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Abstract Recent advances in systems genetics and integra-
tive functional genomics have greatly improved the study of
complex neurological and behavioral traits. The methods
developed for the integrated characterization of new,
high-resolution mouse genetic reference populations and sys-
tems genetics enable behavioral geneticists an unprecedented
opportunity to address questions of the molecular basis of
neurological and psychiatric disorders and their comorbidities.
Integrative genomics augment these strategies by enabling
rapid informatics-assisted candidate gene prioritization,
cross-species translation, and mechanistic comparison across
related disorders from a wealth of existing data in mouse and
other model organisms. Ultimately, through these comple-
mentary approaches, finding the mechanisms and sources of
genetic variation underlying complex neurobehavioral disease
related traits is becoming tractable. Furthermore, these
methods enable categorization of neurobehavioral disorders
through their underlying biological basis. Together, these
model organism-based approaches can lead to a refinement
of diagnostic categories and targeted treatment of neurological
and psychiatric disease.
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Introduction

Among the critical challenges in the discovery of pharma-
cotherapy for behavioral and neurological disorders are the

heterogeneity and comorbidity of the disorders and the
diversity of mechanisms by which they arise. Shared bio-
logical mechanisms may underlie frequently comorbid be-
havioral disorders, and diverse etiological mechanisms may
each result in the same behavioral disorder. Furthermore,
environmental factors influence the structure and func-
tion of the nervous system, playing a major causal role
in behavioral disorders in the same manner as endoge-
nous genetic variation. Genetic variation leading to individual
differences in neural functionmay also influence environmen-
tal preferences or niche selection, thus correlating partic-
ular genetic backgrounds with particular environmental
exposures.

These issues have challenged those engaged in efforts to
define and classify psychiatric conditions for basic research,
diagnostics, and therapeutics. The definitions of these disor-
ders in the International Classification of Diseases, Diagnostic
and Statistical Manual, and other classification schemes are
heavily reliant on sociocultural, subjective, and external clin-
ical manifestations of the disorders. Therefore, such schemes
may result in a poor mapping of diagnostic categories onto
biological mechanisms of disease. This challenge is further
compounded in the use of animal models to study disease, for
which one strives for true construct validity, but relies instead
on tests that were often historically devised for pragmat-
ic factors, including pharmacological response validity
and face validity. Furthermore, the validity and reliabil-
ity of these assays is made difficult due to the chal-
lenges of generalizing behavioral results across testing
paradigms and laboratory environments.

Patterns of comorbidity in behavioral health are consid-
erable, and the heterogeneity of individual characteristics
and diagnostic categories present challenges to precise, ac-
curate diagnosis and alignment to effective treatment.
Results from the National Epidemiologic Survey on Alcohol
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and Drug Related Conditions (NESARC) and other studies
reveal extensive comorbidity. For example there is greatly
increased prevalence of psychiatric and behavioral disorders
among individuals with substance use disorders [1–10] and
a corollary high prevalence of drug abuse and dependence
with mental disorders [11]. Understanding the relations
among diverse neurobehavioral disorders is critical to iden-
tifying the biological basis of comorbidity, developing a
biologically driven classification of behavioral disorders,
and identifying the precise biomolecular networks underly-
ing comorbidity.

It is essential to be able to categorize disease, define
subtypes, and operationally define robust, reliable, and valid
research models to develop efficacious interventions. This
may be particularly true for pharmacotherapeutics, but these
issues also apply to the development and application of
biopsychosocial therapies that are tailored to the specific
subtypes and biological mechanisms of psychiatric disor-
ders. As we move toward personalized and predictive med-
icine for neurological and psychiatric disorders, including
pain, mental health, and disorders of addiction, it becomes
ever more critical to accurately define and characterize
particular classes of behavioral disorder. One approach to
this challenge is to define disorders by, and simultaneously
associate them with, underlying biological mechanisms and
manifestations of the disease.

