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Abstract Taurine (2-aminoethanesulfonic acid) is a free

amino acid found ubiquitously in millimolar concentrations

in all mammalian tissues. Taurine exerts a variety of bio-

logical actions, including antioxidation, modulation of ion

movement, osmoregulation, modulation of neurotransmit-

ters, and conjugation of bile acids, which may maintain

physiological homeostasis. Recently, data is accumulating

that show the effectiveness of taurine against diabetes

mellitus, insulin resistance and its complications, including

retinopathy, nephropathy, neuropathy, atherosclerosis and

cardiomyopathy, independent of hypoglycemic effect in

several animal models. The useful effects appear due to the

multiple actions of taurine on cellular functions. This

review summarizes the beneficial effects of taurine sup-

plementation on diabetes mellitus and the molecular

mechanisms underlying its effectiveness.
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Introduction

Taurine (2-aminoethanesulfonic acid) is widely distributed

and is found in millimolar concentration in mammalian

tissues. Many evidences support that taurine is a

cytoprotective agent in a variety of tissues. Taurine mod-

ulates a variety of cellular functions, including antioxida-

tion, modulation of ion movement, osmoregulation,

modulation of neurotransmitters and conjugation of bile

acids etc. (Huxtable 1992; Satoh 1998; Schaffer et al. 2000;

Sjovall 1959). The source of taurine in body is biosynthesis

and dietary intake. Taurine is synthesized from methionine

and cysteine mainly in the liver. It is well-known that

biosynthetic capacity of taurine is very low in human and is

absent in cats, while rodents have high synthetic capacity

(Hansen 2001). On the other hand, dietary taurine is

ingested from meat and sea food. Especially, sea food is

rich in taurine. Yamori et al. (2001) demonstrated that

urinary taurine excretion as a marker of taurine intake

inversely correlated with mortality rate caused by ischemic

heart diseases in world wide epidemiological study.

Moreover, taurine depletion by taurine-deficient diet in cats

causes various pathological conditions, including retinal

degeneration, reproductive failure and dilated cardiomy-

opathy (Hayes et al. 1975; Pion et al. 1987; Sturman 1991).

Therefore, taurine seems an essential nutrient and its

deficiency may cause various tissue disorders in human.

Moreover, treatment of taurine benefits many kinds of

pathologies. The accumulating data show the effectiveness

of taurine supplementation against both insulin dependent,

non-insulin dependent diabetes mellitus and insulin resis-

tance (Franconi et al. 2004, 2006; Hansen 2001; Schaffer

et al. 2009). In addition, taurine supplementation is bene-

ficial to diabetic complications, including retinopathy,

nephropathy, neuropathy, atherosclerosis and cardiomy-

opathy. These useful effects appear due to the multiple

actions of taurine on cellular functions. This review sum-

marizes the beneficial effects of taurine supplementation on

diabetes and the molecular mechanisms underlying the

effectiveness.
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The effect of taurine on hyperglycemia in diabetic

animal models and its potential mechanisms

The effect of taurine on type 1 diabetic models

The effect of taurine administration for type 1 diabetes has

been well investigated. Treatment of taurine before dia-

betic onset suppressed hyperglycemia and lowered plasma

glycated hemoglobin, cholesterol and triglyceride in STZ-

induced type 1 diabetic rats (Alvarado-Vasquez et al. 2003;

Tokunaga et al. 1979, 1983). Moreover, taurine reduced

plasma lipid peroxidation products induced in type 1 dia-

betes mellitus. The prevention of hyperglycemia by taurine

was also reported in alloxan-induced type 1 diabetic rabbits

(Tenner et al. 2003; Winiarska et al. 2009). Importantly, it

has been reported that treatment of taurine started from the

time-point of diabetic onset failed to improve hypergly-

cemia in type 1 diabetic animals (Goodman and Shihabi

1990), indicating that lowering effect of taurine on blood

glucose level in type 1 models may be due to the protection

of beta cells from STZ or alloxan (Chang and Kwon 2000;

Gavrovskaya et al. 2008). Interestingly, taurine supple-

mentation from 2 days later of STZ injection prolonged

survival in diabetic rats (Di Leo et al. 2004). This obser-

vation indicates that taurine may confer the resistance

against some stresses induced by hyperglycemia, which

may associate with the beneficial role against the compli-

cations, as described below.

