene construct

(Figure 3B and 3C) revealed similar patterns and promoter

activities in C9 rat hepatocytes and HSC-T6 cells. Deletion in the

region from 2449 to 2376 caused increased transcription of the

reporter gene, while deletion in the region from 2300 to 2232

caused a decrease in promoter activity. These findings suggest that

negative and positive regulation elements may exist within the

2449 to 2376 and 2300 to 2232 regions, respectively. These

data reveal the presence of functional promoter activity, especially

an activation domain between 2376 and +80 bp in the proximal

promoter of the CD14 gene in both cell lines (Figures 3B, 3C).

We compared the induction activity of LPS on the construct

with 2376 to +80 region of CD14 promoter region in C9 rat

Figure 1. Western blot analysis of TLR4, CD14, and MD2 protein. TLR4, CD14, and MD2 levels analyzed in (A) C9 rat hepatocytes and (B) HSC-
T6 cells after LPS treatment. Total protein was extracted from C9 rat hepatocytes and HSC-T6 cell lines at 6 h and 24 h after stimulation with 10, 100,
or 1,000 ng/mL LPS. Protein extracts separated by SDS-PAGE were immunoblotted for TLR4, CD14, and MD2 and b-actin as loading controls. The bar
graph depicts the CD14 and MD2 vs b-actin density ratio by densitometer determination.* indicates P,0.05 relative to control cells (without LPS
treatment). All results were obtained from at least three separate experiments.
doi:10.1371/journal.pone.0034903.g001
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Figure 2. Kinetic changes in TLR4, CD14, and MD2 mRNA expression detected by qRT- PCR after LPS treatment. Total RNA isolated
from (A) C9 rat hepatocytes and (B) HSC-T6 cells at 1, 2, 3, 6, 12, and 24 h after 10–1,000 ng/mL LPS treatment. TLR4, CD14, and MD2 mRNA
expression was normalized using the mRNA of housekeeping gene GAPDH. The expression of TLR4, CD14, and MD2 mRNA expression is shown
relative to that of the time-matched control cells (without LPS treatment). Data are expressed as mean6SE of three separate experiments.* indicates
P,0.05 relative to time-matched control cells.
doi:10.1371/journal.pone.0034903.g002

Figure 3. Deletional analysis of the CD14 promoter. (A) Schematic representation of CD14 deletional constructs. A series of 59-deletional
segments was generated by inserting into the multiple cloning sites upstream the luciferase reporter gene in a promoterless and enhancerless vector,
pGL3. Transient transfection in (B) C9 rat hepatocytes and (C) HSC-T6 cells. Cells were transiently transfected with the constructs described in (A).
Luciferase activity was measured 24 h after transfection. The promoter activity of each construct is calculated relative to the activity of the pGL3
vector. Data shown are mean6S.E. of five independent experiments with triplicate samples used in each experiment (*indicates P,0.05 relative to
pCD14p21139).
doi:10.1371/journal.pone.0034903.g003

Endotoxin Sensitivity and CD14 during Cholestasis
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hepatocytes and HSC-T6 cells. Mean luciferase values relative to

the pGL-3 basic vector are given in Figures 4A and 4B. A dose-

dependent increase in the relative luciferase activities after 3 h and

6 h of LPS treatment was observed in C9 rat hepatocytes.

However, there was no significant difference in the reporter

activity of CD14-376 promoter construct in HSC-T6 cells with

LPS treatment.

Changes in biochemical parameters after LPS treatment
in BDL rats

Biochemical parameters after either sham operation or bile duct

ligation lasting 2 weeks are summarized in Table 1. In sham-

operated rats, levels of AST, ALT, and T-Bil (135656.2 U/I,

5168.8 U/I, 0.0960.01 mg/dL, respectively) were similar to

those of control rats. Rats receiving BDL showed significantly

increased basal levels of AST, ALT, and T-Bil (6706191 U/I,

155643 U/I, 7.461.7 mg/dL, respectively). After 0.5 mg/kg

LPS administration, levels of AST, ALT, and T-Bil were all

significantly elevated at 3 h (20846430 U/I, 486688 U/I,

11.1360.8 mg/dL, respectively) but only AST and ALT

(21226488 U/I, 4136116 U/I; respectively) remained higher

than in the untreated group after 24 h of LPS treatment. AST and

ALT levels were also significantly higher in sham-operated rats

than the corresponding untreated groups after LPS administration

lasting 24 h.

