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Abstract
Objectives—While long-lived species exhibit higher serum uric acid (UA) levels than short-
lived species, higher UA-levels have been linked to diseases associated with premature death in
humans. We tested whether lower UA-levels are associated with longevity independent of renal
function as secretion in the urine is the major mode of elimination of UA.

Design—Cross-sectional cohort study.

Setting—Ashkenazi Jewish individuals with exceptional longevity, Longevity Genes Project at
Albert Einstein College of Medicine.

Participants—Long-lived individuals (LLI) of Ashkenazi Jewish ethnicity (mean age (±SD)
98(±2.9) years, n=365), their offspring (mean age 68(±8.2), n=593) and controls (without family
history of longevity, mean age 73(±9.9), n=356).

Measurements—Association of UA-levels with estimated glomerular filtration rate (eGFR) and
chronic kidney disease (CKD)-stages as well as correlation of UA-levels between LLI and
offspring were determined. As LLI lack an appropriate control group, UA-levels, eGFR, and
prevalence of hyperuricemia and CKD-stages were compared between offspring and controls.

Results—Offspring were less likely to exhibit hyperuricemia and had lower UA-levels compared
to controls. Despite negative correlation of UA-levels with eGFR and positive correlation with
increasing CKD-stage, eGFR and prevalence of CKD-stages were not found to be different
between offspring and controls. Furthermore, significant association of UA-level between LLI and
their offspring (β-estimate: 0.1544, 95% CI: 0.08–0.23, P-value: 0.0003) has been observed.

Conclusion—Offspring exhibit lower UA-levels compared to controls despite similar renal
function suggesting that other factors like UA metabolism or renal tubular transport determining
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UA-levels. The association of UA-levels with longevity is particularly intriguing as UA-levels are
potentially modifiable by diet and drugs.
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INTRODUCTION
Uric acid (UA) is an organic compound and a potent reducing agent that is further oxidized
to allantoin by uricase in lower species, but is the end-product of purine catabolism in higher
primates and humans1. Loss of uricase and associated rise in UA-levels are thought to
protect against oxidative stress and prolong maximum life span2 suggesting a protective role
of UA against the aging process. However, in epidemiological studies, elevated UA-levels
are a risk factor for cardiovascular disease3, stroke4, diabetes mellitus (DM)5, and renal
disease6. Subjects who achieve exceptional longevity, as well as their offspring, exhibit
signs of delayed aging by escaping or delaying age-related chronic diseases7, suggesting
inheritance of this extreme phenotype8. A cohort of Ashkenazi Jews with exceptional
longevity (Long Lived Individuals - LLI), their offspring and control subjects, mostly
composed of offspring’s spouses, chosen to minimize environmental effects, was established
in 19989–10. Study of this cohort has identified biomarkers and candidate mechanisms
associated with longevity including lipoproteins size8, 10–11 and thyroid hormone levels12.

UA metabolism and excretion is controlled by genetic and environmental factors, including
diet13. Two thirds of the daily production of urate is eliminated by urinary excretion and one
third is excreted via the GI tract. Thus, high UA-levels and decreased renal function are
strongly associated6, 14.

The prevalence of CKD as defined by KDOQI (Kidney Disease Outcomes Quality
Initiative) rises continuously with age (USRDS 2010) with epidemiologic studies detecting
CKD in 35–50% of subjects over age 7015. In addition, patients who suffer from age-
associated diseases including DM and cardiovascular disease have a high incidence of
CKD16. Because high UA has been implicated as a risk factor for age-related chronic
diseases and subjects with family history of longevity appear to be healthier7–8, we
hypothesize that lower UA-levels are associated with longevity due to relative better renal
function.

