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Abstract

Metabolic networks are characterized by complex interactions and regulatory mechanisms between many individual
components. These interactions determine whether a steady state is stable to perturbations. Structural kinetic modeling
(SKM) is a framework to analyze the stability of metabolic steady states that allows the study of the system Jacobian without
requiring detailed knowledge about individual rate equations. Stability criteria can be derived by generating a large number
of structural kinetic models (SK-models) with randomly sampled parameter sets and evaluating the resulting Jacobian
matrices. Until now, SKM experiments applied univariate tests to detect the network components with the largest influence
on stability. In this work, we present an extended SKM approach relying on supervised machine learning to detect patterns
of enzyme-metabolite interactions that act together in an orchestrated manner to ensure stability. We demonstrate its
application on a detailed SK-model of the Calvin-Benson cycle and connected pathways. The identified stability patterns are
highly complex reflecting that changes in dynamic properties depend on concerted interactions between several network
components. In total, we find more patterns that reliably ensure stability than patterns ensuring instability. This shows that
the design of this system is strongly targeted towards maintaining stability. We also investigate the effect of allosteric
regulators revealing that the tendency to stability is significantly increased by including experimentally determined
regulatory mechanisms that have not yet been integrated into existing kinetic models.
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Introduction

Understanding the way in which individual components interact

in a biological network is a major goal of systems biology [1]. The

prediction of a system’s response to internal or external

perturbations, as well as the identification of components that

play a major role in this response, requires mathematical modeling

[2]. Approaches for mathematical modeling of metabolic networks

can be subdivided into (1) structural modeling and (2) kinetic

modeling. Structural modeling relies solely on information about

the network structure (stoichiometry) and enables the analysis of

system properties in a steady state. In contrast, kinetic modeling

allows the analysis of the dynamic properties of the network and is

not restricted to steady states. However, this approach relies on

detailed knowledge about all enzymatic rate laws and kinetic

parameters in the system, which are often difficult to obtain

experimentally.

Structural kinetic modeling (SKM) combines principles from

both approaches and offers a powerful tool to analyze the local

dynamic properties of metabolic networks in a steady state [3].

This restriction to steady state scenarios allows the method to rely

on less prior knowledge than would be required for the

construction of a comprehensive kinetic model. In kinetic models,

the dynamic properties of a steady state can be derived from the

eigenvalues of its Jacobian matrix. This matrix contains the partial

derivatives of the reaction rates, and therefore its computation

requires detailed knowledge about the kinetic rate laws, as well as

their kinetic parameters. The basic idea of SKM is the

construction of a parameterized version of the Jacobian matrix

of a system in a steady state, in which the model parameters

encode information about the enzyme-metabolite interactions,

avoiding the necessity to compute partial derivatives. Consequent-

ly, instead of relying on a detailed set of rate equations, together

with accurate estimates of the kinetic parameters, the Jacobian

matrix then depends only on a set of SK-model parameters.

In mathematical terms, the SK-model parameters are partial

derivatives of the rate equations in a system that has been

normalized to represent a particular steady state. Thus, the

parameters describe the influence of changes in metabolite

concentrations on the reaction rates in this steady state. In

enzymatic reactions, this influence depends largely on the amount

of saturation of an enzyme with its metabolites. Experimental

values for these parameters are often unknown in practice.

However, SKM enables the systematic analysis of a steady state’s

dynamic properties by using a Monte Carlo approach. This

approach comprises (1) the generation of a large number of

parameter sets by sampling them from predefined intervals, (2) the

construction of the corresponding Jacobian matrices, and (3) the

evaluation of these matrices based on their eigenvalues. The

statistical exploration of the parameter space can then indicate

regions associated with different local properties of the system.

Because the model parameters offer a straight-forward biological
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interpretation, they enable the identification of the enzymes and

metabolites that play major roles in determining the system’s

behavior.