The plasma TNFa levels were nearly undetectable in the sham-

operated and BDL groups but were approximately 14 times higher

in BDL rats than in sham-operated rats at 3 h after 0.5 mg/kg

LPS administration (9507.06675.2 pg/ml vs 658.86107.3 pg/

ml, P,0.001) (Figure 5A). Baseline plasma MCP-1 levels were

significantly lower in the sham-operated group than in the BDL

group (41.1763.96 pg/ml vs 73.3362.99 pg/ml, P = 0.004).

Three hours after biliary LPS (0.5 mg/kg) administration, plasma

MCP-1 levels reached a maximum in both the sham-operated and

BDL groups. In the sham-operated group, MCP-1 increased to

247.5620.5 pg/ml after 3 h treatment and decreased to baseline

at 24 h. In the BDL group, MCP-1 increased to 319.50618.1 pg/

ml at 3 h after treatment and was still high at 24 h

(216.50610.1 pg/ml) (Figure 5B).

Death rates were compared between BDL and sham-operated

rats. Fatality occurred most often within 4 hours of LPS

administration. In both the BDL (n = 12) and sham-operated

(n = 10) groups not given LPS, survival rates were 100%. In groups

given LPS, the 24 h mortality rates were higher in the BDL group

than in the sham-operated group at 0.5 mg/kg LPS (n = 24, 50%

vs n = 12, 16.7%) and at 1 mg/kg LPS (n = 18, 90% vs n = 14;

Figure 4. Effect of LPS on CD14 promoter activity. (A) C9 rat hepatocytes and (B) HSC-T6 cells were transfected with plasmid of pCD14p-376.
After transfection for 24 h, cells were treated with LPS (10 and 100 ng/mL) for 3 and 6 h. Cells were harvested and luciferase activity was measured.
Data are expressed as mean6SE of the luciferase activities relative to the pGL3 expression in the respective control groups. * indicates P,0.05 versus
time-matched values for the control cells (without LPS treatment).
doi:10.1371/journal.pone.0034903.g004
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50%) (Figure 6). In spite of this trend, statistical analysis did not

show a significant difference between mortality rates for the groups

at either 0.5 mg/kg LPS administration (P = 0.182) or 1.0 mg/kg

LPS administration (P = 0.074). However, in the BDL groups, as

compared with animals without LPS treatment, the 24 h mortality

rates were significantly higher after 0.5 mg/kg (P = 0.004) and

1 mg/kg (P,0.001) of LPS; but in the sham-operated group, the

mortality rate was significantly increased only after 1 mg/kg LPS

(P = 0.011) (Figure 6). Endotoxin sensitivity seems to be higher in

BDL than in sham-operated rats.

Effects of LPS on CD14 protein expression in liver tissues
Paraffin-embedded liver sections from rats were analyzed for

CD14 localization using immunohistochemical staining. CD14

was observed in the parenchyma of the hepatic lobules, where

Kupffer cells and sinusoidal endothelial cells were immunostained

positive and the arterial and venous endothelium were immuno-

stained negative (Figure 7). The expression of CD14 in the liver

tissue of the BDL group was higher than in the sham-operated

group, especially in the hepatocytes (Figure 7). Hepatocyte CD14

expression was significantly increased at 3 h after LPS adminis-

tration in BDL rats, but the expression was markedly decreased at

24 h after LPS administration (Figure 7). However, the CD14

expression in the sham-operated group showed little change after

the administration of LPS (Figure 7). Quantitative evaluation of

CD14 positive cells in live tissues was performed by two

experienced hepatopathologists. CD14 was considered to be

activated if over 20% of the cells were immunochemically stained

positive [3]. As shown in Table 2, CD14 activation ratios were

significantly increased in rats receiving mock doses and 0.5 mg/kg

LPS. These ratios remained high for 3 h after the termination of

treatment in BDL relative to sham-operated groups.

Endotoxin levels and distribution in experimental rats
Plasma and liver endotoxin levels were assayed by LAL testing.

Plasma endotoxin levels were not significantly different between

the BDL and sham-operated animals (2.360.1 vs. 2.460.2 EU/

mL, respectively, P = 0.7), but the endotoxin levels in liver tissues

were higher in BDL rats than in sham-operated rats (2.760.3 vs

1.960.2 EU/mL, respectively, P = 0.03). Plasma endotoxin levels

were significantly higher in the BDL group than in the sham-

operated group 24 h after the administration of LPS (3.260.3 vs.

