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Abstract
Behavior may be generated on the basis of many different kinds of learned contingencies. For
instance, responses could be guided by the direct association between a stimulus and response, or
by sequential stimulus-stimulus relationships (as in model-based reinforcement learning or goal-
directed actions). However, the neural architecture underlying sequential predictive learning is not
well-understood, in part because it is difficult to isolate its effect on choice behavior. To track such
learning more directly, we examined reaction times (RTs) in a probabilistic sequential picture
identification task. We used computational learning models to isolate trial-by-trial effects of two
distinct learning processes in behavior, and used these as signatures to analyze the separate neural
substrates of each process. RTs were best explained via the combination of two delta rule learning
processes with different learning rates. To examine neural manifestations of these learning
processes, we used functional magnetic resonance imaging to seek correlates of timeseries related
to expectancy or surprise. We observed such correlates in two regions, hippocampus and striatum.
By estimating the learning rates best explaining each signal, we verified that they were uniquely
associated with one of the two distinct processes identified behaviorally. These differential
correlates suggest that complementary anticipatory functions drive each region's effect on
behavior. Our results provide novel insights as to the quantitative computational distinctions
between medial temporal and basal ganglia learning networks and enable experiments that exploit
trial-by-trial measurement of the unique contributions of both hippocampus and striatum to
response behavior.
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Introduction
Although a behavior may appear to stem from unitary processes, a primary thrust of
cognitive neuroscience has been to fractionate its neural causes. In the case of memory, it is
established that different forms are subserved by separate systems (Knowlton et al. 1994
1996a,b; Packard et al. 1989); similarly, different networks relying on distinct
representations appear to support distinct strategies for learned decision making (Dickinson
and Balleine 2002; Niv et al. 2006; Bornstein and Daw 2011).
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In particular, whereas much work has examined the brain's mechanisms for “model-free”
reinforcement learning (RL) of action policies (Houk et al. 1995; Montague et al. 1996),
decisions may also be evaluated by anticipating their consequences using learned predictive
associations among non-rewarding states or events, as for locations in a cognitive map
(Doya 1999; Daw et al. 2005; Rangel et al. 2008; Redish et al. 2008; Fermin et al. 2010).
The psychological, computational, and neural processes supporting such “model-based” RL
are comparatively poorly understood and under intensive current study (Balleine et al. 2008;
Daw et al. 2011; McDannald et al. 2011; Simon and Daw 2011). However, in RL tasks, it
has been challenging to disentangle the contributions of either strategy to choices (both,
after all, ultimately seek reward). Here, we extended methods previously used for the study
of RL to examine more directly the learning of sequential, nonrewarded predictive
representations, an important subcomponent of model-based RL.

We used reaction times (RTs) as a trial-by-trial index of predictive learning in a serial
reaction time task requiring human subjects to identify images presented in a probabilistic
sequence. Predictive learning was evidenced by facilitated reaction times for more probable
images (Bahrick 1954; Harrison et al. 2006; Bestmann et al. 2008; den Ouden et al. 2010).

The trial-by-trial pattern by which RTs depended on experience was consistent with learning
by a delta rule: a gradually decaying influence, on average, of images observed on previous
trials (cf. Corrado et al. 2005; Lau & Glimcher 2005). A key feature of such a process is the
learning rate: how much weight the system places on new information, relative to previous
experience. Suggestively, RTs were best explained as resulting a combination of two such
processes, each with different learning rates. Such multiplicity might reflect multiple
predictive representations supporting the behavior, e.g. response-response sequencing
(procedural learning) and stimulus-stimulus associations (relational learning). Of these two
sorts of hypothetical representations, only the second might support model-based RL. While
our experimental design cannot explicitly distinguish between the two, we can use our
behavioral signatures to uniquely identify neural correlates in regions suggestive of one type
of mapping or the other.

We reasoned that if two distinct neural systems underlay this apparently dual-process
estimation, then a computational analysis of fMRI data could dissociate their activity via this
parameter (Gläscher and Büchel 2005). We used a computational model of learning to
analyze the fMRI data (O'Doherty et al. 2007), seeking correlates of predictive learning and
estimating the implied learning rates. Studies using related tasks have identified a distributed
network of regions, including hippocampus and striatum, involved in contingency
estimation (Strange et al. 2005; Harrison et al. 2006). Here, we decompose this apparently
unitary network into separable subnetworks, each displaying a learning rate that corresponds
uniquely to one of those estimated behaviorally. This approach allows us to dissociate the
individual contributions of hippocampus and striatum to trial-by-trial response behavior,
and, consequently, measure neural activity reflecting sequential predictive learning specific
to each of these structures.

Methods
Participants

Twenty right-handed individuals (nine female; ages 18 to 32, mean 25) participated in the
study. All had normal or corrected-to-normal vision. Participants received a fixed fee,
unrelated to performance, for their participation. Participants were recruited from the New
York University community as well as the surrounding area and gave informed consent in
accordance with procedures approved by the New York University Committee on Activities
Involving Human Subjects.
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Exclusion criteria
Data from two participants were excluded due to failure to demonstrate learning of the
sequential contingencies embedded in the task. Failure to learn was identified when a
regression model with only nuisance regressors (the “constant” model) proved a statistically
superior explanation of participant reaction times than any of the other models considered
here, which each include regressors of interest specifying the estimated conditional
probability of images (see Analysis, below). Statistical superiority was measured by
Bayesian Information Criterion (BIC; Schwarz 1978), used to correct likelihood scores
when comparing models with different numbers of parameters.)

Task design
Participants performed a Serial Reaction Time (SRT) task in which they observed a
sequence of image presentations and were instructed solely to respond to each image using a
pre-trained keypress assigned to that image. The stimulus set consisted of four grayscale
photographs of natural landscapes that were matched for size, contrast and luminance
(Wittmann et al. 2008). Each participant viewed the same four images. During behavioral
training, the keys corresponded to the innermost fingers on the home keys of a standard
USA-layout keyboard (D, F, J, K). For the MRI sessions, the same finger keys were used on
two MR-compatible button boxes (Figure 1a). Participants were instructed to learn the
responses as linking a finger and an image, rather than a key and an image (e.g., left index
finger, rather than 'F'). The mappings between the four images and four keys were one-to-
one, pseudorandomly generated for each participant prior to their training session, trained to
criterion prior to the fMRI session, and maintained constant during the experiment. The
experiment was controlled by a script written in Matlab (Mathworks, Natick MA), using the
Psychophysics Toolbox (Brainard 1997).

At each trial, one of the pictures was presented in the center of the screen, where it remained
for 2 seconds, plus or minus a small, pseudorandom amount of jitter time, up to 220ms in
increments of 55ms. Participants were instructed to continue pressing keys until they
responded correctly or ran out of time. Correct responses triggered a gray bounding box
which appeared around the image for the lesser of 300ms or the remaining trial time (Figure
1b). Thus, each image presentation occurred for the programmed amount of time, regardless
of participant response. The inter-trial interval consisted of 220ms of blank screen.