Non-obese diabetic (NOD) mice genetically develop

autoimmune diabetes caused by infiltration of the pancre-

atic islets by mononuclear leucocytes. Taurine supple-

mentation starting before birth (pregnant mice were

received a diet supplemented with taurine) until weaning

significantly increased in pancreatic islet mass in NOD

mice (Arany et al. 2004), suggesting that taurine alters islet

development. Moreover, taurine treatment delayed the

onset time of diabetes, and 20% of treated female mice

remained free of diabetes.

The effect of taurine on obese-induced diabetic models

The Otsuka Long-Evans Tokushima Fatty (OLETF) rat is a

model of non-insulin dependent diabetes, which exhibits

hyperglycemia and insulin resistance and has accumulated

abdominal fat as compared to the normal rats. It has been

demonstrated that taurine supplementation improved

hyperglycemia and insulin resistance in OLETF rats

(Harada et al. 2004; Nakaya et al. 2000). Taurine also

suppressed the increase in serum triglyceride and cholesterol,

but not body weight and abdominal fat mass. Whereas it

was expected that taurine could enhance the calorie con-

sumption and/or lipid oxidation, taurine supplementation

did not increase but decrease the energy expenditure and

did not alter the lipid oxidation in OLETF rats (Harada

et al. 2004). Therefore, the other pathways may underlie.

Concerning with body weight and fat mass, taurine sup-

plementation prevented the high fat diet-induced increase

in body weight as well as fat mass in high fat diet-induced

obese mice (Tsuboyama-Kasaoka et al. 2006). Then, the

effect of taurine on obesity may differ dependent on animal

species and/or experimental procedures.

The effect of taurine on fructose-fed rat model

High fructose diet impairs glucose tolerance and insulin

sensitivity, taurine supplementation suppressed hypergly-

cemia and insulin resistance in high fructose-fed rat model

(Nandhini et al. 2004, 2005; El Mesallamy et al. 2010).

Furthermore, taurine supplementation to high fructose-fed

rats decreased in the biomarkers of oxidative stress, such as

lipid peroxidation and conjugated dines. Additionally,

while taurine improved urinary kallikrein activity in fruc-

tose-fed rats, the effect of taurine supplementation was

prevented by co-administration of Hoe 140, a kinin B2

receptor antagonist (Nandhini and Anuradha 2002, 2004).

Since kinins influence insulin release and insulin action,

this action may be involved in the molecular mechanism of

the effect of taurine against insulin resistance.

The effect of taurine on insulin secretion and insulin

sensitivity in acute glucose or lipid infusion models

Prolonged elevation of glucose is associated with insulin

resistance. While 6-h infusion of high glucose induced a

decrease in insulin-stimulated peripheral glucose uptake,

co-infusion of taurine prevented the defect of glucose

uptake (Haber et al. 2003). Furthermore, co-infusion of

taurine suppressed lipid peroxidation induced by high

glucose infusion in soleus muscle, indicating that anti-

oxidative role of taurine in skeletal muscle is involved in

the pathway of effectiveness against peripheral insulin

resistance. However, taurine failed to prevent a decrease in

glucose-stimulated insulin secretion and an increase in

reactive oxygen induced by 48-h infusion of high glucose

(Tang et al. 2007). On the other hand, some reports dem-

onstrated various protective actions of taurine, such as the

modulation of mitochondrial calcium handling and the

stabilization of protein folding, against high glucose

exposure in the cultured beta cells (Han et al. 2004; Kaniuk

et al. 2007).

Meanwhile, the beneficial effect of taurine on islet

dysfunction induced by free fatty acid was observed

(Oprescu et al. 2007). While 48-h intravenous infusion of

oleate decreased the glucose-stimulated insulin secretion,

co-infusion of taurine prevented defective insulin secretion

in islets induced by oleate. Furthermore, taurine suppressed
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oleate-induced ROS production in islets. Moreover, taurine

also prevented hepatic insulin resistance induced by intra-

venous infusion of fatty acids (Wu et al. 2010). This

beneficial effect was accompanied by inhibition of fatty

acid-induced oxidative stress and JNK1 activation which

impairs insulin signaling. These reports indicate the bene-

ficial effect of taurine against lipotoxicity in islets and

livers, which in turn may contribute to the prevention of

diabetic onset in obesity.