One system property of particular interest is local stability,

which can be understood as the robustness of a steady state to

perturbations. A stable steady state allows the fine-tuned response

of the reaction rates to perturbations, eventually enabling the

return to the original steady state. In mathematical terms, a steady

state is stable if the largest real part of the Jacobian matrix’s

eigenvalues is negative.

So far, SKM experiments that searched for stability conditions

have focused on the detection of individual enzymes to identify

single important reactions [4,5]. However, specific changes in flux

distributions can generally be caused by more than one enzyme in

a pathway [6], or sometimes even require different enzymes acting

together in an orchestrated manner [7,8]. Here we extend this

existing approach by demonstrating how SKM enables the

detection of ensembles of enzymes or metabolites that act together

in an orchestrated manner to control fluxes through the pathway.

As shown in Figure 1, we use the information about stable and

unstable states as class labels, and train classifiers to detect

parameter regions associated with stability and instability. To this

end, we use decision trees to search for patterns in the model

parameter space, and to derive quantitative thresholds for the

parameters.

We demonstrate the application of our extended SKM

approach to a detailed model of the autocatalytic Calvin-Benson

cycle (CBC), which is the main pathway in plant cells for the

fixation of atmospheric CO2 to produce energy-rich biomolecules.

Enzyme kinetics and regulatory mechanisms of the CBC have

been intensely studied in vivo and in silico. This has led to the

development of a large number of kinetic models to simulate and

explain the processes underlying the CBC and related pathways.

Nevertheless, there has been an ongoing debate about the

accuracy and explanatory power of these models [9,10]. The

importance of this issue was also demonstrated in a recent study

that introduced a systematic approach to solve controversies about

the possible numbers of steady states, revealing strong dependen-

cies of predicted system properties on the kinetics used in a model

[11]. This emphasizes the importance of a modeling framework

like SKM, that is flexible with respect to kinetic rate laws and the

corresponding kinetic parameters, and that allows the systematic

identification of conditions related to distinct system behaviors.

In a recent study, SKM was applied to investigate the stability of

metabolic cycles like the CBC, with a special focus on autocatalytic

architectures [12]. The investigation of a simple autocatalytic

system revealed a general tendency towards stability. Furthermore,

the impact of single model parameters on stability was systemat-

ically assessed, and stability conditions for specific parameter

combinations were derived analytically. An SKM-based analysis of

a simplified CBC model, without any regulatory interactions, was

conducted in order to demonstrate how this method can assist in

detecting parameter regions associated with stability [3]. However,

this model relied on simplifying assumptions such as fixed global

values for all model parameters. Furthermore, it did not take into

account the connections of the CBC to adjacent pathways in the

cytosol, as well as the regulatory mechanisms that are required to

finely tune the interactions between the CBC and these connected

pathways [13–15].

In this work, we analyze an extended model of the autocatalytic

Calvin-Benson cycle (CBC) including allosterically regulated

starch and sucrose synthesis, adenosine triphosphate (ATP)

production, and an entry point to cytosolic amino acid

metabolism. Using this system as an example, we show how

SKM can help in systematically assessing the influence of single

rate equations in the CBC by enabling quick alterations in model

structure, and by directly monitoring the evoked effect on the

system’s properties. For example, different implementations of

transporter-associated rate laws can cause fundamental alterations

in the dynamic properties of the system. Our results confirm that

stability is highly prioritized in the design of the system, and that

allosteric regulation can increase the chance for stability

significantly. We also demonstrate the limitations of existing

kinetic models in assessing the role of newly detected regulatory

mechanisms and we show how such interactions can easily be

included into an SK-model without the necessity of knowing the

corresponding kinetic parameters or rate equations.

Using our new machine learning approach we can confirm the

importance of ‘key enzymes’ like ribulose 5-phosphate kinase and

ATP phosphohydrolase (ATPase) to ensure stability. Reliable

patterns ensuring stability are more frequently detected than

patterns that guarantee unstable steady states, again emphasizing

that local stability is largely favoured over instability in the

investigated pathway.