Integrative genetics and genomics are emerging strategies
to implement this approach. These methods have advanced
largely through mouse genetics and systems biology. They
have the potential to identify and evaluate heretofore poorly
characterized therapeutic targets and simultaneously associ-
ate these biomolecules to particular facets of behavioral
disorders. Integrative or systems genetics applies systems
biological methods including high-throughput molecular
assays and network modeling to the study of population
genetic variation. Studies of this type often use a single
population as a reference to integrate data across a variety
of biological functions and across biological scales. Recent
advances in mouse genetic reference populations capture
unprecedented allelic diversity and will greatly improve
the power and precision of these studies [12–14]. The ge-
netic variation inherent in the populations drives multiple
traits simultaneously, enabling discovery of the common
genetic basis and correlated molecular functions for a wealth
of pleiotropic sequelae of genetic variation. Integrative
genomics uses genes and other biomolecules as a reference
with the goal of examining the shared and unique basis of
disorders annotated to those biomolecules across species
and experimental systems. New web-based resources, in-
cluding our own GeneWeaver.org, enable the integration of
genomic data across large numbers of studies and a range of
model organisms [15, 16]. The global objectives of these
complementary approaches are to identify the molecular

underpinnings of related behavioral phenotypes, to exploit
this information to define categories of related or distinct
behavioral traits and to enable reclassification of behavioral
disorders, based on associated molecular networks. Togeth-
er, integrative genetics and genomics enable a meaningful
shift from face validity to molecularly-based construct va-
lidity in the development of classification schemes, cross-
species translation of disease models, and identification of
specific therapeutic targets for specific manifestations of
psychopathology.

Systems and Integrative Genetics

Overview

Integrative genetics relies on the phenomenon of gene plei-
otropy. A polymorphism will cause biologically related dis-
orders to co-vary (i.e., to be comorbid), based on a shared
role for the affected gene in the underlying biological pro-
cesses. The corollary to this is that distinct diseases are
largely driven by distinct polymorphisms, even when they
have the same behavioral manifestations. Despite conver-
gent behavioral manifestations, such as the tendency to
consume excessive amounts of alcohol among individuals
with diverse underlying psychopathology, these disorders
should be considered distinct phenomena when searching
for biological mechanisms and therapeutic interventions.
Indeed, the challenge of identifying genes for behavioral
disorders has been largely one of refining phenotypic defi-
nition and genetic population composition to better associ-
ate behavioral variation with genetic diversity. Without such
refinement, genetic factors account for only limited amounts
of population phenotypic diversity. Integrative or systems
genetics is a method used for the genetic correlation of
disease-related phenotypes across individuals in order to
assess their cohesion in functional categories, and for the
correlation of disease-related phenotypes to underlying bio-
logical mechanisms of disease.

Quantitative Trait Locus Analysis of Behavior
in the Laboratory Mouse

The laboratory mouse has a long history in behavioral
neuroscience, and the use of the laboratory mouse for the
genetics of complex traits, including behavior is well-estab-
lished. A variety of resources exist for performing experi-
mental crosses of two or more strains to randomly segregate
genotypes among the resulting progeny. By correlating gen-
otypes with phenotypes in quantitative trait locus (QTL)
analysis, a large number of polymorphic regions harboring
trait relevant allelic variation have been defined for a wide
range of behavioral phenotypes [17]. At present, there are
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549 QTLs for behavioral phenotypes in the Mouse Genome
Informatics database, which are largely derived from crosses
of 2 inbred strains of mice [18]. A major benefit of QTL
analysis is that any polymorphic feature can be implicated as
the cause of variation in a complex trait, as opposed to
reverse genetics methods, which involve targeted perturba-
tion of known genes and gene products. However, there has
been a critical challenge with QTL analysis. Historically, the
resulting genetic loci have been large, sometimes containing
several hundred candidate genes. With the discovery of
many new noncoding DNA features, cryptic splice sites
and other noncoding variation, the search for the cause of
trait variation within these loci is even more challenging
than it once appeared. Moreover, each population used in
conventional mapping crosses is independently bred and it
is typically impossible to retrieve a sample of mice with the
same genetic configuration. Furthermore, QTL mapping
does not lend itself readily to the sharing of information
across experiments. In earlier studies, each panel of mice
was subject to a limited number of phenotypic measures,
often of highly related behavioral traits. Although the inde-
pendence of mapping crosses allows independent replica-
tion of mapping results, data integration across studies is
only possible through the mapped loci themselves.