The effect of taurine against diabetic complications

and its molecular mechanisms

Alteration of taurine level in diabetes

Plasma and tissue taurine level are known to alter in a

variety of pathophysiological conditions. Plasma taurine

concentration in patients with insulin-dependent diabetes

mellitus (IDDM) was significantly lower than in control

subjects (Franconi et al. 1995, 1996). Consistently, the

reduction of plasma taurine level has been demonstrated in

STZ- or alloxan-induced diabetic animals (Franconi et al.

1996; Trachtman et al. 1995). In case of type2 diabetes,

plasma taurine level is lower in the patients than non-dia-

betic healthy subjects (De Luca et al. 2001; Merheb et al.

2007). Since taurine deficiency associates with dysfunction

in various tissues (Hayes et al. 1975; Pion et al. 1987;

Sturman 1991), a decrease in taurine level in diabetic

subjects may be involved in the diabetic complications.

The role of taurine against the production of advanced

glycation end-products and modified LDL

Hyperglycemia accelerates non-enzymatic glycation of

protein and causes the accumulation of advanced glycation

end products (AGEs). It is known that AGEs play a key

role in the development of diabetic complications, such as

nephropathy and microvascular diseases. Since taurine has

a high reactivity with aldehyde as compared to the other

amino acids (Ogasawara et al. 1993), the preventive actions

of taurine on the productions of AGEs in diabetes are

expected. Indeed, taurine inhibited the AGE formation in

vitro (Nandhini et al. 2004; Nandhini and Anuradha 2003;

Selvaraj et al. 2006). Consistently, taurine supplementation

prevented an increase in the plasma glycated proteins, such

as fructosamine and glycated hemoglobin, in high fructose-

fed rats (Nandhini et al. 2004).

While the modified LDL also contributes to develop-

ment of vascular complications, some actions of taurine is

likely to associate with prevention of LDL modification.

The reactivity of taurine with aldehyde is also likely to

contribute to decrease in malondialdehyde-related LDL

modification (Ogasawara et al. 1993). Moreover, taurine

also has the scavenging action for hypochlorous acid

(HClO), while HClO, produced by myeloperoxidase in

neutrophils and macrophages, possesses the antimicrobial

properties and is also involved in oxidation of LDL

(Pennathur and Heinecke 2007). In type 2 diabetic models,

high myeloperoxidase activity has been found in the ves-

sels of diabetic obese rats (Zhang et al. 2004), indicating

that HClO may contribute to increase in oxidized LDL in

diabetes. Moreover, lowering effect of taurine on the pro-

duction of LDL-cholesterol itself may contribute the

reduction of oxidized LDL (Bellentani et al. 1987; Gandhi

et al. 1992; Nakamura-Yamanaka et al. 1987; Yokogoshi

et al. 1999). The increased serum level of LDL cholesterol

in STZ-treated diabetic mice was normalized by the

chronic administration of taurine (Mochizuki et al. 1999;

Nanami et al. 1996).

Endothelial dysfunction

Most of diabetic complications are associated with vascular

disorder. Microangiopathy causes retinopathy, nephropathy

and neuropathy, whereas macroangiopathy causes cardio-

myopathy and atherosclerosis. In STZ-treated diabetic

mice, it has been demonstrated that the chronic taurine

supplementation normalized the acetylcholine-induced

relaxation of aortic rings, while the vasodilatation capacity

is attenuated (Kamata et al. 1996; Wang et al. 2008).

Furthermore, pre-incubation of the tissues with taurine for

2-h ex vivo improved both the enhanced response to nor-

epinephrine and the attenuated response to acetylcholine in

aorta ring from STZ-treated diabetic rats (Abebe 2008).

These data illustrate the protective action of taurine on the

impaired endothelium-dependent vasodilator response in

hyperglycemia.