Results

Construction of structural kinetic models for the Calvin-
Benson cycle

As shown in Figure 2, construction of an SK-model requires

knowledge about the network’s stoichiometry, as well as the

concentrations and fluxes that characterize the steady state of

Figure 1. Workflow for Monte Carlo based model generation and the subsequent detection of patterns by decision trees. First, a
large number of SK-models is created based on randomly sampled parameter sets. They allow the detection of those parameter sets that lead to a
stable or unstable steady state, respectively. Using the model parameters as feature vectors and the stability information as class labels, a classifier
can learn those patterns in the parameter space with highest discriminatory power between both classes. These patterns then describe quantitative
criteria for the degree of saturation of individual enzymes in the pathway that ensure stability or instability.
doi:10.1371/journal.pone.0034686.g001
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interest. In principle, these values can be derived experimentally

without requiring detailed knowledge about rate laws or kinetic

parameters. However, the method crucially relies on the

fulfillment of the steady-state assumption that there are zero net

changes in concentrations over time. Therefore, when studying a

specific biological system for which a kinetic model is available, the

calculation of concentrations and fluxes is generally assisted by

numerical simulation or optimization techniques to reach

sufficient numerical accuracy [14,16].

We used the kinetic model by Laisk et al. (2009) [17] as a

reference for network stoichiometry and steady-state information.

This model was chosen, because a recent study by Arnold and

Nikoloski (2011) [10] based on a slightly smaller predecessor model

[18] showed that its predicted steady state agrees well with

experimental measurements. It includes the reactions of the CBC,

starch and sucrose metabolism, ATP and reduced nicotinamide

adenine dinucleotide phosphate (NADPH) generation, parts of the

cytosolic glycolysis and gluconeogenesis pathway, and an entry

point to amino acid metabolism via alanine production. In total,

we incorporated 35 metabolites and 29 reactions, occurring across

two compartments (chloroplast stroma and cytosol), as well as nine

allosteric regulators. The enzyme-metabolite relationships were

represented by 87 model parameters.

As steady state concentrations, we used the experimental values

provided by the authors of the kinetic model. However, we refined

these values by simulation until they fulfilled the steady state

assumption with sufficient numerical accuracy (see section

Methods for details). Although included in the original model,

we omitted the photosynthetic electron transfer chain, assuming

constant photosynthetic regeneration of ATP and NADPH. A

schematic overview of the reactions and metabolites included in

the model is given in Figure 3. All metabolite and enzyme

abbreviations are explained in Table S1.

The role of membrane transport regulation
The triose-phosphate translocator (TPT) exchanges triose-

phosphates and 3-phosphoglycerate (PGA) synthesized by the

CBC with inorganic orthophosphate (Pi) from the cytosol via an

antiport mechanism. Sustained phosphate supply is important to

maintain constant flux through the pathway. Consequently,

changes in transport rates can have a high impact on stromal

concentrations, making the TPT a bottleneck for the system’s

ability to maintain stability [19]. To model TPT mediated

transport an ensemble of regulatory interactions was included in

the kinetic model. We assume that the purpose of these

interactions was to make the rate equations agree with the strict

1:1 stoichiometry of the antiport-mechanism by ensuring constant

rates of overall influx and efflux [17]. Originally proposed by

Portis (1983) [20], this representation has been repeatedly used in

modified forms [21,22]. The included regulatory effects cause

activation and non-competitive inhibition on both sides of the

membrane. However, they do not reflect true biological

interactions [9] but instead serve as a means to mimic the antiport

characteristics of the TPT.

In a structural kinetic model, these interactions are represented

by eight model parameters. To analyze the implications of these

eight parameters on stability we created 105 SK-models in which

the TPT associated parameters were sampled from consecutive,

non-overlapping intervals of length 0.1. As shown in Figure 4, the

observed proportions of stable models dramatically decrease for

model parameters larger than 0.15, and vanish completely for

parameters exceeding 0.2. To interpret this observation, it is

important to note that a low parameter value indicates that the

concentration change of a specific metabolite has a low impact on

the rate of a reaction. This is generally associated with high

enzyme-metabolite saturation. Thus, stability seems to be favored

only as long as the TPT is highly saturated by its substrates.

