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A molecular dynamics-based protocol is proposed for finding
and scoring protein-ligand binding poses. This protocol uses the
recently developed reconnaissance metadynamics method, which
employs a self-learning algorithm to construct a bias that pushes
the system away from the kinetic traps where it would otherwise
remain. The exploration of phase space with this algorithm is
shown to be roughly six to eight times faster than unbiased
molecular dynamics and is only limited by the time taken to diffuse
about the surface of the protein. We apply this method to the well-
studied trypsin–benzamidine system and show that we are able
to refind all the poses obtained from a reference EADock blind
docking calculation. These poses can be scored based on the length
of time the system remains trapped in the pose. Alternatively, one
can perform dimensionality reduction on the output trajectory and
obtain a map of phase space that can be used in more expensive
free-energy calculations.

Understanding how proteins interact with other molecules
(ligands) is crucial when examining enzymatic catalysis, pro-

tein signaling, and a variety of other biological processes. It is also
the basis for rational drug design and is thus an important tech-
nological problem. Ligand binding is primarily examined using
X-ray crystallography experiments together with measurements
of the binding free energies. Additionally, numerous computa-
tional methods have been applied to this problem so as to extract
more detailed information. The fastest of these approaches are
based on an extensive configurational search of the protein sur-
face (docking), in which the various candidate poses found are
scored in accordance with some approximate function that treats
solvation, protein flexibility, and entropic effects in some approx-
imate manner.

Free-energy methods, based on either molecular dynamics
(MD) or Monte Carlo simulations, can be used to calculate accu-
rate binding free energies (1–3). However, it is far more difficult to
use these methods to search for candidate poses as the timescales
involved in ligand binding are typically much longer than those that
are accessible in MD. Thus, one often finds that the ligand be-
comes trapped in a kinetic basin on the surface of the protein and
does not escape during the remainder of the calculation.

We recently developed a method, reconnaissance meta-
dynamics, for increasing the rate at which high-dimensional
configurational spaces are explored in MD simulations (4). This
enhanced sampling is obtained by using a Gaussian mixture mod-
el to identify clusters in the stored trajectory. The positions of
these clusters correspond to the kinetic basins in which the system
would otherwise be trapped, which means that a history-depen-
dent bias function that uses the information obtained from the
clustering can be used to force the system away from the traps
and into unexplored portions of phase space. In what follows
we demonstrate how this algorithm can be used to examine the
binding of benzamidine to trypsin, and perform a blind docking
simulation based entirely on enhanced sampling.

Background
Extensive conformational search procedures combined with fast
and simple scoring functions give a surprisingly good description

of protein-ligand docking in a variety of systems. In fact, for a
number of systems so-called blind docking calculations can be
performed in which the binding pose is found without using any
experimental insight (5). The two greatest, unsolved problems for
this field are to find universal scoring functions and to develop
protocols for incorporating protein flexibility (6). These two pro-
blems are interlinked as an accurate scoring function must take
the energetic cost of the conformational changes into account.
Standard biomolecular force fields, together with implicit solvent
models, provide the best approach for balancing these contribu-
tions. However, empirical and knowledge-based scoring functions
often perform better for certain classes of problems and are thus
frequently employed (7–9).

Simulations based on MD force fields provide an alternative
to simple docking calculations and both MD and Monte Carlo
simulations have been used to locate sites with favorable interac-
tion energy (10, 11). Furthermore, recent studies have exploited
the power of modern computers to examine the process of ligand
binding directly (12–14). In these calculations the ligand is initi-
ally placed outside the protein and MD is used to find favorable
binding sites. In the limit of long simulation time, the sites are
visited according to the Boltzmann distribution and thus can be
scored based on the amount of time the ligand spends at each site.
This approach allows one to incorporate the protein flexibility, to
treat the water explicitly, and to use established techniques for
improving the force fields. In addition, one can obtain dynamical
information on the binding process as well as structural informa-
tion. However, these calculations still use an enormous amount of
computational time and produce so much data that specialist
tools are required for analysis. For example, the recent paper on
the binding of benzamidine to trypsin by Buch et al. (12) used 500
unbiased simulations at a length of 100 ns.