2.560.1 EU/mL, respectively, P = 0.002). After administration

LPS, liver endotoxin levels were increased in both the BDL and

sham-operated groups, particularly at 3 h after administration,

when the BDL group showed significantly higher endotoxin levels

than the sham-operated group (12.560.4 vs. 5.260.3 EU/mg,

respectively, P = 0.001). At 24 h after LPS administration, there

were no significant differences between the BDL (4.260.2 EU/

mg) and sham-operated groups (5.260.9 EU/mg, P = 0.4)

(Figure 8A).

Immunohistochemical staining using a monoclonal antibody

against lipid A (Figure 8B) demonstrated weak or absent

immunoreactivity in the liver tissues of sham-operated animals

(Figure 8B). Strong lipid-A immunoreactivity was detected around

the portal area in rat hepatocytes 3 h after the administration of

Table 1. Routine parameters of experimental animals.

Survival/total No AST (U/l) ALT (U/l) T Bilirubin (mg/dl)

Control 6/6 9767.99 3961.61 0.0260.02

Sham-operated 6/6 135656.2 5168.76 0.0960.01

Sham-LPS 3 h 6/6 200632.7 73613.5 0.1260.02

Sham-LPS 24 h 5/6 399.0673.0{ 120628.0{ 0.1860.08

BDL 6/6 670.26191* 155643.5* 7.4261.67*

BDL-LPS 3 h 10/10 20846430*{ 486688.0*{ 11.1360.83*{

BDL-LPS 24 h 5/10 21226488*{ 4136116*{ 6.9560.49*

Data represent means 6SE; BDL, bile duct ligation; LPS 3 h, rats sacrificed 3 h after 0.5 mg/kg LPS administration; LPS 24 h, rats sacrificed 24 h after 0.5 mg/kg LPS
administration. AST, aspartate aminotransferase; ALT, alanine aminotransferase ; T-Bilirubin, total bilirubin.
*p,0.05 versus time-matched values for the Sham-operated group;
{p,0.05 versus values for the respective treatment control groups of BDL or Sham-operated rats. (by two-way ANOVA using Bonferroni’s post hoc test).
doi:10.1371/journal.pone.0034903.t001

Figure 5. Effects of LPS treatment on BDL and sham-operated
rats induced cytokine production. Plasma (A) TNFa and (B) MCP-1
were measured after 0.5 mg/kg LPS administration. All values are
averages of 5–10 rates. Data represent mean6SE. * indicated P,0.05
versus time-matched values for the Sham-operated group; { indicates
P,0.05 versus values for levels in untreated groups (0 h) of BDL or
Sham-operated rats (as determined by two-way ANOVA using
Bonferroni’s post hoc test).
doi:10.1371/journal.pone.0034903.g005
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LPS. This immunoreactivity was decreased in BDL-challenged

animals at 24 h after the administration of LPS (Figure 8B). These

findings are consistent with hepatic endotoxin levels. Quantitative

evaluation of endotoxin-positive cells in live tissues was performed.

As shown in Table 2, endotoxin accumulation was significantly

higher in BDL than in sham-operated groups.

Discussion

The role of CD14 as a key LPS signaling molecule has been well

documented in vitro in many cell systems [12–14,19]. Previous

reports have shown that LPS modulates the expression of mCD14

in monocytes and macrophages [13]. Our data and those of others

have indicated that hepatocytes express CD14 under basal

Figure 6. Survival curve for BDL and sham-operated rats after LPS infused into the biliary system within 24 h. Closed circles, BDL
group (n = 12); opened circles, sham-operated group (n = 10); closed triangles, BDL with 0.5 mg/kg LPS administration (n = 24); opened triangles,
sham-operated with 0.5 mg/kg LPS administration (n = 12); closed squares, BDL with 1 mg/kg LPS administration (n = 18); opened squares, sham-
operated with 1 mg/kg LPS administration (n = 14). The survival of the groups was analyzed by Kaplan-Meier survival curves and log rank (Mantel-
Cox) test. P,0.005 for BDL with 0.5 mg/kg and 1 mg/kg LPS administration vs. BDL group; P,0.05 for sham-operated rats with 1 mg/kg LPS
administration vs. sham-operated group; BDL with 0.5 mg/kg vs 1 mg/kg LPS administration (log-rank test).
doi:10.1371/journal.pone.0034903.g006