The training phase of the experiment was conducted outside of the scanner, seated upright,
with responses provided on a standard PC keyboard. During this phase, participants were
trained to a criterion level of accuracy, defined as 75 correct first responses out of at most
the previous 100 presentations.

A second practice session of 150 presentations was conducted inside the scanner, to ensure
that participants attained reasonable comfort and proficiency with the magnet-safe button
boxes used to collect responses. Neuroimaging data were not collected during this practice
session. The finger-to-image response mappings generated for the training session were
preserved for the scanner session.

The test phase of the scanning session proceeded with four blocks of 249 presentations. The
first three blocks were followed by a rest period of participant-controlled length. During the
rest period the participants were presented with a color image of a natural scene not among
the study set, and a text reminder to pause and rest before beginning the next run. Scan
blocks after the first were initiated manually by the operator only after the participant
pressed any of the relevant keys twice to alert the operator that they were prepared to
continue the task. Total experiment time -- inclusive of training, practice, and test -- was
approximately 1.5 hours.
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Stimulus sequence
For training, the sequence of images was selected pseudorandomly according to a uniform
distribution. Participants were instructed to emphasize learning the mappings between image
and finger, disregarding speed of response in favor of correctly identifying the image on the
screen.

During the test phase of the experiment, the sequence of images was generated
pseudorandomly according to a first-order Markov process, meaning that the probability of
viewing a particular image was solely dependent on the identity of the previous image
(Figure 1c). Thus, the statistical structure of the sequence is fully specified by a 4×4 array
containing the conditional probabilities that each picture would be followed by the others.
Self-transitions were allowed. Participants were not informed of the existence of sequential
structure in the task design.

In order to encourage continual learning, and to sample responses across a wide range of
conditional probabilities, the transition matrices were changed twice, at evenly-spaced
intervals during the experimental session. Despite this, the program offered no explicit
indication of the shift to a different transition matrix, nor were changes of matrix aligned
with the onset of rest periods. Time to first keypress was recorded and used as our dependent
behavioral variable. Participants were not informed that their reaction times were being
recorded, and no information was provided as to overall accuracy or speed either during or
after the experiment. Trials on which the first keypress was incorrect were discarded from
behavioral analysis.

Three transition matrices were generated pseudorandomly for each subject, in a manner
designed to balance two priorities: a) to equalize the overall presentation frequencies for
each image over the long- and medium-term, while b) examining response properties across
a wide sample of conditional image transition probabilities. Detailed information on the
procedure used to generate matrices satisfying these constraints is available in the
supplemental material (Transition Matrix Generation).

Analysis
We employed a series of multiple linear regressions to investigate whether reaction times
reflected learning of the stimulus-stimulus conditional probabilities, and, subsequently, to
examine the form of this learning. In particular, each participant's trial-by-trial RTs for
correct identifications were regressed on explanatory variables including the estimated
conditional probability of the picture currently being viewed given its predecessor, and the
entropy of the distribution of conditional probabilities leading to this picture – defined, in
separate models (described below), in a number of different ways representing different
accounts of learning – together with several effects of no interest. Trials on which the first
keypress was not correct were excluded from behavioral analysis. Effects of no interest
included stimulus-self transitions, image-identity effects, and a linear effect of trial number.
These effects were identical across models – thus, each model-based analysis was uniquely
identified by a proposed form for conditional probability estimates.

In our initial analysis, the conditional probabilities (and pursuant entropies) were specified
as the ground-truth contingencies -- the contingencies actually encoded in the transition
matrix. Having established that RT reflected such learning by demonstrating a significant
correlation with these asymptotic values (Figure 2a) of probability (though not entropy, see
Results), subsequent analyses used computational models to generate a timeseries of
probability estimates such as would be produced by different learning rules with the same
experience history as the participant (see Computational Models). These rules involved
additional free parameters controlling the learning process (e.g., learning rates), which were
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jointly estimated together with the regression weights by maximum likelihood. For
behavioral analysis, models were fit and parameters estimated separately for each
participant. At the group level, regression weights were tested for significance using a t-test
on the individual estimates across participants (Holmes and Friston 1998).

To generate regressors for fMRI analysis (below) we refit the behavioral model to estimate a
single set of the parameters that optimized the reaction time likelihoods aggregated over all
participants (i.e., treating the behavioral parameters as fixed effects). This approach allowed
us separately to characterize baseline learning-related activity and individual variation in
neurally implied learning rates relative to this common baseline. For the former, in our
experience (Daw et al. 2006; Schoenberg et al. 2007, 2010; Gershman et al. 2009; Daw
2010; Daw et al. 2011), enforcing common model parameters provides a simple
regularization that improves the reliability of population-level neural results. To capture
individual between-subjects variation in the learning rate parameter, over this baseline, we
add, as an additional random effect across participants, the partial derivatives of the
regressors of interest with respect to the learning rate (see Learning rate analysis, below).

Computational models
First, to investigate the contribution of past experience to expectation about the current
stimulus, while making relatively few assumptions about the form of this dependence, we
entered the past events themselves as explanatory variables in the analysis (Lau and
Glimcher 2005; Corrado et al. 2005). In particular, we used a similar multiple linear
regression to the above, but replaced the conditional probability regressor with ten
regressors, each a timeseries of binary indicator variables. If I(t) is the image displayed on
trial t, then the indicator variables at trial t represented, for each of the ten most recent
presentations of the preceding image I(t-1), whether on that presentation it had or had not
been followed by image I(t). The logic for this assignment is that the expectation of image
I(t), conditional on having viewed image I(t-1), should depend on previous experience with
how often image I(t) has in the past followed the predecessor image I(t-1). Because error-
driven learning algorithms such as the Rescorla-Wagner (1972) model predict that the
coefficients for these indicators should decline exponentially with the number of image
presentations into the past (Bayer and Glimcher 2005), we fit exponential functions to the
regression weights.

Following up on the results of this analysis, we considered a more constrained learning rule
– again, of the form proposed by Rescorla and Wagner (1972; see also Gläscher et al. 2010)
-- which updates entries in a 4×4 stimulus-stimulus conditional probability matrix in light of
each trial's experience. The appropriate estimate from this matrix at each step was then used
as an explanatory variable for the reaction times in place of the ground-truth probabilities or
binary indicator regressors. Formally, at each trial the transition matrix was updated
according to the following rule, for each image i:

[1]

where I(t) is the identity of the image observed at trial t and α is a free learning-rate
parameter. This rule preserves the normalization of the estimated conditional distribution.