Using plain MD simulations for locating binding poses is
expensive because kinetic traps prevent the ligand from diffusing
freely over the whole protein surface during short simulations.
This problem is encountered frequently in MD and can be re-
solved by using enhanced sampling methods. A number of such
methods have been applied to ligand binding (15–30). Typically
these methods accelerate sampling by either increasing the tem-
perature or by introducing a bias that prevents the system from
becoming trapped in a basin. The bias is often constructed in
terms of a small number of collective variables (CVs) that are
selected by the user based on what is known about the location
of the binding site, the binding pathway, and the conformational
changes in the protein that occur during binding (31, 32). Using
these methods one can calculate binding free energies for a small
number of putative poses (33). Alternatively, one can find new,
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poorly characterized binding sites by using them in tandem with
docking calculations (34).

The reconnaissance metadynamics method (RMD) (4) inserts
the rich data that can be obtained from shortMD simulations into
a self-learning algorithm and thereby generates local collective
coordinates that can push the system away from the kinetic traps
it encounters. This procedure saves one from selecting a small
number of appropriate CVs at the outset and thus provides a
way to perform simulations when the reaction mechanism is
uncertain. Thus far we have applied this method to model systems
for polypeptide folding (4) and to small clusters of water and
argon (35). These studies have demonstrated that RMD performs
an extensive exploration of the energetically accessible portions
of phase space and that this method can be used to locate global
minima in energy landscapes. However, in the problems that we
have examined the free-energy landscape is dominated by ener-
getic contributions so these systems could alternatively be studied
through a combination of optimization and transition state
searches (36). Applying the RMD algorithm to the blind docking
problem, as we do in this paper, represents a far greater challenge
to the methodology because ligand binding involves a delicate
balance between enthalpic and entropic contributions.

Results and Discussion
We chose to examine the well-studied trypsin–benzamidine sys-
tem, which has been extensively examined using free-energy
perturbation (37). Both the benzamidine ligand and the trypsin
protein are relatively rigid (38), so the binding site can be found
using conventional blind docking (39).

One can use a large set of CVs in a reconnaissance meta-
dynamics calculation and thus avoid many of the problems asso-
ciated with choosing a small number of CVs for conventional
metadynamics or umbrella sampling. However, it is important
to realize that the CVs selected will influence the scope of the
sampling. Thus for trypsin–benzamidine, where we know that the
binding is not accompanied by large configurational changes in
the protein, we selected CVs that describe only the position and
orientation of the ligand relative to the protein and assume that
MD alone will account for any protein flexibility. The CVs we
chose are based on the distances between the C4, N1, and N2

atoms of the ligand (Fig. 1) and 16 uniformly spaced points on the
protein surface (Materials and Methods). These distances are then
transformed by a switching function so that whenever the ligand is
far from the protein the collective variables have essentially the
same values. The switching function is given by

si ¼
1 − ðrir0Þ4
1 − ðrir0Þ8

; [1]

where ri is the i th distance and r0 ¼ 13 Å. This set of 48 coor-
dinates contains redundancy. However, because the self-learning
algorithm at the heart of the RMD algorithm selects the most
appropriate linear combinations of these to push, this redundancy
does not present a particular problem.What is important to stress
is that the parameters in this function and the points on the sur-
face are chosen without using any information on the location of

the binding site. As such this approach is general enough that it
could be used for any globular protein. In addition, this descrip-
tion of the ligand’s position, orientation, and conformation can
be systematically refined by either increasing the number of
points on the surface of the protein or by increasing the number
of points in the ligand. However, the cost of the calculations will
increase as the number of CVs is increased (Materials and
Methods).