Figure 7. CD14 expression rat liver tissue after LPS administration. Comparison of CD14 expression in paraffin-embedded liver tissue
sections among BDL and sham-operated rats after 0.5 mg/kg administration for 3 h and 24 h. Liver sections were stained with a polyclonal antibody
against CD14 (dark brown) and counterstained with hematoxylin. CD14 immunoreactivity was detected in Kupffer cells (black arrow), sinusoidal
endothelial cells (black arrowhead), and hepatocytes (red arrowhead). Original magnification: 6200.
doi:10.1371/journal.pone.0034903.g007

Endotoxin Sensitivity and CD14 during Cholestasis
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Table 2. Indexes e of rat liver tissues with positive reaction.

Indexes

CD14 activation Endotoxin

Time after 0.5 mg/kg LPS
administration Sham-operated BDL Sham-operated BDL

N (%)* N (%) N (%) N (%)

0 h (n = 6) 0 3 (50){ 0 3 (50){

3 h (n = 6) 3 (50) 6 (100){ 6 (100) 6 (100)

24 h (n = 6) 0 2 (33.3) 2 (33.3) 3 (50)

*Immunohistochemical CD14 or endotoxin staining in the liver tissues of rat among sham and common bile duct ligation group. The positive cells were .20% as
positive.
{p,0.05, versus values for BDL compared with Sham-operated rats with Chi-square tests.
doi:10.1371/journal.pone.0034903.t002

Figure 8. Endotoxin levels in plasma and liver tissues after administration of LPS. Time course of endotoxin levels in liver (circle) and
plasma (square) of BDL (closed) or sham operation (open). (A) Endotoxin was assayed using polychrome LAL kits.* P,0.005 (Sham vs BDL group). (B)
Immunohistochemical staining for endotoxin in paraffin-embedded liver tissue sections among BDL and sham-operated rats after 0.5 mg/kg
administration for 3 h and 24 h. Liver sections were stained using a monoclonal antibody against lipid A (HM2046) and counterstained with
hematoxylin. Lipid-A immunoreactivity was detected in hepatocytes (arrowhead) and biliary epithelial cells (arrow), Original magnification: 6200.
doi:10.1371/journal.pone.0034903.g008

Endotoxin Sensitivity and CD14 during Cholestasis
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conditions and that hepatic CD14 mRNA and protein levels are

markedly increased during endotoxemia [3,18,20]. We therefore

propose that hepatocytes contribute to both the basal systemic

levels of sCD14 by contributing to the upregulation of CD14 that

occurs during biliary atresia. However, the factors that govern

both basal and inducible CD14 expression in liver cells are not

well defined. In this study, we tested the hypothesis that LPS

directly activates liver cells, leading to up-regulation of CD14

expression. We focused on the ability of LPS-elicited CD14

fluctuations in hepatocytes and HSCs during cholestasis to affect

LPS reactivity and clearance. Our results showed significant

enhancement in CD14 and MD2 expression after LPS treatment

in C9 rat hepatocytes but not in rat hepatic stellate cells. Similarly,

CD14 2376 promoter activity was enhanced after LPS treatment

in C9 rat hepatocytes. This suggests distinct transcriptional

activities and provides a basis for cell-specific regulation. It has

been previously reported that CD14 transcription rates are

significantly increased in the hepatocytes of LPS-treated rats

[21,22]. It has been indicated that the upregulation of CD14

mRNA levels observed in rat hepatocytes after LPS treatment is

dose-dependent. Our data confirmed that hepatocytes in vitro

exhibited an upregulated expression of CD14 mRNA and protein

during the early phase of LPS challenge (1 h to 6 h) for promoting

endotoxin clearance. In addition, MD2 mRNA and protein levels

increased during the early phase of LPS challenge, inducing LPS-

signal activation to produce proinflammatory cytokines as shown

in vivo rat experiments (Figure 5).