A variety of molecular mechanisms underlie the bene-

ficial role of taurine against endothelial dysfunction in

diabetes mellitus (summarized in Fig. 1). As described

above, lowering effect of taurine on AGE and modified

LDL may be involved in the molecular pathway of bene-

ficial effect of taurine. Additionally, HClO consumes the

nitric oxide and in turn causes vasoconstriction and endo-

thelial dysfunction (Pennathur and Heinecke 2007). Taurine

may increase the bioavailability of NO through scavenging

HClO. Furthermore, taurine suppressed the expressions of

vascular cell adhesion molecule-1 (VCAM-1) and inter-

cellular adhesion molecule-1 (ICAM-1) induced by high

glucose in cultured endothelial cells (Ulrich-Merzenich

et al. 2007). Consistently, taurine supplementation started

after the diabetes onset in STZ-treated diabetic rats pre-

vented the induction of ICAM-1 and lectin-like oxidized

LDL receptor-1 (LOX-1), which is responsible for the

incorporation of oxidized LDL into cells, in aortas (Wang
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et al. 2008). Furthermore, while acute hyperglycemia induced

by intravenous infusion of glucose activated leucocyte

adhesion and migration to endothelium and increased in

endothelial ICAM-1 and apoptosis in rats, taurine supple-

mentation for 5 days prior to the experiment prevented

leucocyte actions and the elevation of ICAM-1 and apop-

totic cell death (Casey et al. 2007). Therefore, taurine may

prevent the leukocyte-endothelial cell interaction and

endothelial apoptosis enhanced by hyperglycemia.

Diabetic nephropathy

It has been reported that taurine supplementation started

concurrently with STZ injection reduced albuminuria and

diminished glomerulosclerosis and tubulointerstitial fibro-

sis (Trachtman et al. 1995). More recently, it has been

demonstrated that the taurine administration from fourth

month later of the induction of diabetes significantly sup-

pressed further increase in urinary protein excretion in

diabetic rats, accompanied by the reduction of mesangial

extracellular matrix expansion, TGF-b expression and

oxidative stress in the renal glomerulus in rats (Higo et al.

2008). In vitro study also demonstrated that taurine treat-

ment suppressed the increases in lipid peroxidation and

TGF-b by high glucose in renal proximal tubule cells (Park

et al. 2001). Moreover, taurine attenuated impairment of

cellular growth and tubule cell hypertrophy induced by

high glucose, associated with the suppression of high glu-

cose-induced signal activations including MAPK cascade

and STAT3 (Huang et al. 2007). Furthermore, taurine

attenuated the induction of cytochrome P450 2E1 which

metabolizes a variety of endogenous and exogenous com-

pounds and is a potential source of ROS in kidney of

STZ-treated diabetic rats (Yao et al. 2009). Taurine also

attenuated cell hypertrophy and fibrosis induced by AGE

exposure in renal tubular epithelial cells (Huang et al.

2008). Moreover, it has been reported that taurine

suppressed the induction of fibrosis-related genes in AGE-

treated renal tubular cells (Huang et al. 2009). Therefore,

taurine may prevent renal injury and fibrosis in diabetic

animals through suppression of ROS induced by glucose

and AGE in kidney.

Diabetic retinopathy

In STZ-induced diabetic model, taurine supplementation

after diabetic onset effectively improved the changes in

ultrastructure and attenuated induction of glial fibrillary acid

protein (GFAP), a marker of gliosis, and apoptosis in retinal

glial cells of STZ-treated diabetic rats without the effect on

plasma glucose concentration (Yu et al. 2008; Zeng et al.

2009, 2010a), indicating the beneficial role of taurine on

diabetic retinopathy. Furthermore, the taurine supplemen-

tation in STZ-treated rats significantly decreased in retinal

carbonyl dienes (Di Leo et al. 2002, 2003). Additionally,

taurine supplementation attenuated the induction of retinal

VEGF, which associates with vascularization, in STZ-dia-

betic rats, suggesting that taurine may normalize the retinal

vascular function in diabetes (Obrosova et al. 2001b; Zeng

et al. 2009). Furthermore, while elevation of glutamate in

retina is associated with the development of diabetic reti-

nopathy, taurine prevented the elevation of retinal glutamate

content and reduction of the proteins involved in glutamate

uptake and degradation in STZ-treated diabetic rats (Zeng

et al. 2009). Consistently, taurine suppressed high glucose-

induced defect of glutamate uptake and degradation in cul-

tured Muller cells (Zeng et al. 2010b).