In addition, we examined the possibility that behavior may reflect the contributions of two
parallel learning processes, by examining the fit of a transition matrix resulting from a
weighted combination of two Rescorla-Wagner processes, each with different values of the
learning rate parameter α. Each process updated its matrix as above, however the
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behaviorally expressed estimate of conditional probability was computed by combining the
output of each process according to a weighted average with weight (a free parameter) π:

[2]

Since the models considered here differ in the number of free parameters, we compared their
fit to the reaction time data using Bayes factors (Kass and Raftery 1995; the ratio of
posterior probabilities of the model given the data) to correct for the number of free
parameters fit. We approximated the log Bayes factor using the difference between scores
assigned to each model using the Laplace approximation to the model evidence, assuming a
uniform prior probability for values of the free parameters between zero and one. In
participants for whom the Laplace approximation was not estimable for any model (due to a
non-positive definite value of the Hessian of the likelihood function with respect to
parameters) the BIC was used for all models. Model comparisons were computed both per-
individual, and on the log Bayes factors aggregated across the population.

Finally, to evaluate the relative contribution of each process to explaining RTs, we report
standardized regression coefficients for the slow and fast conditional probability estimates,
e.g.

[3]

fMRI Methods
Acquisition—Imaging was performed on the 3T Siemens Allegra head-only scanner at the
NYU Center for Brain Imaging (CBI), using a Nova Medical (Wakefield, MA) NM011 head
coil. For functional imaging, 33 T2*-weighted axial slices of 3mm thickness and 3mm in-
plane resolution were acquired using a gradient-echo EPI sequence (TR=2.0s). Acquisition
was tilted in an oblique orientation at 30° to the AC-PC line, consistent with previous efforts
to minimize signal loss in orbitofrontal cortex and medial temporal lobe (e.g., Hampton et
al. 2006). This prescription obtained coverage from the base of the orbitofrontal cortex and
medial temporal lobes to the superior border of the dorsal anterior cingulate cortex. Four
scans of 300 acquisitions each were collected, with the first four volumes (eight seconds)
discarded to allow for T1 equilibration effects. We also obtained a T1-weighted, high-
resolution anatomical image (MPRAGE, 1×1×1 mm) for normalization and localizing
functional activations.

Imaging analysis—Preprocessing and data analysis were performed using Statistical
Parametric Mapping software version 5 (SPM5; Wellcome Department of Imaging
Neuroscience, London UK), and version 8 for final multiple comparison correction. EPI
images were realigned to the first volume to compensate for participant motion, coregistered
to a higher resolution field map to with the anatomical image, and, to facilitate group
analysis, spatially normalized to atlas space using a transformation estimated by warping the
subject's anatomical image to match a template (SPM5 segment and normalize). In order to
ensure that the original sampling resolution was preserved in the normalized space, images
were resampled to 2×2×2 mm voxels in the normalized space. Finally, they were smoothed
using a 6mm full-width at half-maximum Gaussian filter. For statistical analysis, data were
scaled to their global mean intensity and high-pass filtered with a cutoff period of 128s.
Volumes on which instantaneous motion was greater than 0.25mm in any direction were
excluded from analysis. Data from two participants were excluded due to excessive motion
on a large percentage of volumes.
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Statistical analysis—Statistical analyses of functional timeseries were conducted using
general linear models, and coefficient estimates from each individual were used to compute
random-effects group statistics. Delta-function onsets were specified at the beginning of
each stimulus presentation, and -- to control for lateralization effects -- duplicate nuisance
onsets were specified for presentations on which right-handed responses were required. This
had the effect of mean-correcting these trials separately. All further regressors were defined
as parametric modulators over the initial, two-handed stimulus presentation onsets. All
regressors were convolved with SPM's canonical hemodynamic response function (HRF).

The remaining regressors were constructed as follows. First, to control for nonspecific
effects of reaction time (which, as demonstrated by our behavioral results, was correlated
with our primary regressor of interest, the conditional probability), each trial's reaction time
was entered into the design matrix as a parametric nuisance effect. We took advantage of the
serial orthogonalization implicit in SPM's parametric regressor construction by placing this
regressor first in the set of parametric modulators. As a result, all subsequent regressors,
including all regressors of interest, were orthogonalized against this variable, ensuring that it
accounted for any shared variance. We next included regressors of interest specifying the
conditional probability and conditional entropy associated with the current image, and their
partial derivatives with respect to the learning rate (see Learning rate analysis below).
Finally, variance due to the effects of missed trials (those in which the participant did not
press any keys in the allotted time) and error trials was modeled with additional nuisance
regressors, entered last in orthogonalization priority.

Our regressors of interest were derived from the timeseries of transition matrices estimated
by the best-fitting behavioral model, the two-learning rate model of Equations 1 and 2. In
particular, we include the probability of the image I(t) displayed at each trial t, conditional
on its predecessor – P(I(t) | I(t-1)), and in addition the entropy of the distribution over the
subsequent stimulus, given the image I(t) currently viewed:

[4]

(Here I(t) denotes the image actually displayed on trial t, but the sum is over all four
possible identities of the as-yet-unrevealed subsequent image, I(t+1)). Whereas the
conditional probability measures how ”surprising” is the current stimulus, this quantity,
which we refer to as the “forward entropy,” measures the ”expected surprise” for the next
stimulus conditional on the current one, i.e. the uniformity of the conditional probability
distribution. Because of the temporal dissociation between probability of the current
stimulus and entropy of the distribution of ensuing stimuli, there was no inherent confound
between these two regressors. However, as the entropy regressor was orthogonalized against
probability, any shared variance was attributed to conditional probability.

In all analyses, unless otherwise stated, activations are reported for areas where we had a
prior anatomical hypothesis at a threshold of p < 0.05, corrected for family-wise error
(FWE) in a small volume defined by constructing an anatomical mask, comprising the
regions of a priori interest, over the population average of normalized structural images.
These are, bilaterally, hippocampus as defined by the Automated Anatomical Labeling atlas
(Tzourio-Mazoyer et al. 2002), and anterior ventral striatum (caudate and putamen), defined
(after Drevets et al. 2001) by taking the portion of the relevant AAL masks below the
ventral-most extent of the lateral ventricles (in MNI coordinates, Z<1), and anterior to the
anterior commissure (Y>5). This area corresponds, functionally, to the regions most often
observed to reflect learning-related update signals in fMRI studies of reward learning tasks
(O'Doherty et al. 2003; McClure et al. 2004; Delgado et al. 2000; Knutson et al. 2001).
Activations outside regions of prior interest are reported if they exceed a threshold of p <
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0.05, whole-brain corrected for FWE. All voxel locations are reported in Montreal
Neurological Institute coordinates, and results are displayed overlaid on the average over
participants’ normalized anatomical scans.