Extent of Exploration. To test whether or not RMD is doing a good
job of exploring phase space we generated a set of putative bind-
ing poses using conventional blind docking. These calculations
were done using EADock (40), which is known to reproduce
the correct binding pose for a range of systems (41) and which
generated a large number of structurally diverse poses (Table S1).
We then ran 10, 200-ns reconnaissance metadynamics simulations
and calculated the rmsd distance between snapshots taken every
10 ps from our trajectory and the 27 poses found in our EADock
calculations. Fig. 2 shows that during our simulations we come
close to every single one of these putative poses. More impor-
tantly, in five out of the ten simulations we were able to find the
binding site. These results are in stark contrast to the results we
obtain from MD simulations of similar length. During the course
of these calculations we were only able to find a subset of the
poses and the binding site was never visited. This observation
appears, at first glance, to be at variance with the results of Buch
et al. (12) who found that in 37% of their 100-ns, unbiased
MD simulations on this system the experimental binding pose was
found. However, in their simulations some information on the
location of the binding site was employed, as constraints were ap-
plied on the relative position of the protein and ligand to ensure
that the ligand only explored one side of the protein.

Fig. 3A provides an alternative representation of the data on
the extent to which phase space is explored during the RMD and
MD simulations. This figure shows the fraction of reference poses
found as a function of time and suggests that RMD is on average
six to eight times faster at finding poses than MD [fitting the
curves in Fig. 3A to the function 1 − expð−t∕t0Þ we find that
the ratio of t0 values for MD to RMD are 5.6, 7.5, and 8.3 for
the three rmsd cutoffs we tested]. This increased speed does
not appear particularly dramatic, but it is important to remember
that if in any of the MD simulations the ligand had found the
binding site it would have almost certainly remained there for
the remainder of the simulation time, which is not what happens
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Fig. 1. The benzamidine ligand with the atom labels used in the text.
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Fig. 2. The extent to which the space is explored in the RMD and MD
simulations. The results from 10 RMD and 10 MD simulations are shown
and each column corresponds to one of the reference poses from the EADock
calculation. The squares are colored according to the minimum rmsd
between the trajectory frames and the reference pose. If the minimum rmsd
from any pose is greater than 2.5 Å then we assume that it was not found
during the simulation and color it white.
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in the RMD simulations that find the binding site. In other words,
the exploration in RMD is only slowed down because diffusion of
the ligand about the protein is relatively slow—a fact of life that
will be present in any method based on molecular dynamics.

Generating Candidate Poses. To generate meaningful output from
any ligand-binding trajectory, it is necessary to predict which
poses have high binding affinities, much as one scores poses in
traditional docking calculations. Making such predictions from
MD simulations is in principle straightforward, because the time
spent in a given configuration is connected to its free energy. The
only caveat is that one must see multiple transitions between
states. If one appropriately accounts for the bias, similar strate-
gies can be used in methods involving a bias potential. The pro-
blem with RMD is that multiple transitions between states are
seldom observed because of the high-dimensionality space of
collective variables. In contrast, when using methods like meta-
dynamics, the small number of collective coordinates forces these
transitions to occur.

In an RMD simulation it will take some time to generate
sufficient bias to push the system out of a basin. The specific
amount of time will depend on the basin’s depth and hence its
kinetic stability. Low free-energy poses are usually narrow mini-

ma in the potential energy surface. These states will be both ther-
modynamically and kinetically stable. It may, therefore, be
possible to find low free-energy poses by extracting the most
populated clusters from an RMD trajectory. To further explore
this idea, we analyzed the RMD trajectory frames using the meth-
od of Daura et al. (42) that is implemented in the GROMACS
g_cluster utility. This procedure ranks each trajectory frame
based on the number of neighboring frames that are within 1 Å
rmsd. The top-ranked frame, together with all its neighbors, is
then removed and the ranking process is repeated.