METHODS
Setting and Participants

Cross-sectional data from three groups were analyzed: 1) Ashkenazi Jewish subjects of the
Einstein Longevity study, living independently at age 95 years or older at enrollment (LLI)
(n=365; Mean-age ± SD: 98±2.9, 73% female), 2) their offspring (subjects with family
history of longevity defined as survival of at least one parent to age 95 or older; n=593;
Mean-age ± SD: 68±8.2, 55% female) and 3) age-, gender-, ethnicity-, and socio-
demographic-matched controls (subjects without family history of longevity defined as both
parents deceased before age 95; n=356; mean-age ± SD: 73±9.9, 57% female). Sixty percent
of the subjects in the control group lived in the same household as their spouse, the offspring
(group A). The remainder was subjects living in the same geographic region without any
relation to the offspring group (group B). However, all parameters tested were virtually
identical in both control groups (data not shown). Thus, the controls represent control groups
A and B combined. Subjects were recruited through publicity as described in detail
elsewhere7, 11. Birth certificates or U.S. passports were used to verify age.
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Health outcomes and Definitions
Data used for analysis included medical history, laboratory results and measurements of
body fat. Structured questionnaires were uniformly obtained to identify chronic disease
status (including hypertension (HTN), DM, myocardial infarction (MI), and stroke) as
described7. Hypertension was defined by JNC7 criteria as blood pressure >130/85 mmHg17

or self-reported being on anti-hypertensive medication. All routine blood tests were
performed by the Montefiore Medical Center clinical laboratory, which adheres to general
laboratory quality guidelines and annually performed quality control checks. Hyperuricemia
was defined as UA-levels >7 mg/dl in males and >6.5 mg/dl in females. Kidney function
was estimated using three creatinine based formulas: CKD-EPI18 and 4-variable
Modification Diet in Renal Disease (MDRD) Study19 for eGFR and Cockcroft-Gault (CG)
for estimation of creatinine clearance20. Insulin resistance was calculated using the
homeostatic model assessment–insulin resistance (HOMA-IR)21.

Percentage of body fat was assessed by Tanita BIA body fat analyzer (Body Fat Monitor
Scale, BF-625; Tanita Corporation of America Inc., Arlington Heights, IL), and results were
used to calculate lean body mass (LBM):

Statistical Analysis
Baseline characteristics were compared between offspring and controls. Non-parametric
Wilcoxon rank sum test was applied to compare age, and Two-Sample Test for Proportions
was used to compare distribution of sex. Comparison of age-adjusted chronic disease status
(HTN, DM, MI, and stroke) were performed using logistic regression, and comparison of the
other age-adjusted continuous variables, including LBM, weight, UA, albumin, BUN,
creatinine, insulin and HOMA-IR, were completed using linear regression.

Prevalence of hyperuricemia and UA-levels were compared between offspring and controls
using univariate and multivariate logistic regression as well as linear regression. UA-levels
were transformed into natural logarithmic values to achieve a normal distribution. The
multivariate regression models were adjusted for age, sex, weight, albumin, BUN, UA,
HTN, CKD, cardiovascular disease and metabolic syndrome (potential confounders).

The association of UA-levels within LLI-offspring pairs was analyzed by linear mixed
random effects model with offspring UA-levels as the outcome and LLIUA-levels as the
explanatory variable. Heritability was calculated as 2-times the β-estimate (as only one
parent was available) of the correlation between the UA-levels of the offspring over the
parents (LLI)22.

Estimated kidney function (CKD-EPI, MDRD, CG) was dichotomized into <60ml/min/
1.73m2 (presence of CKD-stages III–V) and ≧60ml/min/1.73m2 (absence of CKD-stages
III–V) to represent kidney disease status. We examined the association of UA-levels with
estimated kidney function or kidney disease status in offspring and controls by multivariate
linear and logistic regression adjusted for potential confounders as well as family history of
longevity (offspring versus controls). Multivariate linear and logistic regression adjusting for
potential confounders were also applied to determine whether there is a difference in eGFR
and kidney disease status between offspring and controls. eGFR was transformed into
natural logarithmic values to achieve normal distribution.