Diabetic cataract

Taurine is known to be the most abundant free amino acid

in eye lens, and lens taurine level is decreased in diabetic

cataract group in STZ-treated diabetic rats (Anthrayose and

Shashidhar 2004; Malone et al. 1990; Vilchis and Salceda

Fig. 1 Schematic

representation of potential

pathways involved in the

beneficial action of taurine

against hyperglycemia-induced

endothelial dysfunction. Taurine

can inhibit (i) AGE production,

(ii) oxidized LDL (oxLDL)

production through scavenging

malondialdehyde (MDA) and

hypochlorous acid (HClO), (iii)

HClO-dependent NO reduction,

and (iv) leulocyte–endothelium

interaction
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1996). Chronic taurine supplementation reduced malondi-

aldehyde level in lens of STZ-induced diabetic rats

(Obrosova and Stevens 1999). Furthermore, although tau-

rine did not improve opacity of eye lens induced by the

exposure to high glucose medium for 6 days in cultured

lens, taurine inhibited protein carbonylation induced by

high glucose (Son et al. 2007). These studies indicate that

taurine protects the lens from oxidative stress induced by

hyperglycemia, while the effect of taurine against cataract

is arguable.

Diabetic neuropathy

It is well-known that sorbitol accumulation in the nerve is

associated with diabetic peripheral neuropathy. When

intracellular glucose is increased in hyperglycemic condi-

tion, excessive glucose is metabolized to sorbitol through

aldose reductase. Organic osmolytes, including sorbitol,

taurine and myo-inositol, are regulated in response to the

change of extracellular osmolality to maintain the cell

volume. Stevens demonstrated that taurine and myo-inositol

are decreased in nerve of STZ-treated diabetic rats, whereas

administration of aldose reductase inhibitor attenuated the

depletion of taurine and myo-inositol (Stevens et al. 1993),

suggesting that excessive accumulation of sorbitol led to the

depletion of other organic osmolytes. Interestingly, the

exposure of cells to high glucose reduces the expression of

taurine transporter, whereas the treatment of an aldose

reductase inhibitor or an antioxidant with the high glucose

reversed the expression of taurine transporter (Askwith

et al. 2009; Stevens et al. 1999), suggesting the crucial role

of sorbitol in the regulation of intracellular taurine con-

centration. While diabetic neuropathy is observed in STZ-

treated diabetic model, taurine supplementation improved

the defective nerve functions, such as nerve conductance

deficits and hyperalgesia, and ameliorated the deficit of

nerve blood flow (Li et al. 2005b; Obrosova et al. 2001a, b;

Pop-Busui et al. 2001; Stevens et al. 1993). Taurine sup-

plementation reduced the oxidative stress in nerves and

prevented the impairment of calcium handling in sensory

neuron of STZ-treated diabetic rats (Li et al. 2005b).

Additionally, a decrease in nerve growth factor (NGF) in

STZ-treated rats was prevented by taurine supplementation

(Obrosova et al. 2001a). Similarly, usefulness of taurine

against diabetic peripheral neuropathy, including deficits of

hind limb sciatic motor and digital sensory nerve conduc-

tion velocity, nerve blood flow, and sensory thresholds, was

observed in Zucker diabetic fatty rats (Li et al. 2006).

Atherosclerosis and thrombosis

Diabetes is a major risk factor of atherosclerosis. While

there are several reports on the beneficial effects of taurine

against atherosclerosis (Kondo et al. 2000; Murakami et al.

1999a, 1999b, 2002), no evidence has been demonstrated

in the diabetic models. Since endothelial dysfunction and

accumulation of oxidized LDL in vessel are the critical

features of atherosclerosis, various actions of taurine in

endothelial cells mentioned above, such as lowering oxi-

dized LDL and anti-apoptosis, can work effectively on

atherosclerosis in diabetes.