Fig. 3B shows that the clusters generated from the analysis of
the RMD trajectories are much smaller than those generated
from an analysis of the MD trajectories. This result confirms that
the MD simulations are spending a great deal of time (up to
30 ns) trapped at a small number of sites on the protein surface.
In contrast RMD spends at most 0.4 ns in any given pose and is
thus able to explore more of the protein surface. In addition, this
analysis of the RMD simulations identifies the binding pose as
important. In three of the five RMD simulations that found the
binding site, the cluster corresponding to the binding site is the
most populated, whereas in the remaining two the binding site is
ranked second and third.

Fig. 3C provides further evidence that clustering of the RMD
trajectory gives reasonable binding poses. In this figure we show
the vacuum interaction energy between the protein and the ligand
for the top 50 clusters (i.e., the most populated ones) from each
simulation. This interaction energy neglects solvent and entropic
effects but is still often correlated with the binding free energy
(43). Hence, the fact that the clusters found in RMD have con-
sistently lower energies than those found in MD suggests that
they correspond to more strongly bound conformations. Further-
more, if we examine all the frames in the trajectory we find that,
in contrast with MD, the top clusters in RMD correspond to the
structures with the lowest energies. There is no such shift in MD,
which suggests that in these simulations the ligand becomes
trapped in many basins that do not have particularly low inter-
action energies. As such, the MD simulations are too short to
express the relationship between the residence time in a given
structure and its free energy.

The clustering procedure does not take into account the bias,
and thus some of the well-populated clusters might not corre-
spond to minima on the unbiased free-energy surface. Hence, to
probe the kinetic stabilities of the poses from one of the RMD
simulations, we ran unbiased MD trajectories starting from the
136 most populated clusters. During these simulations we took
the time spent within 2.5 Å rmsd of the initial configuration as
a measure of the stability of the pose and found that 89 poses
were stable for more than 100 ps, 25 were stable for more than
1 ns, and 7 of them were stable for more than 5 ns. Out of these
seven poses, one was the crystallographic pose and one was a
similar pose in which the ligand was separated from the Asp-189
residue by a water molecule. In addition, this set of poses con-
tained the S2 and S3 states that were identified as stable in the
MD studies of Buch et al. (12) (Table S2). Intriguingly, a stable
pose (Fig. S1) was found in a part of the protein surface that
was deliberately not explored in the MD investigation in refer-
ence (12). This configuration remains unchanged for 60 ns of
unbiased MD and we predict that it is one of most stable inter-
action sites outside of the binding pocket. It is possible that, like
the S2 site, it acts as a secondary binding site (44). For the EA-
Dock calculations a similar analysis showed that only eight of the
poses generated were stable for more than 100 ps (Table S1) and
that this set included the binding site, the S2 site, and a similar
pose to that shown in Fig. S1.

Dimensionality Reduction. Clustering is one way of examining the
data from an extensive sampling of a high-dimensional phase
space, such as that obtained from docking, MD, or an enhanced

Fig. 3. Comparison of the exploration speed, cluster sizes, and interaction
energies for the MD and RMD trajectories. (A) The fraction of the reference
(EADock) poses found as a function of simulation time. A pose is found if the
rmsd distance between it and the instantaneous position of the ligand drops
to less than 2.5 Å. The average over all the RMD or MD runs (solid lines) is
shown together with the standard deviation between runs. The averages
obtained using cutoffs of 2 Å (dashed lines) and 3 Å (dotted lines) are also
shown. Here, RMD consistently explores space more quickly than MD. (B and
C ) The results from the clustering calculations. B shows the sizes of the top
100 clusters averaged over the 10 MD and 10 RMD simulations together with
the standard deviations calculated for every 10th cluster. The clustering was
done using a fixed rmsd cutoff of 1 Å. Hence, more diffuse clusters have
fewer members. In reporting this data, we have multiplied the number of
trajectory frames in each cluster by the time interval between the frames
(10 ps) to get a residence time for each cluster. This figure clearly demon-
strates that RMD is spending much less time in each pose, allowing a more
efficient exploration of the configurational space. C shows a histogram of the
single point protein-ligand interaction energy for the central frame in the
top 10 (shaded area) and top 50 (unshaded areas) clusters from each of
our RMD and MD simulations. Also shown is the histogram (dashed line) cal-
culated from all the frames in the trajectory. Here, the results demonstrate
that MD fails to find the low interaction energy poses that are found during
the RMD simulations.
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sampling calculation. An alternative is to perform dimensionality
reduction (45, 46). This way of examining ligand binding is ap-
pealing, because the largest changes in the position of the ligand
are those corresponding to motion across the two-dimensional
protein surface so the data should lie on a low-dimensionality
manifold. Furthermore, a low-dimensional representation of the
protein surface is a useful tool for visualizing the kinetic informa-
tion that can be extracted from MD-based approaches.