Multi-dimensionality in Mouse Genetic Reference
Populations

Genetic reference populations (panels of recombinant inbred
strains) feature the same random segregation of genetic loci
found in an experimental cross. However, the population is
inbred, enabling indefinite retrieval of the population for
further characterization, leading to multiplicative aggregation
of phenotypic data. This important characteristic allows broad
multi-dimensional profiling of the population through inde-
pendent studies, which also allows discovery of underlying
factors of behavioral variation and comorbid disorders
(Fig. 1). The integrative value of recombinant inbred strains
for behavioral genetic analysis has been long appreciated [19].
Advances in computation, bioinformatics, and the pro-
liferation of Internet-based biological resources enabled
the development of the integrative Gene Network (www.
genenetwork.org) system [20] for the aggregation and
analysis of molecular and trait data across the recombi-
nant inbred lines, including the largest existing set, the
C57BL/6 × DBA/2 recombinant inbred (BXD RI) lines.

In the expanded BXD RI mouse population [21], we have
recently made more than 250 measures from approximately
40 behavioral tests, including multiple traits relevant to drug
and alcohol sensitivity and withdrawal, basal behavioral
variation, and neurobehavioral measures reflective of stress,
anxiety, despair, activity, pain sensitivity, and startle [22].
These data were all contributed to the database of

phenotypes on GeneNetwork.org [23]. Using the GeneNet-
work embedded QTL mapping software, quantitative trait
loci that regulate each trait were detected [24]. The entire
trait co-expression matrix was then subject to a factor anal-
ysis that allowed the identification of behavioral factors,
which could then be correlated with other characteristics of
the mouse population. For example, we used this analysis to
identify a factor related to the reactive response to both
auditory and thermal stimuli, and found that this factor is
correlated with preference for alcohol self administration.
Recent human studies applied a conceptually similar ap-
proach to identify related personality correlates of alcohol
drinking [25]. Another factor appears to be highly related to
diverse measures of morphine withdrawal. Although no
single measures of morphine withdrawal could be mapped
to a significant locus, the combination of the correlated traits
improved the ability to detect a common genetic signal
(Fig. 2). The identification of genes underlying these com-
mon factors of human behavior is a lengthy and expensive
endeavor. Mouse genetic reference populations can be a
deep and efficient resource for the discovery of the biolog-
ical basis of these relations. New genetic approaches in
model organisms can accelerate the discovery of the causa-
tive loci and candidate mechanisms of these correlated phe-
notypes, and translational bioinformatics strategies can be
applied to assess the biological construct validity of the
mouse model phenotypes used to identify these factors.

Correlation across Biological Scale: Identification
of Co-Expressed Traits and Genes

Systems genetics enables biological mechanisms to be as-
sociated with factors of behavioral variation en masse. This
method integrates systems biological methods of high
throughput molecular characterization and mathematical
modeling of networks with the methods of systems genetics

Fig. 1 A schematic representation of the integrative multi-dimensional
analysis of behavior and the relation of substance-use phenotypes to
previously established factors of behavior in a reference population
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analysis. The advent of whole-genome gene expression
technology and other molecular profiling techniques has
enabled the deep integration of behavioral phenotypes in
these populations with biomolecular traits.

The earliest systems genetics studies used genetic refer-
ence populations to map genetic loci that regulate the ex-
pression of genes. These studies found massive patterns of
gene co-expression, including groups of genes that are high-
ly correlated with behavioral traits. Because these studies
broadly sampled brain gene expression and previously exist-
ing behavioral data, there has been a proliferation of systems
genetics work in diverse genetic reference panels and ex-
perimental crosses. Using brain gene co-expression net-
works, genes, and polymorphisms have been identified
that are associated with anxiety-like behavior [26], diabetes,
= obesity [27], and most recently, fear conditioning [28].