The precise role of CD14 in LPS-induced signal transduction

and LPS uptake is not yet clear. Both mCD14 and sCD14 may

participate in the pathophysiology of endotoxemia and sepsis

[12,23–25]. Kupffer cells have been found to modify the

endocytosed LPS and pass it on to hepatocytes, which subse-

quently excrete these products into the bile [26,27]. Part of the

LPS, though, is removed from the circulation directly by

hepatocytes [28]. Although marked increases in CD14 mRNA

caused by LPS stimulation have been observed in vivo, only modest

increases in CD14 mRNA levels and promoter induction are

caused by exposure to LPS in rat hepatoma cells [20]. In our

previous report, CD14 was found to be expressed in an LPS-

inducible manner in Kupffer cells, neutrophils, hepatocytes, and

bile duct epithelia, suggesting a possible role for CD14 in

hepatocytes during the uptake and clearance of LPS from the

circulation. This is consistent with the notion that the synthesis of

CD14 is part of an early-alarm system aimed at recognizing and

binding LPS, enhancing the ability of the immune system to

combat invading gram-negative bacteria. Early on during LPS

challenge, the MD2 mRNA and protein levels became increased.

The LPS-signal activation was then enhanced, leading to increased

production of proinflammatory cytokines. These results are

consistent with in vivo rat experiments. The remarkable elevation

of CD14 in BDL animals early during LPS challenge suggests that

CD14 probably acts as an early-phase response protein, which

may indirectly increase endotoxin sensitivity and lead to host

proinflammatory reactions in BDL rats.

Immunohistochemical analysis shows higher CD14 expression

in Kupffer cells and sinusoidal endothelial cells in BDL rats

(Figure 7). But the phagocytic function of Kupffer cells is impaired

in cholestasis, and portal-derived endotoxin may accumulate in the

liver and transfer into the peripheral circulation from the intestine

[29–31]. CD14 production by hepatocytes and bile duct epithelial

cells during cholestasis and the relationship with CD14 expressed

on the Kupffer cells and sinusoidal endothelial cells is still not

clear. It is suspected that the high levels of CD14 expression

observed in Kupffer cells and sinusoidal endothelial cells may

increase pro-inflammatory responses and cause cholestatic liver

injury or lead to increased endotoxin-induced mortality [32]. Our

data here show that BDL itself significantly increased serum levels

of AST, ALT, and total bilirubin at 2 weeks after BDL, and these

levels were all notably enhanced after biliary administration of

LPS in BDL rats. LPS at doses of 0.5 mg/kg and 1 mg/kg resulted

in a higher mortality rate for BDL animals (50% and 90%,

respectively) than sham-operated animals (16.7% and 50%,

respectively). These findings highlight the impact of cholestasis

on the vulnerability of the rats towards endotoxemia. The initial

hepatic responses to LPS occur in the hepatic microvasculature,

including increases in leukocyte adhesion, reduction of sinusoidal

perfusion, and activated Kupffer cells [33,34]. Then, pro-

inflammatory cytokines released from activated Kupffer cells,

including tumor necrosis factor a (TNFa), are involved in the

hepatic microvascular dysfunction [35,36]. In this study, circulat-

ing TNFa was significantly enhanced after administration of LPS

lasting 3 h in BDL rats. In contrast, monocyte chemoattractant

protein-1 (MCP-1), which can cause Kupffer cells and neutrophils

to release reactive oxygen species and toxicity in liver cells,

increased in both BDL and sham-operated rats (Figure 5). Our

experimental data support the conclusion that biliary obstruction

enhances the inflammatory and microvascular responses of the

liver after LPS challenge. Hepatocytes are the major source of

most acute-phase proteins, including CD14, which is part of an

adaptive response to tissue injury and infection under the control

of LPS-signal activated cytokines.