Many dimensionality reduction algorithms work by endeavor-
ing to reproduce the rmsd distances between the trajectory
frames in a lower-dimensionality space (47). Clearly the rmsd
distances between the ligand in the various trajectory frames can
be approximately reproduced in a three-dimensional space as
they will be dominated by differences in position of the center of
mass of the ligand. To further lower the dimensionality of the
projection requires one either to incorporate periodicity in the
low-dimensionality projection or to make less of the global fea-
tures in phase space and, instead, focus on the local connectivity
between basins. We recently developed the sketch-map algorithm
(48) as a tool for analyzing trajectory data. This algorithm uses
the second of these approaches to the problem as it endeavors to
reproduce the immediate connectivity between states rather than
the full set of distances between frames. The algorithm’s focus is
controlled by transforming the distances in the high-dimension-
ality and low-dimensionality spaces using a sigmoid function. This
procedure also ensures that close-together points are projected
close together, whereas far apart points are projected far apart
but not necessarily at the same distance.

We used the RMD trajectories to produce the sketch-map
projections because, unlike our MD simulations which didn’t visit
the binding site, we have sufficient sampling in the RMD to build
a reliable map. To record the high-dimensional positions, we used
the coordinates of the ligand’s C4, N1, and N2 atoms in a protein-
centered frame of reference. Fig. 4A shows that the resulting two-

dimensional map clearly separates the poses around the binding
site from other low energy poses on the protein surface and that
there are specific pathways and channels that connect the various
clusters. Moreover, Fig. 4 B and C and Fig. S2 show that, in the
area around the binding site, we are able to separate the meta-
stable sites described by Buch et al. (12), in spite of the fact that
some of them are rather close in space (center of mass separation
of ∼4 Å). This result suggests that sketch-map is also able to de-
scribe the orientation of the ligand and that using multiple atoms
to define the ligand’s position is worthwhile. The resolution can
be further improved by constructing a map using only points that
are close to the binding site (Fig. S3).

We can use the projection shown in Fig. 4 to do a qualitative
comparison between the results of our RMD simulation and the
results of the extensive MD simulations by Buch et al. (12). In
agreement with the previous study there is a significant popula-
tion in the S3 state and a pathway from this state to the binding
pose that passes through the TS1, TS2, and TS3 transition states.
There are also other pathways between the bulk solvent and the
binding site that pass through TS2 and TS3. In particular, during
six of the ten binding or unbinding events that we observed, the
ligand passed through the TS2 state on its way to or from the
binding site, which suggests that this state is on the main binding
pathway.