To examine the associations of insulin resistance with our parameters, we used insulin levels
and HOMA-IR, based on serum glucose and insulin levels (as described21), as the response
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variable in the regression. We applied multivariate linear and logistic regression to examine
the association between insulin/HOMA-IR and UA-levels, kidney disease status, offspring
and controls. HOMA-IR was dichotomized at a cut off of 2.71 in the logistic regression23.
Insulin and HOMA-IR were transformed into natural logarithmic values to achieve normal
distribution.

RESULTS
Subject Characteristics

General characteristics of the participants are presented in Table 1. Despite the matching
efforts, off spring and controls (both groups A and B combined) differ significantly in age,
requiring adjustment for age in any analysis conducted. As expected, the offspring group
had fewer MIs (P=0.04)8, but no other significant differences were detected between the two
groups (Table 1).

Family History of Longevity Is Associated with Lower UA-levels
To identify association of UA-levels with longevity we compared prevalence of
hyperuricemia and UA-levels between the studied groups. The prevalence of hyperuricemia
was 35%, 15%, and 23% in LLI, offspring and controls, respectively. In both univariate and
multivariate logistic analysis adjusted for potential confounders, offspring were less likely to
have hyperuricemia (Table 2). Furthermore, we found UA-levels to be lower in the offspring
compared to the controls using univariate and multivariate linear analyses (Table 2). UA-
levels were approximately 1 mg/dl lower in offspring than in controls after back-
transformation of natural logarithmic values.

Heritability of UA-levels
The observation of lower UA-levels in offspring led us to explore the association of UA-
levels between offspring-LLI pairs. Using linear mixed random effects model, it indicated
that UA-levels of LLI were significantly associated with offspring UA-levels (unadjusted β-
estimate = 0.1544, P-value < 0.001), providing a heritability of 0.31. Due to insufficient
clinical information of LLI the adjusted linear mixed random effects model was not applied.

Association of UA-levels with Renal Function and Kidney Disease Status
As expected, UA-levels exhibited a significant negative correlation with eGFR, and higher
UA were associated with increased likelihood for kidney disease status (CKD-stage III–V)
after adjusting for potential confounders and family history of longevity (offspring vs.
controls) (Table 3). This association suggests that lower UA-levels in offspring are due to
better renal function as latter is the main determinant of UA-levels.

Likelihood to Develop CKD-Stage III–V among Offspring and Controls
To test this hypothesis, we examined whether offspring have a lower prevalence of kidney
disease (CKD-stage III–V) compared to controls. Based on kidney function estimates, the
prevalence of CKD-stage III–V in LLI, offspring and controls was 76%, 21%, and 29%
(CKD-EPI-equation); 52%, 18%, and 23% (MDRD-equation); 99%, 27%, and 34% (CG),
respectively. The prevalence of CKD in offspring did not significantly differ from the
controls after adjusting for potential confounders based on CKD-EPI formula (offspring vs.
controls OR=0.98; 95% CI=0.57–1.7; P-value=0.9464) as well as MDRD and CG formula
(data not shown). Furthermore, in multivariate linear analysis with CKD-EPI eGFR as the
outcome, family history of longevity was not associated with higher eGFR (offspring vs.
controls; β-estimate=0.01; SE=0.02; P-value=0.4939, same results were obtained using
MDRD and CG: data not shown). Of note, the formula generated vastly different eGFR
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values among subjects age 90 years and older. In summary, family history of longevity is
not associated with better kidney function. These findings suggest that despite the reported
association of higher UA-levels with reduced kidney function, independency of family
history of longevity and similar kidney function among offspring and controls, offspring
have lower UA-levels independent of kidney function.

Insulin Resistance and LBM Analyses
No significant differences between offspring and controls were detected for insulin levels
and insulin resistance assessed by continuous and dichotomized HOMA-IR23. In addition,
no associations of HOMA-IR or insulin levels with CKD-stage III–V status or UA-levels
were found (data not shown). Muscle mass has been shown to influence serum creatinine
levels24. Nevertheless, replacing weight with LBM for covariate adjustment did not
influence the comparison of CKD-stage III–V status or eGFR between offspring and
controls.