Moreover, platelet activation and aggregation caused

by atherosclerosis are the critical events in thrombosis. It

is known that platelet function alters in diabetic subjects,

which may sensitize the platelet for stresses to generate

thrombi. It has been reported that platelet taurine level as

well as plasma taurine level is decreased in both type 1

and type 2 diabetic patients (De Luca et al. 2001; Fran-

coni et al. 1995). Because taurine depletion causes an

increase in platelet sensitivity to aggregation (Hayes et al.

1989), it has been hypothesized that taurine supplemen-

tation can prevent platelet aggregation in diabetic patients.

Franconi et al. (1995) reported that taurine supplementa-

tion at 1.5 g/day for 90 days in IDDM patients suppressed

platelet aggregation induced by arachidonic acid in the

isolated platelet. Additionally, they demonstrated the pre-

incubation of taurine inhibits arachidonic acid-induced

aggregation in platelet from diabetic patients, but not in

platelet from control subjects. Spohr et al. (2005) dem-

onstrated that taurine supplementation at 1.5 g/day for

8 weeks had no effect on ADP-stimulated platelet

aggregation in high risk subjects with a positive family

history of NIDDM.

Diabetic cardiomyopathy

Unlike the other tissues, cardiac taurine level increases in

STZ-treated diabetic models and does not alter in obese-

induced diabetic models (Militante et al. 2000). Elevation

of cardiac taurine level seems the feature of cardiomyop-

athy, since its elevation has also been reported in the ani-

mal models or patients with congestive heart failure

(Huxtable and Bressler 1974). Although the biological

significance of the elevation of taurine level in the failing

heart is still unveiled, the elevated taurine is expected to

modulate glycolytic capacity, such as pyruvate dehydro-

genase phosphorylation, in diabetic cardiomyopathy

(Militante et al. 2000). Recently, Li et al. (2005a) reported

that taurine supplementation started after the development

of cardiomyopathy prevented an increase in heart weight

and improved the impaired -dp/dt max but not ?dp/dt

max. Furthermore, taurine supplementation suppressed the

reduction of Bcl-2 expression in STZ-treated diabetic car-

diomyopathy rats, indicating that anti-apoptotic action of

taurine may be involved in the protective effect of taurine

against diabetic cardiomyopathy.
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Clinical studies

The clinical usefulness of taurine on diabetes has been

evaluated in some clinical studies (listed in Table 1). In

clinical trial for type 1 diabetic patients, Elizarova and

Nedosugova (1996) investigated the effect of taurine on

hyperglycemia in type 1 diabetic patients (n = 10) who

had been already medicated with insulin. Additive sup-

plementation of taurine (0.5 g twice a day) improved the

carbohydrate metabolism and decreased in triglyceride. In

the other study, however, Franconi et al. (1995) reported

that the administration of taurine (1.5 g per day) for 90 day

did not modify glucose metabolism in IDDM patients

(n = 39). Clinical usefulness on type 1 diabetes is still

arguable.