Learning rate analysis—In the best-fitting behavioral model, the learned transition
matrix arises from two modeled learning processes each with a free parameters for its
learning rate. We used three separate fMRI analyses (and, reported in supplemental material,
two more alternative specifications) to investigate this multiplicity of potential effects. First,
seeking correlates for each of these two subprocesses hypothesized on the basis of the
behavior separately, we conducted two GLM analyses, each using as regressors of interest
the probability and entropy regressors constructed from one of the single learning rates
identified from the behavior. These two analyses were conducted in separate GLMs due to
correlation between regressors generated using different values of the learning rate
parameter. Our third GLM addressed the problem of correlation between signals more
directly with a single design that formally investigated the possibility that learning rates
expressed across regions of the brain differed from one another. To this end, we employed a
GLM that included additional regressors quantifying the effect of changes in the modeled
learning rate on the regressors of interest. A detailed description of this analysis is available
in the supplementary methods (Learning rate analysis).

Results
Behavioral Results

Participants performed a Serial Reaction Time (SRT) task, in which they were instructed to
label each of a continuous sequence of image stimuli (Figure 1b) according to a
predetermined one-to-one mapping of each of four keys to each of four natural scene images
(Wittmann et al. 2008). Participants were first trained to map fingerpress responses to
images (Figure 1a) at a criterion level of performance (75 correct out of at most the 100
preceding trials). During this training phase, the mean number of trials to criterion was 102.4
(standard deviation 45.6). The mean time to correct response was 889.9ms (standard
deviation 443.2ms).

The main experiment consisted of a sequence of image labeling trials. Images on each trial
were selected according to a first-order Markov process; that is, with a conditional
probability determined by the identity of the previous image (see Methods). Participants
were not instructed about the existence of sequential structure in the task. During the testing
phase, errors – defined as trials in which the first keypress did not correspond to the
presented image – were few (mean 2.6%, standard deviation 1.5%), while the mean time to
correct response fell relative to training, to 692.7ms (standard deviation 268ms).

Ground-truth probability—Figure 2a shows the relationship between reaction time (RT)
on correct trials and the ground-truth conditional probability of the image being identified,
across the population. Here, for each participant, RTs were first corrected for the mean RT
and a number of nuisance effects – estimated using a linear regression containing only these
effects as explanatory variables and computing the residual RTs. Of the nuisance regressors,
only the self-transition effect was significant across the population (p < 1e-7 ; all others p >
0.15).

The impression that RTs are faster for conditionally more probable images is confirmed by
repeating the regressions with the ground-truth conditional probability included as an
additional explanatory variable. Across participants (that is, treating the regression weight as
a random effect that might vary between individuals), the regression weight for this quantity
was indeed significantly negative (one-sample t-test, p < 2e-7; mean effect size 0.76 ms RT
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per percentage conditional probability) and, at an individual level, reached significance (at p
< 0.05) for 15 of 20 participants. This analysis contained a second regressor of interest: the
entropy of the conditional distribution leading to the current image. Although entropy has
previously been shown to impact RTs (Strange et al., 2005), the conditional entropy effect
did not reach significance here either across the population (p > 0.2), or for any participant
individually, and thus was discarded from further behavioral analyses.

This analysis indicates that participant responses were prepared in a manner reflecting some
approximation of the programmed transition probabilities. As the probabilities were not
instructed, we inferred that these quantities were estimated incrementally by learning from
experience. The remainder of our analysis of behavior attempted to characterize the nature
of this learning (den Ouden et al. 2010).

Learning analysis—In order to test the general structure of a learning model, we first
examined the contribution of past experience to current expectations, while making
fewassumptions about the form of this dependence. To this end, we employed a regression
model in which previous events were explicitly included as explanatory variables for RT
(Lau and Glimcher 2005). In particular, for each trial, in which some image Y was presented
having been preceded by some image X, we included explanatory variables corresponding to
each of the last ten previous presentations of X, defined as 1 if that presentation was also
followed by Y, and 0 otherwise. The resulting regression weights measure to what extent the
RT to Y following X is affected by recent experience with the image pair X→Y, relative to
other pairs X→Z. In Figure 2b, the fit regression weights, up to one more than the most
remote to reach significance, are averaged across participants and plotted as a function of the
lag into the past, counted as the number of presentations of X.

Consistent with experience-driven learning of conditional probabilities, recent experiences
with the the image pair X→Y predict faster responding. This dependence appears to decay
rapidly, though it continues to contribute to current expectations for several presentations:
regression weights are significantly non-zero across subjects through roughly the seventh
previous observation of X (one sample t-tests: at lag 5 p=0.11, all others from 1 to 7 p<0.04;
at lag 8 p>0.8). Since any image occurs, in expectation, every four trials, this suggests that
the experience of a transition has a detectable effect over an average window of some
sixteen to twenty-eight trials.

This regression characterizes the form of reaction times' dependence on past experiences as
a weighted running average, here appearing reasonably exponential. Exponentially decaying
weights are characteristic (Bayer and Glimcher 2005; Lau and Glimcher 2005; Corrado et al.
2005) of an error-driven learning procedure for estimating conditional probabilities
(Rescorla and Wagner 1976; here, Equation 1 in Methods), with the free learning rate
parameter, α, determining the time constant (1 - α) of the decay. Thus, the learning rate is
equivalent to a 'forgetting', or 'decay' rate (Rubin et al. 1996; Rubin et al. 1999). The same
equations also characterize the average decay behavior for models that update at varying
rates or only sporadically (Behrens et al. 2007). However, other sorts of learning rules
predict qualitatively different weightings. For instance, because of exchangeability, ideal
Bayesian estimation of a static transition matrix (Harrison et al. 2006) or indeed a simple all-
trials running average predict equal coefficients at all time lags. On the basis of these results,
we do not consider such models further (though the superiority of the Rescorla-Wagner
model was also verified by directly comparing these models' fits to the RTs; analyses not
reported).

However, in the domain of decision making, it has previously been noted that the effects of
lagged experiences on choices are better described by the weighted sum of two exponentials
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with different time constants, a pattern that was suggested to result from the superposition of
two underlying processes learning at different rates (Corrado et al. 2005). This is also true of
the averaged regression weights in Figure 2b (likelihood ratio test comparing one- and two-
exponential fits, p=0.0024).

Altogether, then, the form of the regression weights suggests reaction times superimpose
conditional probability estimates learned using two error-driven learning processes with
different decays. To verify that this appearance did not arise from the averaging over
subjects in Figure 2b, and to quantify the hypothesis directly in terms of its fit to RTs (rather
than parameter estimates from an intermediate analysis), we considered the fit of one- and
two-learning rate Rescorla-Wagner models to each participant's RT data, essentially
equivalent to refitting the regression model while constraining each participant's weights to
follow a one- or two-exponential form.