Conclusions
Molecular dynamics with explicit solvent has enormous potential
for predicting protein-ligand interactions because it is based on
a physically motivated and systematically improvable potential
energy surface and because it incorporates conformational, sol-
vent, and entropic effects in a physically consistent manner. Its
one major drawback is that it is considerably more computation-
ally expensive than using docking calculations based on a config-
urational search with approximate scoring functions. One reason

Fig. 4. Results of the dimensionality reduction. (A) The two-dimensional, sketch-map representation of the configurations visited during the RMD simulations.
The interval between the projected frames is 100 ps so there are approximately 20,000 points in this figure. The points are colored based on the minimum rmsd
distance to the experimental binding site (exp) and the three other docking poses that are displayed in the Inset. The color scale only extends out to 10 Å, so if a
point is further away from all of the sites than this distance it is colored gray. The docked pose P13 is the S2 metastable state reported in ref. 12, and P26 shares
its pocket with themetastable state shown in Fig. S1. (B) Amagnification of the area around the binding site highlighted by the red rectangle inA. Points in this
figure are colored if they are within 2.5 Å rmsd of a specified pose. The poses indicated are the binding site (exp), two of the most stable EADock poses (P2 and
P12), and the metastable poses described in ref. 12 (S3, TS1, TS2, and TS3; see Table S2). This last set of poses are the points along the pathway that Buch et al.
(12) found most frequently connected the fully solvated ligand to the experimental binding pose. (C) The location of these poses on the protein surface. Each
ligand molecule is colored, using the scheme from B, to indicate which pose is being shown. The same poses are shown in Fig. S2 together with a larger part of
the protein surface.
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for this expense is that there are many energetic basins on the
surface of the protein which can kinetically trap the ligand and
slow down diffusion. This problem can be resolved by using a
simulation bias to force the system away from kinetic traps and
to flatten the energy surface. However, the requirement to find a
small set of CVs that describes all the potential traps makes it
difficult to apply a suitable bias using many established methods.
In contrast, in reconnaissance metadynamics we can use large
numbers of collective variables and let the algorithm work out
which linear combination best describes each trap. The procedure
outlined in this paper can thus be used to tackle problems where
conformational and solvent effects play a large role, which would
be difficult to examine using standard docking. Furthermore, the
method is considerably cheaper than unbiased MD.

Reconnaissance metadynamics simulations provide an exten-
sive exploration of the low-energy portions of phase space. One
can use this data to find the approximate locations for the various
basins in the free-energy surface or alternatively use dimension-
ality reduction techniques to create low-dimensionality maps of
phase space. The fact that these maps are low-dimensional allows
one to reexplore the interesting parts of phase space using other,
more quantitative, enhanced sampling algorithms. In future, we
will use this idea to extract accurate free energies for the various
binding poses found during the RMD simulations.

Materials and Methods
System Setup and Computational Details. The simulations were performed
using GROMACS 4.5 (49) and the PLUMED plug-in (50). We used the Amber
ff99 force field (51) for the protein and TIP3P for the water molecules. For the
ligand, van der Waals parameters were taken from the corresponding amino
acids (phenylalanine and arginine), and appropriate charges were calculated
using a RESP fit (52) to a Hartree–Fock calculation with the 6-31G* basis set—
a procedure identical to that described in ref. 27. Long-range electrostatics
was treated using the particle mesh Ewald approach with a grid spacing
of 1.2 Å. A cutoff of 10 Å was used for all van der Waals and the direct
electrostatic interactions and the neighbor list was updated every 10 steps.
All production simulations were performed in the canonical ensemble at
300 K and this temperature was maintained using the stochastic velocity re-
scaling thermostat (53). To prevent the system from sampling fully solvated
configurations we used a restraining wall that limited the exploration to
configurations where the sum of all the switching functions between the
C7 carbon and the points on the surface was greater than 1. This wall only
has any effect when the minimum distance between the protein and the
ligand is greater than 12 Å and represents a relatively small perturbation
of the underlying energy surface.