There are some clinical trials of taurine supplementation

on the patients with type 2 diabetes mellitus. Chauncey

et al. (2003) tested the hypoglycemic effect of taurine on

type2 diabetes patients (n = 32), and they showed that

taurine supplementation (3 g per day) for 4 month

increased in plasma taurine level but did not change HbA1c

level and the plasma lipid peroxide level compared to

placebo group. Brons et al. (2004) also tested the effect of

taurine in overweight non-diabetic men (n = 20) in

crossover study. Although plasma taurine level was ele-

vated after taurine administration (1.5 g per day) for

8 weeks, taurine had no effects on insulin secretion or

sensitivity, and on plasma lipid level. These studies con-

cluded that taurine does not influence hyperglycemia and

insulin resistance in type 2 diabetic patients, inconsistent

with animal studies. However, it should be noted that these

clinical studies have some limitations such as other medi-

cations, given dose of taurine, duration of trial etc. On the

other hand, usefulness of taurine supplementation against

the impairment of insulin sensitivity was reported in the

crossover clinical study by Xiao et al. (2008). They dem-

onstrated the effect of taurine against chronic elevation of

plasma fatty acids induced by the intravenous infusion of

Intralipid (20% soybean oil, 1.2% egg phospholipids,

2.25% glycerin in water, heparin) on non-diabetic men who

were either overweight or obese (n = 6). While 48-h

infusion of intravenous lipid induced insulin resistance, a

2-week pretreatment of taurine (3 g per day) before lipid

infusion improved the impaired insulin sensitivity and

prevented the rise in lipid peroxidation products in plasma,

indicating that oral taurine supplementation ameliorates

fatty acid-induced insulin resistance in humans, possibly

due to reducing oxidative stress.

Concerning diabetic nephropathy, Nakamura et al.

(1999) tested the taurine supplementation (3 g per day) on

the patients with microalbuminemia of type 2 diabetes and

treatment was continued for 12 months in intergroup trial

(n = 10 each group). They demonstrated that taurine sup-

plementation had no benefit against microalbuminemia and

the biomarkers for fibrosis, such as serum collagen IV and

plasma Matrix metalloproteinase-9.

Meanwhile, Moloney et al. (2010) recently reported the

beneficial effect of taurine on endothelial dysfunction in

type 1 diabetic patients in crossover study. While arterial

stiffness and flow-mediated dilatation of brachial artery,

Table 1 Clinical studies with diabetes and complications

Article Subjects Duration Dose (/day) Endpoint Result

Diabetes

Franconi et al. (1995) IDDM patients (n = 39) 90 days 1.5 g Glucose metabolism NC

Elizarova and Nedosugova

(1996)

IDDM patients (n = 10) 30 days 1 g Glucose metabolism Improved

Triglyceride Decreased

Chauncey et al. (2003) NIDDM patients (n = 32) 4 months 3 g HbA1c NC

Plasma lipid peroxide level NC

Brons et al. (2004) Overweight non-diabetic

men (n = 20)

8 weeks 1.5 g Insulin secretion NC

Plasma lipid level NC

Xiao et al. (2008) Overweight non-diabetic

men (n = 6).

2 weeks 3 g Insulin sensitivity impaired by 48-h

infusion of intravenous lipid

Improved

Lipid peroxidation products Decreased

Complications

Nakamura et al. (1999) NIDDM patients with

microalbuminemia

(n = 10 each group)

12 months 3 g Microalbuminemia NC

Biomarkers for fibrosis NC

Moloney et al. (2010) IDDM patients (n = 9) 2 weeks 1.5 g Hyperglycemia NC

Endothelium-dependent reaction Improved

NC Not changed
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which are endothelium-dependent reactions, were low in

diabetic patients as compared to control subjects, taurine

supplementation (1.5 g per day) for 2 weeks returned these

parameters to control level without hypoglycemic effect,

indicating the protective role of taurine on endothelium.

Interestingly, same group previously reported that taurine

supplementation (1.5 g per day) for 2 weeks also attenu-

ated the impairment of flow-mediated dilatation in young

cigarette smokers (Fennessy et al. 2003). Furthermore,

while the culture medium conditioned with monocytes

taken from smokers impaired the release of nitric oxide and

increased in endothelin-1 in HUVECs, the levels of nitric

oxide and endothelin-1 returned to control levels in HU-

VECs cultured with the monocyte-conditioned medium

taken from smokers who had been treated with taurine.

Therefore, the suppression of monocyte-endothelium

interaction is likely to be a key action of protective role of

taurine on endothelial function. Since the involvement of

monocyte–endothelium interaction in endothelial dys-

function of diabetic animal models is also demonstrated as

described above, it is possible that same pathway underlies

the action of taurine against endothelial dysfunction in

diabetic patients.