Cholestatic liver disease ultimately leads to fibrosis because of

hepatic reticuloendothelial system dysfunction and a hypersensi-

tivity to endotoxin or bacterial challenge [2,37]. The present study

showed, by immunohistochemical staining and LAL assay, that

basal hepatic endogenous endotoxin levels were higher in the BDL

rats than in their sham-operated counterparts. Significantly more

pronounced endotoxin accumulation was observed in hepatocytes

after BDL. LPS challenge further aggravated the hepatic

endotoxin levels in BDL animals compared with sham-operated

animals as assessed 3 h but not 24 h after challenge. There was no

significant difference in plasma endotoxin levels among any of the

groups of animals at 3 h after administration of LPS, but

endotoxin levels were notably increased in BDL animals relative

to their sham-operated counterparts at 24 h. Possible explanations

may be the systemic activation of macrophages in obstructive

jaundice or a spillover of endotoxin from the portal to systemic

circulation due to decreased clearance through the bile canalicular

system [38]. In the present study, the effect of LPS on CD14

expression in liver tissue was evaluated using an experimental BDL

rat model. CD14 was observed mainly on Kupffer cells and

sinusoidal endothelial cells in the liver of normal or sham-operated

rats. Its expression was mainly observed in hepatocytes 2 weeks

after BDL and found to be especially increased 3 h after

administration of LPS. However, CD14 expression was markedly

decreased, down to basal levels, in both the BDL and sham-

operated groups at 24 h after administration of LPS. Our findings

suggest that LPS-induced CD14 expression behaved like an acute-

phase protein, decreasing 24 hours after LPS challenge in a

cholestatic animal model.

Conclusion
The results of the present study suggest an enhanced

vulnerability to LPS in a rodent model of obstructive jaundice.

In sham-operated animals, enhanced hepatic CD14 expression

was observed mainly in Kupffer and sinusoidal endothelial cells

after LPS treatment. In the BDL animals, upregulated expression

of CD14 in the BDL animals was observed mainly in hepatocytes
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after LPS challenge. These findings imply a different role for

CD14 under normal and cholestatic conditions in sepsis. The

remarkable elevation of CD14 observed in BDL animals early

during LPS challenge suggests its possible nature as an early-phase

response protein not only to clear the endotoxin but also to induce

proinflammatory response. In vitro study further supports hepato-

cyte-specific CD14 transcriptional activities after LPS treatment,

highlighting a possible role of hepatocyte-derived CD14 in

endotoxemia. In summary, our in vitro and in vivo data indicate

an enhanced sensitivity of hepatocytes to endotoxin with increased

CD14 and MD2 expression during cholestasis. This may lead to

proinflammatory reaction and cause lethal organ failure.

Materials and Methods

Cell culture
C9 rat liver epithelial cells were obtained from the American

Type Culture Collection (ATCC, Manassas, VA, U.S.). The HSC-

T6 cell line, immortalized rat HSCs transfected with the large T-

antigen of SV40 vector containing a Rous sarcoma virus

promoter, were maintained at 37uC in 5% CO2 and in Ham’s

F12 and Waymouth media (Invitrogen, Carlsbad, CA, U.S.),

respectively and supplemented with 10% heat-inactivated fetal calf

serum, 100 U/ml penicillin, and 100 mg/ml streptomycin [39].

The cells (56106) in 10 cm culture dishes were treated with

various concentrations of LPS (1–1000 ng/mL) and harvested at

different time intervals for Western blot and qRT-PCR analysis.

LPS (L4391, Escherichia coli, 0111:B4) was purchased from the

Sigma Chemical Company (St. Louis, MO, U.S.).

Western blot analysis
The cells were scraped from the plate into protein extraction

reagent (Pierce Chemical, Rockford, IL, U.S.). The lysates were

centrifuged at 14,000 g for 15 min after the addition of protease

inhibitors (0.5 mmole EGTA, 1 mmole/L PMSF, 1 mmole/L

DTT, 25 mg/mL leupeptin, 25 mmole/L NaF, 1 mmole/L

Na3VO4) and the supernatants were collected for Western blot

analysis. The crude proteins were quantified with a Bio-Rad

protein assay kit (Bio-Rad, Hercules, CA). The supernatants

containing 30 mg crude proteins were treated with sample buffer

(6% SDS, 1.4 M b-mercaptoethanol, 20% glycerol, 0.01% w/v

bromphenol blue, and 125 mM Tris-HCl, pH 6.8), boiled for

10 min, separated on 10% SDS-PAGE gels, and transferred to

polyvinylidene fluoride membrane (Millipore, Billerica, MA, U.S.).

Membranes were blocked with 5% nonfat dried milk in Tris

buffered saline buffer (TBS; 50 mM Tris-HCl, pH 7.4 and

150 mM NaCl) containing 0.1% Tween 20 (TBST) and incubated

overnight with the following primary antibodies: anti-CD14

(M305; sc-9150;1:3000; Santa Cruz Biotechnology, Santa Cruz,

CA, U.S.), anti-TLR4 (25; sc-293072; 1:3000; Santa Cruz

Biotechnology, Santa Cruz, CA, U.S.), anti-MD2 (ab2418;

1:2000; Abcam, Cambridge, MA, U.S.) and anti-b-actin (AC-15;

A5441; 1:3000; Sigma-Aldrich Company, S.t Louis, MO, U.S.).