Advanced Reference Populations for Integrative Genetics

Mouse experimental crosses and simple 2 progenitor recom-
binant inbred populations have been a major enabling tech-
nology for the discovery of biological mechanisms of

neurobehavioral phenomena, but the conventional popula-
tions have had some major drawbacks. The power and preci-
sion of the existing populations are typically very low. One
strategy to improve power is to decrease segregating back-
ground noise, and in the process begin moving toward a
congenic mouse population. This has been done through the
creation of chromosome substitution strains, in which a chro-
mosome from 1 mouse strain is introgressed onto the back-
ground of a different strain through a marker assisted
backcrossing [29]. These mice have been used to study pre-
pulse inhibition, among other measures of behavior [30], but
lack locational precision without additional backcross map-
ping [31].

Increasing the sample size in QTL mapping across pop-
ulations to several hundred mice can improve precision
because each individual possesses unique meiotic recombi-
nations that reduce the QTL size. Advanced intercross pop-
ulations take advantage of the added recombination
introduced at each generation [32]. Another strategy used
to improve QTL precision is to perform additional crosses
between inbred lines that have different recombinant ances-
tral haplotypes in the QTL interval [33]. These existing

Fig. 2 Multi-dimensional
genetic analysis in the BXD
recombinant inbred (RI) genetic
reference population. QTL
mapping of a factor predictive
of naloxone-induced morphine
withdrawal, naloxone (30 mg/
kg i.p.) after morphine (50 mg/
kg dose i.p.). Blue traces are
likelihood ratio statistics. The
red/green trace plots the addi-
tive effect with green repre-
senting increase or effects of
DBA/2J alleles and red repre-
senting positive effects of
C57BL/6J alleles. Horizontal
lines represent the p<0.05 (red)
and p<0.63 (blue) empirical
significance thresholds. Analy-
sis of 3 distinct measures of
morphine withdrawal reveals
no significant QTL, although
suggestive loci are present. The
combined analysis of multiple
behaviors through a reference
population reveals a significant
QTL for a derived factor of
these and other correlated
behaviors [22]. The “Morphine
Withdrawal Factor” was de-
rived by performing a maxi-
mum likelihood factor analysis
on measures from our high
throughput behavioral study in
the BXD RI lines
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short haplotype regions narrow the interval and number of
candidate genes. Others have taken advantage of the exist-
ing short haplotypes in the common inbred strains, alone
[34], and in a panel referred to as the Hybrid Mouse Diver-
sity Panel, in combination with the recombinant inbreds
[28]. New mouse genetic reference populations make use
of each of these properties to improve power and precision
for genetic mapping and genetic correlation.

The distance between the founders of a mouse population
affects the precise number of polymorphic loci that can be
detected. Typical mouse genetic populations make use of
only 2 founders from the closely related common inbred
strains, and therefore possess a limited number of genetical-
ly variable loci [35]. Notable exceptions to this are the
heterogeneous stock populations, several of which have
been used quite extensively for behavioral genetics for
QTL mapping and in the derivation of selected lines [36,
37]. Motivated by advances in systems genetics, new mouse
populations are being developed. The Collaborative Cross is
derived from 8 inbred founders and exhibits a tremendous
degree of genotypic and behavioral diversity [13, 38]. The
HS-CC [39] and The Diversity Outcross (J:DO), heteroge-
neous stocks bred from Collaborative Cross lines, and thus
derived from the same founders, segregates this diversity
randomly for many generations, leading to increasingly
refined genetic loci [40].

These new populations with ultra high diversity and high
precision of recombination will be a tremendous advantage
for behavioral and neurological studies due to the increased
precision of QTL mapping (Fig. 3). It has long been spec-
ulated that the historical mouse populations, including the
widely used laboratory strains, have been selected for do-
cility, and thus constitute a narrow band of behavioral di-
versity. Our earliest characterization of the Collaborative
Cross mouse population reveals that phenotypic diversity
greatly exceeds that of the BXD RI mouse population.
Furthermore, we show that by systematically intercrossing
diverse laboratory mice, continuous variation in behavioral
wildness can be restored, resulting in mouse models of
neurobehavioral variation that more closely resemble a nor-
mal mouse population [14]. Genetic analysis in the collab-
orative cross reveals QTLs that are more precise, containing
fewer candidate genes and polymorphisms [14].