Discussion

As described in this article, numerous studies revealed that

taurine supplementation is beneficial to diabetes and its

complications in several animal models. Moreover, multi-

ple actions of taurine coordinate to protect from diabetes

and complications (Table 2). Especially, suppressive effect

of taurine against oxidative stress is associated with various

pathways in diabetic condition. First, reactivity of taurine

against aldehyde can contribute to the reduction of AGE

and modified LDL. Second, scavenging action against

HClO can reduce the LDL modification and increase in

bioavailability of the NO. Finally, taurine is likely to

inhibit the ROS production via regulation of mitochondria

(reviewed in Schaffer et al. 2009). While very high taurine

concentration is found in mitochondria, several roles of

taurine in mitochondria have been proposed. Taurine-

containing modified uridine has recently been discovered at

wobble position in mitochondrial transfer RNA (tRNA)

(Suzuki et al. 2002). Taurine-modified tRNA may play a

crucial role in the translation of proteins responsible for

electron transport (Kirino et al. 2004), suggesting that

taurine depletion might cause a decrease in taurine-modi-

fied tRNA and impairs electron transport capacity. More-

over, buffering property of taurine in mitochondrial matrix

has been reported (Hansen et al. 2010). Therefore, taurine

depletion in diabetes may contribute to mitochondrial

dysfunction and it is possible that restoration of taurine

contributes to normalize mitochondrial function, which

may associate with inhibition of the ROS production from

mitochondria. To elucidate the role of taurine depletion in

mitochondrial function and in the development of diabetic

complications, further studies, such as investigations using

taurine transporter knock-out animals (Ito et al. 2008), will

be required.

Nevertheless, most of clinical studies failed to prove the

beneficial role of taurine on insulin resistance and diabetic

Table 2 Molecular

mechanisms involved in the

beneficial effect of taurine

against diabetic complications

Diabetic complications Effects of taurine

Endothelial dysfunction • Prevention of AGE production

• Scavenging aldehydes ? oxidized LDL;

• Scavenging HClO ? oxidized LDL;, NO:

• LDL cholesterol;

• Inhibition of apoptosis in endothelial cells

• Prevention of VCAM-1, ICAM-1 : ? leukocyte-endothelium interaction;

Diabetic nephropathy • TGF-b; ? prevention of fibrosis

• Suppression of MAPK cascade, STAT3 ? cell growth

• Cytochrome P450 2E1; ? oxidative stress;

Diabetic retinopathy • Oxidative stress; ? prevention of Na?/K?/ATPase activity;

• Suppression of VEGF: ? retinal vascular function

Diabetic cataract • Oxidative stress ;

• Prevention of protein carbonylation

Diabetic neuropathy • Oxidative stress ; in nerves

• Prevention of the impaired calcium handling in sensory neuron

• Suppression of NGF;

Diabetic cardiomyopathy • Suppression of Bcl-2; ? apoptosis;
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complications, whereas the others revealed the effective-

ness. The discrepancies between animal experiments and

clinical trials might be due to some limitations of clinical

studies, such as a severity of the disease, other medications,

given dose, duration of trial etc. Especially, the given dose

of taurine per body weight is more than 10 times higher in

animal experiments (e.g. diet containing 5% taurine) than

in clinical trials (1.5–3 g taurine per day). Intake of taurine

is thought to be quite safe as well as the amino acids found

in food. While several reports strongly support that taurine

is safe at levels up to 3 g/day, several clinical trials tested

higher taurine dosages without adverse effects (Azuma

et al. 1983, 1985; Shao and Hathcock 2008). Furthermore,

since the pharmacological effect of taurine seems mild but

not powerful, simultaneous therapy by using some medi-

cines is also a problem. At present none of clinical studies

have a sufficient numbers of patients. Therefore, long-term

surveillance with large numbers of patients may be nec-

essary to elucidate the effectiveness of taurine against

diabetes or its complications in clinical study. Moreover,

life style, such as diet, and genetic factors, such as genomic

polymorphisms which relate to individual differences, can

affect to the result of trials. It is known that urinary taurine

concentration in human varies widely among individuals

(Yamori et al. 2001). Brons et al. (2004) reported a wide

variation in the increasing rate of plasma taurine concen-

tration after taurine administration among individuals.

These variations of taurine movement among individuals

must differ dependent not only on life style but also

genomic polymorphisms in taurine-related genes associ-

ated with the kinetics of taurine, such as taurine transporter.

Therefore, we believe that the discovery of the genetic

factors which determine the variation of taurine movement

will help to elucidate the effectiveness of taurine against

diabetes and its complications in humans.
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