Figure 2c shows the difference in log Bayes factor between these two models. The two-
learning rate model was favored over the one-learning rate model for 17 of 18 participants.
Aggregated over subjects, the two-learning rate model was favored by a log Bayes Factor of
145. The conditional probabilities learned by the two-learning rate Rescorla-Wagner model
also explained the RTs considerably better than the 'ground truth' programmed probabilities
(log Bayes factor 308.9 aggregated, and favoring the two process model for 17 of 18
participants individually). For this two-learning rate model, the mean effect size implied by
the regression weights was 1.06 ms RT per percentage point of combined conditional
probability. Finally, we measured the relative contribution of each probability estimate to
reaction time, by computing the each effect's regression coefficients normalized for variance
in each probability timeseries. The resulting standardized coefficients were −0.075 for the
slow regressor, and −0.071 for the fast regressor (both means across the population, with
S.E.M of 0.01). Thus, the probabilities learned by slower and faster learning rates appear to
contribute roughly equally to explaining reaction times.

For the purpose of conducting fMRI analyses measuring individual variations in neurally
implied learning rate estimates relative to a common baseline (see Methods for an in-depth
justification of this approach), we re-estimated the two-process model parameters as single,
fixed effects across participants. The best-fit learning-rate parameters were 0.5499 and
0.0138, weighted at 0.4018 to the slow parameter. Additionally, we computed the population
median of the random-effects learning rates (0.6054 and 0.008) and weight (0.35 to the slow
parameter), and observed that they did not significantly differ from the best-fit fixed-effects
values (all p > 0.1).

Together, these data suggest that participants learn predictions of conditional probability
from experience by an error-driven learning process, and that the data are best explained by
the superposition of two such processes learning in parallel.

fMRI Results
We next sought signatures in neural activity of the two learning processes suggested by our
behavioral analyses. On the basis of previous work on multiple systems involved in
sequential learning (e.g., Poldrack et al. 2001; Nomura et al. 2007), we focused on the
hippocampus and the anterior ventral striatum as areas of prior anatomical interest. We
hypothesized that activity in these two areas might reflect learning at different rates,
matching the two processes we inferred from behavior (Gläscher and Büchel 2005).

We used a strategy of model-based fMRI analysis (Gläscher and O'Doherty 2010),
analogous to an approach often used with reward-related learning. In short, we exploit the
fact that the models we fit to behavior define internal variables – here, the learned transition
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matrices – hypothesized to underlie behavior – here, the RTs. The timeseries of these
variables from the fit behavioral models may serve as signatures for ongoing neural
processes related to the computations and, thus, provide quantitative tests for the
hypothesized dynamics of these processes. This approach appears well-suited to our study,
in which the behavioral results suggest two parallel learning processes specifying distinct
timeseries of values for these internal variables. Analogous work in RL tasks often seeks
both anticipatory (future value) and reactive (prediction error) measures of reward
prediction; here, we define analogous regressors for stimulus predictions using the forward
entropy (cf. Strange et al. 2005, Harrison et al. 2006) of the predicted stimulus distribution,
and the conditional probability of an observed stimulus. We adopt the latter regressor rather
than its log (a traditional measure of surprise in information-theoretic work), because of its
relationship to the prediction error (Eq. 1 and Gläscher et al. 2010).

However, simply seeking the correlates of these timeseries in a GLM (Tanaka et al. 2004;
Gläscher and Büchel 2005) is statistically inefficient because the versions of our variables of
interest calculated at different values of α are highly correlated (average correlation across
participants between slow and fast LR processes: R=0.52 for probability, 0.31 for entropy).
We instead separately studied the regressors from the slow and fast LR processes, in distinct
GLMs, to form an initial impression of how this activity may fractionate according to
processes operating at different learning rates.

Next, to formally answer questions about whether the learning process that best explains
BOLD activity differs between areas, we measured the degree to which BOLD in a region
reflects a value of the learning rate parameter α that was different from the one tested. In
particular, we first identified areas with learning-related activity by assuming a value of the
decay rate intermediate to those observed behaviorally, and then analyzed residual activity
explained by additional, orthogonal regressors representing how the modeled signal would
change if the parameter that produced these regressors was increased or decreased.

Forward entropy—Our primary analysis sought regions where activity suggested
anticipatory processing, operationalized by the uncertainty about the identity of the next
stimulus conditional on the current one (forward entropy; c.f. Strange et al. 2005, Harrison
et al. 2006). BOLD signals correlating with this timeseries may reflect spreading activation
among (anticipatory retrieval of) multiple representations in an autoassociative memory
network, or, similarly, simulation of future events using a forward model (Niv et al. 2006).

When the regressors were computed according to the slow LR process, correlates emerged
in the hippocampus. Activity correlated with the slow process is illustrated in Figure 3c. In
particular, a cluster of significantly correlating activity was identified in left anterior
hippocampus [−26, −10, −18; peak FWE p < 0.02 small-volume corrected for family-wise
error due to multiple comparisons over our mask of a-priori regions of interest, cluster FWE
p < 0.04].

For regressors computed according to the fast LR process, we observed no activity
positively correlated with forward entropy at our threshold. However, a significant cluster of
negatively correlated activity – possibly reflecting a lower degree of response preparation
for the upcoming trial – was identified in right putamen [18, 6, −6; peak marginal at p <
0.06 SVC for FWE, but cluster FWE p < 0.04].

Outside our areas of interest, correlates of fast LR forward entropy were also observed in
left anterior insula [−40, 14, −4 ; peak p < 0.05 when corrected for FWE over a mask of the
whole brain] and inferior frontal gyrus [36, 16, −4; peak p < 0.05 by whole-brain FWE
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correction; not shown]. A complete list of clusters correlating with forward entropy can be
found in Supplementary Tables S1 and S2.

Together, these results suggest that anticipatory activity reflecting learned transition
contingencies is visible across a number of brain regions. The distinct difference in
activations observable in the SPMs from each process further suggests that distinct networks
which include either hippocampus or striatum might be associated, respectively, with slow
and fast LR estimates of sequential contingencies, and further correlated in opposing
directions with the same measure, forward entropy, extracted from each process. In
supplemental materials, we also report results from analyses using probability and entropy
regressors derived from the combined process rather than either separately. Correlates there
do not reach similar levels of statistical significance, consistent with our interpretation that
activity is related to either process separately (Supplemental Results).

However, it is important to stress that an apparent difference between thresholded statistical
maps does not constitute formal demonstration that a difference exists (“the imager's
fallacy”; Henson 2005). Further, the results presented thus far do not directly compare the
two processes in a single GLM. Supplementary Figure S1 shows that qualitatively similar
activations were observed only at a lower statistical threshold (as expected due to correlation
between the regressors), when regressors from both processes were estimated within a single
GLM. We report a different strategy to allow a more direct and statistically powerful
investigation of this issue under Divergent learning rates, below.