In summary, genetic analysis in mouse populations has
moved from single trait studies to broad integrative studies
of multiple related phenotypes and their endophenotypes.
The integration of trait data across levels of biological scale
through the use of genetic reference populations enables
discovery of biological co-regulation and thus, the identifi-
cation of the biological basis of co-expressed traits. Those
co-expressed traits may range from molecular mechanistic
underpinnings of behavioral disorders to disease measures
related to comorbid disorders. New mouse populations are a

critical resource to boost the power and precision of these
studies.

Integrative Functional Genomics

Overview

Integrative functional genomics provides another path to use
mouse model organism data as a point of entry into biolog-
ical mechanisms of pathology and comorbidity. There is a
tremendous and rapidly growing amount of data coming
from the widespread adoption of genomics in behavioral
neuroscience and psychiatric studies. These began with
early studies that mapped QTLs for behavioral traits, typi-
cally in rodent populations, but also in flies and other
species. The later invention of whole genome expression
profiling and expression QTL analysis have generated large
sets of differentially expressed genes associated with psy-
chiatric disorders and their model organism cognates. Ex-
pression QTL mapping studies provide yet another source of
genomic data on the transcriptional effects of genetic vari-
ation in diverse processes [43]. Performing these studies in
mouse genetic reference populations creates another large
set of data types, resulting from gene co-expression to
behavior [23]. Systematic efforts to curate experimental
results and annotate genes to brain and behavioral processes
represented in the Open Biomedical Ontologies [44], Gene

Fig. 3 An overlay of representative QTL scans centered at their peak
loci mapped with approximately 250 to 300 mice in each study. The
entire chromosome containing each representative locus is shown.
QTL precision is dramatically improved with new reference popula-
tions, including the Collaborative Cross, Diversity Outbred, and to a
lesser extent, the expanded BXD recombinant inbred panel. A panel of
consomics mice has the ability to narrow a QTL to the resolution of a
single chromosome [30]. Thirty-five BXD recombinant inbred strains
were used to map basolateral amygdala complex size, resulting in a
significant QTL on chromosome 8 [41]. The precision of an F2 cross
produces a small, broad significant QTL for bone mineral density on
chromosome 7 [42]. From the expanded BXD RI population, a narrow
QTL was mapped on chromosome 13 for open field rearing after
cocaine [22]. Using mice from the collaborative cross breeding popu-
lation a QTL for liter size was mapped to a narrow locus on chromo-
some 6 [14]. Early studies using the Diversity Outcross population of
mice reveal high precision loci for light-dark box behavior. CC 0
Collaborative Cross; DO 0 Diversity Outbred; F2 0 F2 hybrid cross;
LOD 0 Logarithm of odds; MBp 0 megabase pairs
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Ontology [45], Disease Ontology [46] and Mouse Phenotype
Ontology [47], the latter of which is increasingly being pop-
ulated by the results of broad scale mutant and knock out
phenotyping efforts. Advances in human genetics have
now implicated loci across the genome with behavioral
and psychiatric phenomena. Each of these behavioral
and neural genomics studies are being performed in a
growing array of model organisms, largely including
Mus musculus, Rattus norvegicus, Homo sapiens, Dro-
sophila melanogaster, Danio rerio, Caenorhabditis ele-
gans, and increasingly in nonhuman primates, such as
Macaca mulatta.

Integrative Functional Genomics

Integrative functional genomics is an emerging data inten-
sive approach to the matching of many genes to many
behaviors and refining the results of genome scale inves-
tigations. In this method, the biomolecular entity is the
reference through which data are integrated, whether it is a
gene, single-nucleotide polymorphism, microRNA or other
functional or nonfunctional gene product. Gene homology
allows for the integration of genomic studies across species,
and therefore to obtain construct valid mappings of phe-
nomena from model organisms onto human psychological
disorder. Several investigators are attempting this approach
informally for small sets of genomics data to address key
questions of integrative functional genomics analysis. These
efforts seek to discover: 1) those genes and gene products
that are consistently associated with particular disorders, 2)
those that are common to multiple related disorders, 3) those
that distinguish among disorders, and 4) those that are
conserved across species. A less frequent application that
we emphasize in our work is the development of tools to
enable researchers to identify those disorders that are similar
to one another through common biological substrates.