DISCUSSION
Many factors contribute to the increasing number of LLI worldwide. A limitation of
studying factors that distinguish exceptionally LLI is the lack of an appropriate control
group. We circumvented this limitation by comparing offspring with appropriate controls.
This well-defined group of genetically relatively homogeneous subjects of Ashkenazi
descendent LLI, offspring and controls allows detection of differences that may require
much larger number of subjects when studying heterogeneous populations. Examination of
this cohort has revealed decreased prevalence of age-associated diseases and better
cardiovascular, cognitive and metabolic performance compared to age- and ethnicity-
matched subjects without family history of longevity7. Thus, we hypothesized that lower
UA-levels are associated with longevity due to relative better renal function.

UA and Longevity
Higher UA-levels across species have been proposed as an evolutionary survival-advantage
of long-lived species based on the free-radical theory of aging that postulates opposing free
radicals like reactive oxygen species (ROS) damaging components of the cellular machinery
by a natural defense system of anti-oxidants like UA leads to longer live1–2. In contrast,
within the human population higher UA-levels have been associated with increased
morbidity and mortality. To contribute to the understanding of UA in human longevity, we
determined that the prevalence of hyperuricemia is lower in offspring compared to controls.
Moreover, offspring are less likely to have hyperuricemia, and have close to 1 mg/dl lower
UA-levels than control subjects. Even though these findings do not allow a mechanistic link,
it could be hypothesized that further elevation of UA-levels negatively affect longevity
possibly through vascular endothelial injury25. The detected moderate calculated heritability
of UA-levels in LLI-offspring pairs suggests genetic components contributing to the
determination of UA-levels. Overall, our findings support the hypothesis that lower UA-
levels are associated with longevity. Future studies may explore UA as biomarker for
longevity and as a modifiable risk factor for premature mortality.

Kidney Function and Longevity
Renal function is the major determinant of UA-levels, as glomerular filtration is the main
mode of elimination of UA. GFR represents renal function and is commonly assessed by
measuring serum creatinine concentration and calculating eGFR. Unfortunately, eGFR
values calculated by various formulas differ significantly particularly among older adults26.
Therefore, we used three independently developed formulas. The CG formula, which
estimates the creatinine clearance, likely underestimates GFR whereas the MDRD Study
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formula may overestimate the true value in older adults27. The CKD-EPI formula has been
proposed to perform more accurately using data from different studies including NHANES
(National Health and Nutrition Examination Survey), but the number of older study subjects
is limited18.

As none of the equations have been validated in LLI and generate vastly different eGFR
values in subjects over age 90, we focused our analysis on offspring and control groups.
Furthermore, we classified subjects into kidney disease status (CKD-stage III–V) using an
eGFR of 60 ml/min/1.73m2 as a cut off according to the KDOQI guideline to determine
presence (eGFR <60 ml/min/1.73m2) or absence (eGFR ≥60ml/min/1.73m2) of CKD-stage
III–V. In addition, adjusted multivariate analysis replacing weight with LBM failed to detect
an association between continuous eGFR or kidney disease status and offspring status but
only a subgroup of subjects had data on LBM available. In summary, our findings implicate
that a family history of longevity is not linked with better renal function in Ashkenazi Jews.
This observation is somewhat surprising as it has been reported that subjects with family
history of longevity in this cohort delay or escape other chronic diseases8 and decreased
renal function is associated with increased morbidity and mortality in other cohorts28.
However, it is possible that using serum creatinine values to calculate eGFR does not
accurately reflect true renal function in older adults18–20. Other methods to estimate kidney
function including serum cystatin C measurements should be evaluated in this age group29.
Nevertheless, our finding of lower UA-levels without difference in kidney function in
offspring as determined by three different formulas suggests that UA-levels are influenced
by factors independent of GFR, possibly diet and genetic components of UA metabolism.