Conditional probability—Next we sought regions with reactive rather than anticipatory
activity, specifically those where BOLD signal correlated with the probability of the
presently viewed image, conditional on the identity of the preceding image. Such activity
might reflect the degree of expectation or response preparation, or (in the case of negative
correlations) surprise or prediction error, which is decreasing in the predicted probability of
the observed image (Gläscher et al. 2010). Note that although the conditional probability
was shown to correlate with RT in the behavioral analyses, above, RT effects do not
confound the fMRI analyses presented here, as all regressors of interest were first
orthogonalized against RT.

When regressors were computed from the fast LR process, activation correlating with this
timeseries was observed in right putamen [18, 14, −4; p < 0.04 FWE corrected over small
volume] (Figure 4b).

In the low LR process, no activity correlating with conditional probability was observed in
our regions of interest, and those clusters above our observation threshold did not survive
whole-brain correction.

A complete list of clusters correlating with conditional probability can be found in
Supplementary Tables S3.

Divergent learning rates—Our results to this point are suggestive of distinct neural
processes operating at different learning rates, but we have not yet provided statistical
evidence explicitly supporting the claim that these rates are different. We now quantitatively
evaluate the claims that activity in these regions is a) best explained by different rates and b)
these rates are uniquely consistent with one of each identified in our behavioral analysis.

Here, again, we consider timeseries drawn from a single process learning at a single rate,
and pose questions about neural activity, relative to that rate. The dependence of the
modeled learning-related activity (conditional probability or entropy timeseries) on the

Bornstein and Daw Page 12

Eur J Neurosci. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



learning rate parameter is nonlinear. We adopt a linear approximation to this dependence so
as to pose statistical questions about the learning rate that would best explain the neural
activity in terms of a standard random-effects general linear model (GLM). Specifically,
having generated regressors for our variables of interest according to a baseline learning rate
(the midpoint of the behavioral rates), we estimated weights for additional regressors,
representing the change in each variable that would result from a change in learning rate --
formally, this is the partial derivative, with respect to learning rate, of the variable (Friston et
al. 1998). A positive beta value estimated for this regressor in a given voxel would imply
that the activity in that voxel is best explained by a timeseries generated using a higher
learning rate than the one used as a baseline, and a negative beta value would imply a lower
value for this best-fit learning rate. For a detailed description of the analysis, see Learning
rate derivatives in Supplementary Methods.

To allow comparison between regions, we first identified voxels displaying learning activity
in either region. For this, we performed a whole-brain regression using regressors of interest
generated from a baseline learning rate parameter set to the midpoint of the fast and slow
rate values identified in behavior, so chosen to have a symmetric chance of detecting activity
related to either putative process. We then selected the peak active voxels in our two a priori
regions of interest for the regressors that elicited significant activity in our previous analyses
– forward entropy in hippocampus and conditional probability and forward entropy in
ventral striatum – and examined the beta weights estimated for the corresponding derivative
regressors. Before testing, these were scaled by the main effect of the regressor of interest in
order to produce an estimate with units of learning rate.

Figure 5 displays the pattern of results. Comparing weights between areas, the activity in
hippocampus related to forward entropy was best explained by a smaller learning rate, as
assessed by the partial derivative regressor, than that in striatum related either to entropy
(paired two-sample, two-tailed t-test across subjects, p=0.023) or probability (p=0.0251).
These tests support the conclusion that activity in each region is described by incremental
learning processes with distinctly different dynamics.

To clarify the unique association of each region with our behaviorally obtained learning
rates, we additionally compared the parameter implied by the responses measured in each
neural structure to the fast and slow rates identified behaviorally, and also to the average
used to select voxels, α0. Compared to α0, the implied αBOLD in hippocampus was
significantly lower (one-sample, two-tailed t-tests across subjects, p=0.049), while activity
in striatum implied a value that trended towards significantly higher than α0 for entropy
(p=0.058), though not for probability (p=0.37). The rate implied by activity in striatum was
significantly higher than the slow rate for entropy (p < 5e-8) and probability (p=0.007);
neither was significantly different from the fast rate (entropy, p=0.53; probability, p=0.86.
Symmetrically, the αBOLD estimated for hippocampus was significantly lower than the fast
rate (p=0.017) but not significantly different from the slow rate (p=0.56).

Taken together, these results suggest that learning-related activity in the hippocampus and
striatum was, respectively, consistent with the slow and fast LR processes hypothesized on
the basis of of our behavioral model fits.

Discussion
We provide evidence that learned expectations expressed in serial response behavior are
comprised of dissociable contributions from anatomically distinct networks learning at
different rates. Effects of serial expectation on RTs (Bahrick 1954) and BOLD responses
(Huettel et al. 2002; Harrison et al. 2006; Schendan et al. 2003) are well-established; we
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exploit these effects to study how participants learned expectations trial-by-trial. Thus our
approach parallels recent work in reward learning and decision making (O'Doherty et al.
2003; Barraclough et al. 2004; Samejima et al. 2005; Lohrenz et al. 2007), but we apply
these methods to investigate behavior that results from sequential contingency learning,
while minimizing the influence of reinforcement. Since feedback about correctness was
downplayed and the response behavior was well practiced and maintained near ceiling, the
reaction time effects and associated neural modulations are likely to reflect fluctuating serial
contingency predictions and are not explicable in terms of differential reward expectations.
Such behavior appears well described by a weighted combination of two error-driven
learning processes.

It is possible that the two-process nature of our results may be rooted in the fact that a serial
reaction time task confounds both response-response and stimulus-stimulus sequencing. For
instance, the long-lasting effects of transitions on hippocampal activity might reflect
learning there of stimulus-stimulus predictive relations – a key building block for model-
based RL (Gläscher et al. 2010) – while the faster decaying effects in striatum might reflect
more transitory learning of response-response biases, with both affecting RTs. Directly
testing this suggestion would require a different task that separately manipulated these two
sorts of contingencies.

Similar distinctions in the timescale over which expectations are drawn have been observed
between disparate brain structures processing common information – e.g., between
subcortical and cortical association structures (Gläscher and Büchel 2005), and between
different parts of sensory cortex (Hassan et al. 2008), and even between different neurons
within an area (Bernacchia et al. 2011). However, this dissociation has not previously been
drawn between hippocampus and striatum, and in none of these cases were the neural
timescales linked to dissociable effects on behavior (see Kable and Glimcher 2007, for a
discussion of the import of connecting putatively separate neural processes to distinct
behavioral influences). In contrast, the most prominent issue addressed using SRT tasks like
ours has been the status of learning as explicit or implicit (e.g., Nissen et al. 1989). In
examining this distinction, researchers have explored the proposal that multiple processes
underlie learning. A recent model (Keele et al. 2003) proposes that sequential learning
involves the parallel operation of two cognitive systems, each constructing distinct
representations: a multidimensional representation in one, entrained by the unidimensional
representations of the other. Though it is unclear whether this hierarchical arrangement
results in different timescales of integration (which would be reflected by different learning
rates), the proposal that these systems correspond to ventral and dorsal networks, containing
hippocampus and basal ganglia, respectively, is broadly consistent with our results. Even
closer to our conclusions, Davis and Staddon (1990) advance a dual-system, two-learning-
rate architecture to explain pigeons’ choices on a reversal learning task, which display both
long- and short-timescale dependencies on experience.