The trypsin–benzamidine complex [Protein Data Bank (PDB) ID code 1J8A]
(54) was used as the starting structure in this study. All histidines were pro-
tonated on the Nϵ site other than the catalytic H57, which was doubly pro-
tonated. This protein was then placed in a truncated octahedral simulation
box that extended at least 7 Å from any protein atom. Prior to production a
10 ns constant pressure simulation, in which the protein atoms were initially
restrained, was performed to equilibrate the system. Ten RMD production
simulations were performed together with 10 MD simulations. These calcula-
tions were started from ten statistically inequivalent configurations, where
the ligand was outside the protein. For each calculation we ran one RMD and
one MD simulation. The initial starting configuration was generated by dis-
placing the ligand from the binding site by 20 Å and running a short equili-
bration run. The remaining nine starting points were selected from the MD
trajectory launched from the first point. In all these initial configurations the
protein-ligand distance was greater than 10 Å. Furthermore, we visually in-

spected the starting configurations to ensure the widest possible spread of
initial configurations.

RMD Setup. Relevant points on the surface of the protein were selected by
constructing a graph which had all the Cα atoms at its vertices and connec-
tions between any pair of vertices closer than 14 Å. A heuristic algorithm
was then used to find the maximum independent set of this graph (55). This
procedure produces a uniformly distributed set of Cα atoms on the surface.
For trypsin these were the Cα atoms of residues 23, 47, 60, 74, 92, 97, 109, 127,
147, 159, 164, 173, 186, 193, 229, and 244. The switching function was set up
so that its value for a test point moving along the protein surface (5 Å above
it) changed smoothly from approximately 1 when it was immediately above
one of the surface points to approximately 0.4 once it was above the neigh-
boring surface point 14 Å away. For the reconnaissance metadynamics, data
was collected every 0.5 ps, which was then clustered every 100 ps. The bias
was constructed from the clusters that had a weight greater than 0.2 in these
fits and by endeavoring to add hills of width 1.5 and height 1 kJmol−1 every
2 ps. Hills were only added when the distance from one of the cluster centers
(in the metric of that particular cluster) was less than 8.356—a distance that,
at variance with previous applications of RMD, was kept constant for the
entirety of the simulation.

As discussed in the main text we can easily create a more fine grained
representation of the space by increasing the number of CVs and thus in-
creasing the cost of the calculation. It is not straightforward to quantify
the scaling with the number of CVs because it is unclear how much longer
it will take to sample these higher dimensionality spaces. What we can say
with certainty is that calculating the distance between a basin center and the
instantaneous position scales with the square of the number of CVs. How-
ever, the cost of calculating the force because of the bias is for the most part
small when compared to the cost of a single MD step.

Docking Calculations. The docking calculations presented in this paper were
used to provide a set of interesting poses that we could refind using our RMD
simulations. We thus chose not to dwell on these calculations and just used
the default (fast) protocol for EADock, which is provided on the Swissdock
web server (56). The crystallographic structure of the protein (with the ligand
removed) was used directly and 256 binding poses were obtained. These
poses were then clustered using an rmsd cutoff of 2 Å and only clusters with
at least five members were used. More details on these structures can be
found in Table S1, which also shows that the crystallographic pose has an
energy that is considerably lower than that of the other poses.

Sketch-Map Calculations. The distances, d, between frames in the nine-dimen-
sional space were transformed using 1 − ½1þ ð2a∕b − 1Þðd∕σÞa�−b∕a with σ, a,
and b taking values of 20 Å, 1, and 3, respectively. The projection was then
generated by minimizing the discrepancies between these transformed
distances and the set of distances between the frames’ projections. These dis-
tances in the low-dimensionality space were once again transformed by the
sigmoid function above, but in this case the a and b parameters were set to 2
and 3, respectively. The data from the 10 RMD trajectories was fitted by first
projecting a set of 500 landmark points, 100 of which were selected at ran-
dom and 400 of which were selected using farthest point sampling. Each
point in this fit was weighted based on the number of unselected frames that
fell within its voronoi polyhedra. Once this fitting was completed the unse-
lected trajectory frames were mapped using the out-of-sample projection
technique detailed in ref. 48.
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