Kidney Function and UA
Epidemiologic evidence supports that higher UA-levels are associated with decreased renal
function6, 14. Examining all subjects we found UA-levels exhibiting a negative association
with eGFR and a positive association with kidney disease status. In addition, lower eGFR
and higher UA-levels were found among LLI compared to offspring or controls consistent
with age-associated decline in renal function and increase in UA-levels, and with previously
reported negative correlation between UA-levels and eGFR6, 14.

Insulin Resistance and UA
Increased insulin resistance is the basis for metabolic syndrome and DM, which are
accelerated with aging. Higher UA-levels are associated with increased insulin resistance
possibly through inhibition of nitric-oxide bioavailability known to promote glucose-uptake
by insulin30. Surprisingly, no significant associations with the tested parameters were
detected. This may due to using the HOMA-IR model that does not account for endogenous
beta-cell function.

CONCLUSION
Heritable lower UA-levels have been observed in genetically relative homogenous subjects
with family history of longevity. Even though the subjects studied are not representative of
the general population, the findings support the hypothesis that lower UA-levels may
constitute a marker for longevity in humans. It remains to be determined whether lower UA-
levels are a cause or effect of the delay or escape of chronic diseases and whether UA has
other properties in addition to oxidant scavenger. Nevertheless, these findings are intriguing
as UA-levels are modifiable by diet or drugs that lower UA-levels. Several interventional
studies are underway attempting to reveal mechanistic links between UA and chronic
diseases (http://clinicaltrials.gov/).
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Table 1

Characteristics of long-lived subjects, offspring, and controls

Long-lived subjects Offspring Controls
Age-adjusted

P-value*

No. of subjects 365 593 356

Age, Mean (± SD) 98 (± 2.9) 68 (± 8.2) 73 (± 9.9) <0.00001a

% female 73% 55% 57% 0.59

% with HTN 54% 62% 67% 0.44

% with DM 9% 8% 10% 0.29

% with MI 15% 4% 9% 0.04

% with stroke 13% 2% 3% 0.73

LBM (kg)

No. of subjects 191 514 247

Mean (± SD) 25 (± 8.4) 29 (± 8.0) 29 (± 8.1) 0.93

Weight (kg)

No. of subjects 323 579 273

Mean (± SD) 55 (± 10.6) 73 (± 16.1) 72 (± 14.2) 0.25

UA (mg/dl)

No. of subjects 299 518 280

Mean (± SD) 6.2 (± 1.9) 5.4 (± 1.5) 5.8 (± 1.6) 0.21

Albumin (g/dl)

No. of subjects 363 591 355

Mean (± SD) 3.8 (± 0.4) 4.3 (± 0.3) 4.3 (± 0.3) 0.55

BUN (mg/dl)

No. of subjects 302 524 285

Mean (± SD) 27.3 (± 10.6) 20.2 (± 6.1) 20.7 (± 6.2) 0.45

Creatinine (mg/dl)

No. of subjects 300 522 283

Mean (± SD) 1.1 (± 0.4) 0.9 (± 0.2) 0.9 (± 0.3) 0.48

Insulin (μU/ml)

No. of subjects 221 353 206

Mean (± SD) 26.5 (± 21.8) 23.7 (± 26.4) 22.9 (± 22.9) 0.70

HOMA

No. of subjects 221 350 206

Mean (± SD) 7.9 (± 8.3) 6.4 (± 9.1) 6.6 (± 8.8) 0.94

*
P-value is based on the comparison between offspring and control

a
not adjusted for age

SD: standard deviation, HTN: hypertension, DM: diabetes mellitus, MI: myocardial infarction, LBM: lean body mass; HOMA: homeostatic model
assessment; Serum concentrations of: UA (uric acid), BUN (blood urea nitrogen), Albumin, creatinine, Insulin
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