Finally, neuropsychological and animal lesion studies have repeatedly observed that removal
or damage to the hippocampus does not impair gross sequential RT effects in similar tasks
(e.g., Curran 1997). Our results are consistent with these observations, in that either system's
predictions may encourage responses, though our model predicts a quantitative difference in
trial-by-trial adjustments in reaction times. Crucially, a recent pair of studies on a serial
reaction time task resembling the one employed in the present experiment observed that
lesions to the dorsal hippocampus of rodents actually improved performance (Eckart et al.
2011) – i.e., producing a steeper learning curve - while striatal lesions severely diminished
the rate of learning (Eckart et al. 2010); a pattern consistent with slow and fast contingency
learning in hippocampus and striatum, respectively.
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Model-based simulation
One interpretation of the hippocampal activity in the present study is that it is driven by
retrieval, which is ubiquitous, rather than encoding, which (as we discuss below) may be
rare. For instance, if hippocampus retrieves likely subsequent pictures at each step, then
more widespread activation would occur on trials with higher forward entropy, i.e., those in
which activation spreads more evenly among more potential successors.

The suggestion that our hippocampal BOLD effects reflect preparatory “prefetching” of the
anticipated next elements in the sequence coincides with observations of “preplay” activity
in this structure in rodents (Ferbinteanu and Shapiro 2003; Johnson and Redish 2007; Diba
and Buszáki 2007). Such activity has been suggested to support decision making by
evaluating the anticipated consequences of candidate actions, a strategy formalized by
model-based reinforcement learning (Doya 1999; Daw et al. 2005; Niv et al. 2006; Johnson
and Redish 2005; Rangel et al. 2008; Balleine et al. 2008; Doll et al. 2009) and also known
as constructive episodic simulation (Tulving & Thompson 1971; Schacter and Addis 2007).
Our results indicate that signals reflecting this activity may be parametrically modulated by
a measure of the associative complexity of the trace being constructed or simulated.

The model-based approach contrasts with the model-free algorithms for reinforcement
learning prominently associated with striatum and its dopaminergic afferents (Houk et al.
1995; Schultz et al. 1997). Note that, due to the minimal involvement of rewards (or errors)
in our task, our striatal results are unlikely to relate to the reward prediction errors posited by
these models (O'Doherty et al. 2003; McClure et al. 2004; Delgado et al. 2000; Knutson et
al. 2001; Hare et al. 2008), but could relate to other non-reward correlates in striatum (Zink
et al. 2006; Wittmann et al. 2008).

Arbitration between multiple systems in learning and control
Lesions in rodents support a dissociation between decision strategies along the lines of
model-based vs model-free learning, supported by distinct networks neurally (Balleine and
Dickinson 1998; Corbit and Balleine 2000; Gerlai 1998; Balleine et al. 2008). However, the
neural basis of the dissociation is so far less crisply apparent in humans, and some work
even seems to suggest overlapping substrates (Valentin et al. 2007; Frank et al. 2009;
Tricomi et al. 2010; Gläscher et al 2010; Daw and Simon 2011; Daw et al. 2011), perhaps
because model-based and model-free evaluations of reward expectancy (and thus their
anticipated BOLD correlates) are typically quite similar. To the extent to which our two
processes do indeed map differentially to stimulus-stimulus and response-response
associations, our study suggests an additional difference between the systems, in their
timescale of learning. This difference may allow their predictions in a reinforcement
learning context to be more easily distinguished. Thus, a potentially fruitful avenue for
further research is to use the tools provided herein to identify the use of either system's
learned predictions in the service of reward-guided decision making.

The nature of competition or collaboration between these systems in the control of behavior
has been a topic of much empirical (Poldrack et al. 2001) and theoretical (Daw et al. 2005)
inquiry. Our results suggest that activity in both hippocampus and striatum is mediated by
the uncertainty (i.e. entropy) about anticipated ensuing stimuli, and that this activity may
differently drive fluctuating signals in each area – positively in hippocampus, negatively in
striatum. Such activity may reflect differential engagement of either system under different
conditions of uncertainty (Daw et al. 2005). In a traditional response or choice task with
fixed contingencies, the overall trend would be towards sharper expectations (lower
uncertainty) over time, giving rise to a decrease in hippocampal and commensurate increase
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in striatal activity. Indeed, such a pattern bears strong similarity to that repeatedly observed
in probabilistic association learning tasks (Poldrack et al. 2001; Poldrack and Packard 2003).

Learning rates and associative representations
So far, we have stressed differences in the timescales over which neural activity reflects past
events. However, in the error-driven learning model (Equation 1), as indeed in estimation
more generally, encoding is also forgetting. Thus a long-timescale dependence of learned
predictions on events (slow decay, high 1 - α) goes hand in hand with slow, incremental
encoding (a small learning rate α). Viewed from this perspective, perhaps the most
surprising aspect of our data is that we measure faster learning rates in striatum than
hippocampus, given the traditional association of hippocampus with fast, single-shot
episodic encoding (McClelland et al. 1995), and striatum with more incremental procedural
learning (Knowlton et al. 1996a).

There are at least two possible answers to this question. One possibility is that a fundamental
hippocampal function in learning relations (Cohen and Eichenbaum 1993) comprises not
only relating events occurring simultaneously in an episode – a fast-timescale encoding –
but also discovering event relations obtaining stochastically between temporally separated
events (Shohamy and Wagner 2009; Hales and Brewer 2010), as with state transition
contingencies in model-based RL. If so, different tasks or task variants might induce
learning over different timescales, depending on the relations involved (Komorowski et al.
2009). In particular, learning a probabilistic transition structure, like imputing the
equivalence relationships in Shohamy and Wagner's (2009) acquired equivalence task,
requires integrating events across time rather than within an episode.