The Wealth of Secondary Data

There is a tremendous amount of data generated from func-
tional genomics analysis. Related to alcoholism alone, there
are abstracts from more than 270 published QTL mapping
studies, 9 genome-wide association studies (GWAS), and
304 gene expression publications at the time of this writing.
In most genome-wide experimental paradigms results can
often be distilled into a list of genes or genomic features,
along with a description of the criteria describing the group
of genes, such as the methods or experimental processes by
which the list was generated. Although some applications
integrate genomic data at the level of primary data generated
from analytic equipment, many others, including our own
approach, integrate experimental results that are derived in
part from analysis and other interpretive decisions made by

the investigator. For example, there are disparate archives
for raw expression data (Gene Expression Omnibus; http://
www.ncbi.nlm.nih.gov/geo/), QTL Archive mapping data
(http://www.qtlarchive.org/), and inbred strain phenotypes
(http://phenome.jax.org/ and http://GeneNetwork.org). Infor-
mation regarding the comparison made, or the results of the
study, are explicit in metadata, but only implicit in the raw data
until deep analysis occurs. GeneWeaver.org stores and inte-
grates experimental results or “secondary data,” by storing
lists of genes and scores in the form of gene lists that one
might derive from the previously described resources, includ-
ing p values or q-values from differential expression experi-
ments, a list of positional candidate genes from the confidence
interval around a QTL, or a list of co-expressed genes and
their correlation statistic.

The Current State of Functional Genomics Data for Data
Integration

The unfortunate challenge created by this wealth of second-
ary data is that it is all largely stored in a noncomputable
form. Each of these studies report massive amounts of
information regarding the functional roles of genes and
other biomolecular entities in diverse processes; however,
for most readers of the literature, it is technically challeng-
ing to summarize and integrate these findings across studies.
Model organism databases store functional information, ex-
pression data, mapping data, and reference population phe-
notypes in highly integrated but separate repositories for
each species. Domain centered databases typically store
information on the role of genes and gene products in
specific biological functions (e.g., Synapse DataBase,
http://syndb.cbi.pku.edu.cn/ [48]; Ethanol-Related Gene Re-
source, http://bioinfo.mc.vanderbilt.edu/ERGR/ [49],
Knowledgebase for Addiction-Related Gene [KARG],
http://karg.cbi.pku.edu.cn/ [50], and PainGenesdb, http://
www.jbldesign.com/jmogil/enter.html [51]). Each of these
resources is valuable for its specific audience, but they may
provide few analytic capabilities, interoperability, and inte-
gration with other data sources for the combination and
comparison of results. Efforts to create registries of
bioinformatics resources, such as these, have been help-
ful, and data federation enables cross database queries.
Perhaps the most challenging data of all are the many
publication tables and manuscript supplements that are
typical of functional genomics studies. Because genomic
data are stored in widely disparate manners, and meth-
ods to integrate the data require a fair amount of facility
with diverse informatics tools and approaches, it
remains difficult to apply these phenomenal data resour-
ces to the fundamental question of which processes
share common and distinct biological substrates, and
hence, which behavioral disorders should be classified
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together for the development of more precise diagnos-
tics and targeted therapeutics.

Creating an Integrative Platform

In Gene Weaver (http://geneweaver.org) [15, 16], we have
created a web-based software system and data repository for
broad, large-scale, integrative functional genomics analysis.
The system is free to use, and with registration, it allows
advanced features for long-term storage and access con-
trolled sharing of data and results. In most cases, functional
genomics results can be stored assets of biomolecules, most
commonly genes, and the processes that these molecules are
associated with. Gene sets are stored in the repository,
retrieved by user queries of gene or terms, such as “alco-
holism” or “striatum,” and analyzed using a variety of tools.

The current gene set repository in Gene Weaver contains
more than 48,000 gene sets consisting of more than 80,000
genes from 7 species. A summary of the search results for
alcoholism, cocaine, or other drugs of abuse or behavioral
disorders identifies ~5,000 gene sets. These gene sets are
curated data that has been submitted or imported from
public resources, including the drug-related gene database
of the Neuroscience Information Framework [52], Gene
Network [53], and the Comparative Toxicogenomics Data-
base [54]. Positional candidates of behavior-related mouse
QTL have been obtained from the Mouse Genome Database
[18], and gene expression in various brain regions has been
obtained from the Allen Mouse Brain Atlas [55]. The Gene

Weaver user community can also submit experimental
results and other gene set centered data for curation into
the public database.