After washing with TBST, blots were incubated with HRP-

conjugated secondary antibodies: anti-mouse IgG (ab6728;

1:5,000; Abcam, Cambridge, MA, U.S.) for TLR4 and b-actin,

anti-rabbit IgG (ab6013;1:8,000; Abcam, Cambridge, MA, U.S.)

for CD14 and MD2. Detection was achieved using a chemilumi-

nescence substrate (Millipore, Billerica, MA, U.S.), and exposure

to film. Signals were quantified by densitometric analysis.

Real-time quantitative reverse transcription-polymerase
chain reaction (qRT-PCR)

Total RNA was extracted from the harvested cells using TRIzol

(Invitrogen, Carlsbad, CA, U.S.) according to the manufacturer’s

manual. A total of 2 mg of RNA was added to 0.1 mg of oligo-d

(T)15 following the protocol of SuperScriptHRT (Invitrogen,

Carlsbad, CA, U.S.) for cDNA preparation. Quantitative PCR

was performed in a final volume of 20 ml SYBR Green PCR

mixture (Applied Biosystems, Foster City, CA, U.S.), and each

sample was analyzed in duplicate. Each reaction mixture

contained 0.2 pmole/mL of each primer, 16 SYBR Green PCR

Master Mix, and 1–5 ng of cDNA. Thermal cycling was initiated

with a 2 min incubation at 50uC, followed by a 10 min

denaturation step at 95uC, and then 40 cycles of PCR consisting

of 95uC for 15 seconds and 60uC for 1 min. GAPDH was used as

an internal control for analysis of CD14, TLR4, and MD2 mRNA

levels. The sequences of the PCR primers (Table S1) were

designed based on cDNA sequences from GenBank. Quantifica-

tion of the mRNA was achieved with an ABI PRISM 7700

Sequence Detection System (Applied Biosystems, Warrington,

WA, U.S.) using comparative methods. The Ct values of CD14

were normalized to the Ct values of the housekeeping gene

GAPDH.

Construction of CD14 promoter and luciferase reporter
gene assays

The region 21139 to +80 relative to the transcription start site

from the CD14 promoter was PCR amplified from the genomic

DNA of THP-1cells. The PCR product was digested by XhoI and

HindIII enzymes and then subcloned into pGL3-Basic vector

(Promega, Madison, WI, U.S.). Unidirectional constructs of

pGL3-CD14-1139 were prepared according to the predicted

map of CD14 (Fig. 3A) by direct PCR using specific primers

(Table S2). Constructs of deletion clones were verified by sequence

analysis and were prepared using the endotoxin-free midiprep kit

(Promega, Madison, WI, U.S.) for transfection.

Plasmid DNA of CD14 promoters with luciferase vector and

pRL-TK (Promega, Madison, WI, U.S.) as internal control were

transfected into cells using Lipofectamine 2000 (Invitrogen,

Carlsbad, CA, U.S.). After transfection for 12–16 h, cells were

washed twice with Hank’s balanced salt solution and cultured with

ITSA medium (Ham’s F-12/DMEM (1:1) containing 1X Insulin-

Transferrin-Selenium-A and 0.1% BSA) for 24 h. The cells were

cultured for the indicated times and lysed with 16 passive lysis

buffer (Promega, Madison, WI, U.S.). The luciferase activities

were obtained using an EG&G Berthold Microplate Luminometer

(LB 96 V; Berthold Technologies, Germany). The relative activity

was calculated as a ratio of CD14 promoter-firefly luciferase and

TK-renilla luciferase.

In vivo animal experiments
All animal experiments were performed in accordance with and

were approved by the Animal Care and Use Committee of

Kaohsiung Chang Gung Memorial Hospital. Male Sprague-

Dawley rats (weighing 300–330 g) were divided into two groups.