A second interpretation of the hippocampal result, suggested by the episodic learning
literature, is that the slow learning rate we measure for representations in hippocampus
reflects not continual, incremental updating, but instead the average rate of learning over
trials in which associations might be formed rapidly but only sporadically. In particular, the
Rescorla/Wagner equation also describes the expected update for the predictions under
sporadic encoding (e.g., on a given trial, probability α of fully re-encoding a categorical
stimulus-stimulus link, with no learning otherwise), or more generally some in-between
process where α modulates over some fraction of trials. For simplicity and to enable
comparing many sorts of learning in a single framework, we operationalized the distinction
between the systems in terms of a nominally constant learning rate. If updates are sporadic
or step sizes time-varying, the fit parameter value will instead characterize their average rate
(Behrens et al. 2007). Our learning rule thus comprises (at least in expectation) a spectrum
of possibilities between incremental learning of a probabilistic relation and sporadic
encoding of a categorical relation, the latter similar to discrete state space models that have
previously been applied to hippocampal function (Law et al. 2005; Prerau et al. 2008; Wirth
et al. 2009).

This hypothesis that our task produces sporadic hippocampal encoding is supported by work
suggesting that hippocampus forms associations preferentially at the detection of sufficiently
large deviations from expected input (Tulving et al. 1996; Bakker et al. 2008; Lisman and
Grace 2005), or when task demands enhance the motivational salience of expectancy
violations (Duncan et al. 2009).

This interpretation of the current result is difficult to test directly using the present data set
and methods, particularly because it is technically challenging to test the fit of such a model
absent a specific hypothesis about which trials may have encouraged encoding or not. A
more direct approach would be to manipulate factors expected to impact the tendency to
form new episodes (Behrens et al. 2007; Bakker et al. 2008; Duncan et al. 2009; Wilson et
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al. 2010; Nassar et al. 2010), and seek an effect on the measured hippocampal learning rate.
For instance, in environments with largely stationary associative structure, as in our task,
learning may appear “slow” on average. However, tasks with more frequent changes may
produce a correspondingly larger value of the hippocampal learning rate. This prediction
parallels previous work demonstrating that humans (Behrens et al. 2007; Speekenbrink and
Shanks 2010) and animals (Dayan et al. 2000; Courville et al. 2006; Preuschoff and
Bossaerts 2007) modulate their learning rates in response to the volatility of changes in
associational structure. The exact response of each individual system to environmental
volatility is a potentially fruitful avenue for future research.

Representations in the model-based system
The question of whether sequential predictions are categorical or graded bears directly on
how they would support decisions. In computational RL, state-state world models are
probabilistic (to support exact computations of expected future value in stochastic Markov
decision tasks) but more psychological accounts of deliberative processing, to which model-
based RL might correspond, often take its representations to be rule-based or categorical, in
contrast to more graded representations learned in an incremental fashion by (model-free)
procedural systems (Knowlton 2002; Maddox and Ashby, 2004). A similar binary view is
taken in “state space” models (Lau et al. 2005) that have been applied to hippocampal
associative representations.

However, the above considerations notwithstanding, the extreme case of a process in which
hippocampus learns only categorical predictive associations seems unlikely to explain our
observations, because neural activity here is seen to relate to forward entropy (see also
Strange et al. 2005; Harrison et al. 2006). Although the Rescorla/Wagner rule describes the
expected timecourse for the stimulus predictions even under sporadic encoding, the
timecourse of their entropy in this case is not the same as the entropy of the expected
predictions, since the entropy is a nonlinear function of the predictions. More concretely, if
the neural representation over the next stimulus were always fully categorical (i.e., as a
probability distribution, deterministic, though undergoing sporadic stepwise changes) then
the implied entropy would be always minimal and never modulate, unlike the hippocampal
signal we detect. To be sure, it is possible that our observations could be produced by a
process learning graded predictions via sporadic yet still incremental changes, at a learning
rate a multiple of that measured here.

Either way, our data invite an interpretation in which hippocampal representations reflect the
statistics of the environment in graded form, a view more conducive to model-based RL and
also consistent with research on its involvement in learning of statistical task structure
(Gluck and Myers 1993; Courville et al. 2004; Gershman and Niv 2009).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Task design. (A) Training. Participants were first trained to deterministically associate each
of four buttons with one of the stimulus images. Training proceeded until participants
reached a fixed accuracy criterion. The associations between stimuli and responses were not
varied during the course of the task. (B) Test. Images were presented one at a time for a
fixed 2000ms, regardless of the keypress response. At the first correct keypress, a gray
bounding box appears around the image and remains displayed for 300ms, or until the end
of the fixed trial time, whichever is lesser. Reaction time was recorded to the first keypress.
(C) Transition structure. Successive images were chosen according to a first-order transition
structure, the existence of which was not instructed to the participants. This structure
changed abruptly at two points during the task, unaligned to rest periods and with no visual
or other notification.
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Figure 2.
Sequential learning. (A) Despite the fact that they were unaware of task structure,
participant reaction times reflected the probabilities as designed — response time was
commensurately lower as conditional likelihood of the image increased. (B) An analysis of
the influence of prior responses on reaction time on the current trial shows a decaying effect
of previous experience, with significant contributions from the seven most recent
presentations of the current image. Reaction time for a given image-image transition was
lowered by more recent experience with that transition; this effect showed an exponential
relationship between recency of experience and reaction time. This pattern excludes models
that do not incorporate forgetting of past experience. □ = p < 0.05. Error bars are SEM (C)
Model comparison. Individual log Bayes factors in favor of a model using two learning
processes, versus a single process. The two-process model is decisively favored for 14 / 18
subjects, and was a significantly better fit across the population (summed log Bayes factor
145, p < 5e−5 by likelihood ratio test).
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Figure 3.
Areas where the BOLD signal correlated with the entropy over the distribution of upcoming
stimuli, generated at each of our analyzed learning rates. Images are thresholded at p <
0.001, uncorrected, for display purposes. Row A shows activation observed in the fast
process GLM, with clusters of negative correlation in ventral striatum and anterior insula.
Row B shows activation observed in the slow process GLM, a positively correlated cluster
in anterior hippocampus. The activation visible in posterior parahippocampal cortex did not
survive correction for multiple comparisons.
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Figure 4.
Areas where the BOLD signal correlated with the conditional probability of the current
stimulus, generated at each of our analyzed learning rates. Images are thresholded at p <
0.001, uncorrected, for display purposes. Using the fast process GLM, significant activation
was observed in ventral striatum. No clusters significantly correlated with conditional
probability were observed in the slow process GLM.
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Figure 5.
Comparison of learning rates implied by activity in our primary regions of interest. These
values were computed by first identifying voxels in our a priori regions of interest
(hippocampus and ventral striatum) which were maximally responsive to to our model
regressors (probability and entropy) when generated at the midpoint of our behaviorally-
obtained learning rates (black dotted line), then estimating best-fitting learning rates by
deviations from this baseline (see Supplementary Methods). Bars represent the average
implied learning rate across subjects, at a single voxel for each combination of region and
regressor: left hippocampus (−26, −14, 24) and right ventral striatum (entropy 18, 16, −6 ;
probability 20, 6, −2). Error bars represent the positive and negative confidence intervals,
across subjects.
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