A Generalized Network-Based Approach

Gene Weaver uses groups of genes that have been experi-
mentally associated with neurobehavioral phenomena as the
basis of data integration. A bi-partite (two-part) network of
genes and functions is constructed and explored to find the
common and unique genes related to sets of behavioral
processes. In this network, binary associations of genes-to-
functions are indicated as edges between the two types of
nodes. Each gene is mapped onto its homologs across all
species, allowing a combination of experiments from sever-
al species. Although this approach may seem somewhat
trivial, for large sets of genes and phenotypes the enumera-
tion of completely connected groups of gene sets and their
largest common intersection from thousands of experiments
is a computationally intensive process facilitated by ad-
vanced algorithms. There are many applications of analyz-
ing such a network, largely through the evaluation of the
intersections among sets of genes for similar and distinct
processes.

Finding Highly Ranked Genes

In the simplest application of the integrative functional
genomics strategy, one merely combines the results of many

Table 1 Gene similarity to cacnag2 based on aggregate genomic studies in diverse species

Gene symbol
(Mus musculus)

Gene name Number of
shared gene sets

Cacna1a Calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 95

Cacna1c Calcium channel, voltage-dependent, L type, alpha 1C subunit 88

Cacna1b Calcium channel, voltage-dependent, N type, alpha 1B subunit 84

Grin1 Glutamate receptor, ionotropic, NMDA1 (zeta 1) 79

Trpv1 Transient receptor potential cation channel, subfamily V, member 1 77

Cacnb4 Calcium channel, voltage-dependent, beta 4 subunit 76

Cacna2d2 Calcium channel, voltage-dependent, alpha 2/delta subunit 2 73

Kcnma1 Potassium large conductance calcium-activated channel, subfamily M, alpha member 1 72

Chrna7 Cholinergic receptor, nicotinic, alpha polypeptide 7 71

Drd2 Dopamine receptor D2 71

Cacng2 Calcium channel, voltage-dependent, gamma subunit 2 68

Scn9a Sodium channel, voltage-gated, type IX, alpha 68

Cacna1d Calcium channel, voltage-dependent, L type, alpha 1D subunit 67

Grin2b Glutamate receptor, ionotropic, NMDA2B (epsilon 2) 67

P2rx4 Purinergic receptor P2X, ligand-gated ion channel 4 67

Scn8a Sodium channel, voltage-gated, type VIII, alpha 67

Slc6a4 Solute carrier family 6 (neurotransmitter transporter, serotonin), member 4 67
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independent experiments of related phenomena to find those
genes that are conserved across species and frequently as-
sociated to the function in question. Cross-species analyses of
pain-related phenotypes by others using smaller collections of
studies have revealed highly conserved pain genes [56],
although some interpret the low rates of overlap across
species more negatively [57]. At the present time, it is
clear that the experimental data are quite sparse and a
means of connecting large numbers of diverse studies is
required. Using a large bi-partite graph, we have combined
166 gene sets reflective of genome wide pain studies, and we
identified genes that were found in nearly 10% of these
studies, including well-studied genes, such as Trpa1, Trpv1,
and Cacna1a, among several less well-studied targets. It is
important to note that the inputs to these analyses include
broad-based genome wide studies where any gene is a viable
candidate, rather than those studies driven by prior gene
centered knowledge.

Refining Genetic Loci

Aggregate functional genomics data has also been used
successfully to refine QTL positional candidate loci
[58]. In this application, mouse genetic loci are refined
through the systematic compilation of genomic data
from studies of related functions. This strategy enables
refinement of large sets of candidate genetic loci to a
smaller pool of highly prioritized functional candidates
for which evidence supports a role in the complex trait
of interest.