After anesthesia with intraperitoneal injection of thiopentone

sodium (50 mg/kg Pentothal; Abbott Laboratories, Chicago, IL,

U.S.), each rat underwent laparotomy and a silicone catheter

(Silicone Elastomer; Helix Medical, Carpinteria, CA, U.S.) with

an inside diameter of 0.508 mm and outside diameter of

0.930 mm was inserted into the proximal and distal bile ducts

with the middle segment tunneled and located in the subcutaneous

space. The procedure was performed as previously described [40].
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Rats subjected to ligation of the subcutaneous segment of the

indwelling catheter, which caused complete biliary obstruction,

were defined as bile duct-ligated (BDL) rats. Rats that did not

undergo ligation of the catheter served as sham-operated controls.

Two weeks after surgery, rats in both groups were disinfected

under anesthesia, and a small incision was made over the previous

laparotomy wound. LPS dissolved in PBS buffer (0.5 mg/kg or

1 mg/kg body weight) was injection into the biliary system

through the indwelling silicone catheter. The rats were further

divided into those killed 3 h and those killed 24 h after LPS

treatment. Blood samples were collected before animal euthanasia.

Serum aspartate aminotransferase (AST), alanine aminotransfer-

ase (ALT), and total bilirubin (T-Bil) levels were determined using

a biochemistry auto-analyzer (Model 7450; Hitachi, Tokyo,

Japan). Liver tissues were fixed in 4% paraformaldehyde and

embedded in paraffin for immunohistochemical analysis. The

normal control group received neither the operation nor the LPS

treatment.

Assay for TNFa and MCP-1
Plasma levels of TNFa and MCP-1 were determined using

enzyme linked immunosorbent assay (ELISA) kits (rat TNFa and

rat MCP-l; Biosource, Camarillo, CA, U.S.) according to the

manufacturer’s guidelines. All experiments were performed in

duplicate.

Limulus amebocyte lysate (LAL) test
Plasma specimens were collected aseptically in nonpyrogenic

containers. The plasma and liver specimens were diluted 1:10 and

assayed for endotoxin with a commercially available pyrochrome

LAL kit (Associates of Cape Cod, Falmouth, MA, U.S.) according

to the manufacturer’s instructions.

Immunohistochemical staining for CD14 and lipid A
Immunoreactive CD14 and lipid-A stainings were performed

on rat liver tissue samples that had been formalin-fixed and

paraffin-embedded. Two-micrometer sections were deparaffi-

nized, treated with 3% hydrogen peroxide to inactivate the

endogenous peroxidase activity, and microwaved for 7 min in

10 mM citrate buffer (pH 6.0) to retrieve the antigen. The sections

were then incubated in PBS supplemented with 5% fetal calf

serum for 10 min to block background interactions. The sections

were then incubated with rabbit anti-CD14 antibody (1:200; SC-

9150; Santa Cruz Biotechnology, Santa Cruz, CA, U.S.) or a

monoclonal anti-lipid A antibody (1:100; 43; HM2046; HyCult

Biotechnology, the Netherlands) at 37uC for 2 h. Negative controls

for immunohistochemical staining using normal rabbit IgG (1:200;

SC -2027, Santa Cruz Biotechnology, Santa Cruz, CA, U.S.)

instead of primary polyclonal antibody against CD14 and mouse

IgG1 isotype control antibody (ab27479; Abcam, Cambridge,

MA, U.S.) instead of primary monoclonal antibody against lipid A

were included to indicate the extent of any nonspecific binding [3].

The sections were washed with PBS supplemented with 0.05%

Tween 20 and then incubated for 10 min with the secondary

antibodies (SuperPicture; Zymed Laboratories, Francisco, CA,

U.S.). DAB color substrate (DAKO, Carpinteria, CA, U.S.) was

added to cover each section, and the reaction was stopped with

ddH2O. The slides were counterstained with hematoxylin, and

mounted in mounting medium. Quantitative evaluation of CD14

and endotoxin-positive cells in liver tissues was performed by two

experienced hepatopathologists. CD14 or endotoxin was consid-

ered to be activated if positive cells covered over 20% of the tissue

area. Positive indexes in the liver sections of BDL and sham-

operated groups were calculated.

Statistical analysis
All statistical analyses were performed using the SPSS statistical

software package, version 16 (SPSS, Chicago, IL, U.S.). Data are

presented as mean 6 standard error. Differences were evaluated

using analyses of variance followed by Bonferroni’s test or t-tests

where appropriate. Correlations were examined with two-tailed

Pearson correlation analysis. Differences in mortality between

groups were determined using Kaplan-Meier survival curves and

log rank (Mantel-Cox) test. P-values of less than 0.05 were

considered significant.
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