Exploring the Gene Neighborhood

Exploring the neighborhood around known genes is a pow-
erful approach to identifying additional genes that may play
a similar role in disease. For example, in a strategy similar to
that used by McGary et al. [59], starting with genes known

co
nn
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ity

Not alcohol annotated
Alcohol annotated

Fig. 4 Convergent evidence for poorly studied genes associated with
alcoholism. This network was constructed from 31 alcohol-related
gene sets based on 3 major experimental data types: (i) QTL candidate
genes, (ii) GWAS candidates, and (iii) differentially expressed genes
from microarray experiments. These data came from 5 species (fruit
fly, zerbrafish, mouse, monkey, and human). At the top of the tree are
nodes representing multi-way intersections of the gene sets, and at the
bottom are the individual genesets. The map of all gene set

intersections contained more than 100 nodes. Bootstrapping was ap-
plied to reduce the complexity. Purple shading indicates nodes that
contain genes previously associated with human alcoholism or mouse
alcohol-related phenotypes. This analysis reveals that although many
genes have been identified in specific studies of alcoholism, the most
highly represented genes among the 31 data sets are not currently
annotated to alcoholism
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to be associated with autism in humans, one can search for
all gene sets containing homologs of autism genes in the
mouse. From this search, it is practical to identify those
genes that are highly connected to the same sets of genes
as are the autism connected genes [60].

Finding Related Biobehavioral Functions Through Shared
Genomic Substrate

Gene set centered data can ultimately be applied to
search for related biological processes based strictly on
the genes to which they are connected. It is through this
strategy that we expect to become able to define the
biological bases of trait comorbidity by defining the
shared molecular processes underlying comorbid dis-
eases. Once such networks are identified, experimental
validation of joint roles of genes in multiple comorbid
diseases is practical. Cacng1 has been identified as a
gene involved in chronic pain in mice and humans [58].
In the GeneWeaver system, a user can query for this gene and
identify those genes that are highly connected to similar gene
sets using a “guilt-by-association” approach. Cacng1 is found
within 164 gene sets. Among those gene sets, a ranking
of the most common members reveals genes that are
putatively similar in function to Cacng1 (Table 1).

Growing Beyond Existing Knowledge
from Within Functional Genomics Data Sets

The enormous potential of integrative functional genomics
lies in its ability to grow beyond existing knowledge of
widely studied genes. Functional genomics studies carry
with them the burden of validation of large numbers of
poorly supported results for genes that may have no reported
associations to particular neurobehavioral phenomena.
However, through aggregated experiments of diverse types,
it becomes evident that some of these poorly characterized
biomolecules are very frequently associated with related
biological phenomena.

For example, we have undertaken an analysis of 31
functional genomics results from diverse studies of
alcohol-related phenotypes (Fig. 4). Using our “Phe-
nome map” tool in the Gene Weaver system, we were
able to find those genes that were present in high order
intersections of alcohol-related data sets, including mu-
tant alleles annotated to alcohol-related phenotypes in
laboratory mice, and human alcoholism-related genes
from GWAS studies. The results are striking in that
genes that have been previously associated with alco-
holism occur in few gene lists derived from functional
genomics experimental results, whereas genes resident
in very high order intersections are as yet very poorly

characterized. New technologies provide a phenomenal
ability to move beyond a few well-studied targets and
systems, and integrative functional genomics gives us an
ability to synthesize and prioritize across numerous dis-
parate experiments. These approaches may be extended
to any area of neurobehavioral inquiry.

Harnessing the Power of Functional Genomics
in Laboratory Mice for the Identification of Novel
Therapeutic Targets

For the past decade, advances in integrative systems genet-
ics and functional genomics are complementary strategies
for refining the discovery of genes associated with neuro-
behavioral phenomena, both of which have the potential to
extract genes that are explicitly involved in comorbid dis-
orders. The development of new, high resolution genetic
reference populations, and the systems genetics analysis
approaches for use of these populations, are enabling be-
havioral geneticists an unprecedented opportunity to address
questions of the molecular basis of psychiatric disorders and
their comorbidities. Integrative genomics augments these
strategies by enabling the informatics-assisted rapid transla-
tion of candidate gene prioritization and functional compar-
ison. Ultimately, through these approaches, the underlying
biological basis of shared and disjoint neurological and
psychological processes can be identified and applied to
the refinement of diagnosis and treatment.
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