In contrast to these antiport-associated regulatory interactions

in the original rate equation, a biologically well-known phenom-

enon is competitive inhibition caused by the simultaneous

transport of different substrates [23]. Although this type of

regulation is not included in the kinetic model, SKM enables us

to analyze its potential effects on the stability of the investigated

steady state. This is achieved by introducing corresponding

parameters into the SK-model without the need to change the

original rate equations in the kinetic model. To compare the

effects of competitive inhibition on stability to those implied by the

original rate equation that has been used in the kinetic model, we

created SK-models with increasing intervals for the parameters

associated with competitive inhibition, while the antiport-associ-

ated parameters were set to zero. The resulting proportions of

stable models are shown in Figure 4. Using competitive inhibition,

a steep decrease in the proportion of stable states can be observed

for parameters exceeding 0.45. Thus, competitive inhibition alone

would impair stability much less than the regulatory effects implied

by the original rate equation which account for the antiport

characteristics.

This example demonstrates how SKM can help to analyze

system behavior under different assumptions about regulatory

mechanisms without requiring detailed rate equations and kinetic

parameters for each scenario.

The impact of allosteric regulation on plant energy
metabolism

In order to investigate the dynamic properties of the system

without transporter-associated regulatory parameters, we random-

ly sampled SK-models of the whole system in Figure 3 while

excluding the regulation of the transporter reactions. Table 1

shows the proportions of stable and unstable cases obtained from

105 SK-models. Mean values and standard deviations were

estimated by repeating the sampling procedure ten times. Stability

Figure 2. The principles of structural kinetic modeling.
Normalization of the pathway-specific stoichiometric matrix N with
respect to steady state concentrations S� and fluxes v� produces the
normalized matrix L. Together with the model parameters in the matrix
H, it uniquely defines the Jacobian matrix of the system in the steady
state. Evaluation of the eigenvalues of the Jacobian matrix then
indicates whether the steady state is stable.
doi:10.1371/journal.pone.0034686.g002
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occurred in over 84% of all cases, indicating that the design of the

network is strongly targeted towards maintaining its functional

state under varying physiological conditions.

In the plant cell, the cytosolic sucrose pathway and the stromal

starch pathway are subject to regulation by allosteric feedback and

feed-forward effects. In the kinetic model, this is reflected by nine

cases in which metabolites regulate one of the enzymes ADP-

glucose pyrophosphorylase (AGPase), sucrose 6-phosphate syn-

thase (SPS), cytosolic fructose 1,6-bisphosphatase (F16BPase) or

fructose 2,6-bisphosphatase (F26BPase). In order to assess the

influence of these mechanisms on stability, we sampled SK-models

in which these interactions were ignored (by setting the nine

corresponding SK-model parameters to zero). As shown in

Table 1, the number of stable models dropped by more than 10

percentage points after removing the influence of the nine

allosteric regulators in this manner. This confirms that allosteric

regulation can play an important role in supporting stability of a

steady state. Similar effects have also been previously observed for

a network of human erythrocyte metabolism, where omitting

allosteric regulation also reduced stability by 10 percentage points

[4].

For comparison, we created an additional set of models in which

the original regulatory mechanisms were replaced by comparable

effects at random positions in the network. In contrast to the

original regulation parameters, assigning parameters at random

positions in the network significantly reduced the number of stable

models (Table 1). This indicates that the effect on stability crucially

depends on the position of regulatory interactions in the network,

and not just on their frequency.

Next, we analyzed the effects of additional known regulatory

interactions that were not considered in the original kinetic model.

In doing so, we selected 21 regulatory mechanisms from the

BRENDA database [24]. As shown in Table 1, stability was

obtained in more than 97% of all SK-models, leading to an

increase by more than 13 percentage points when compared to the

original model. This example shows that (1) SKM enables the

Figure 3. Network underlying the SK-model of the CBC and related pathways. Compounds written in italics represent external substances
the concentrations of which are kept constant in the model. Dotted lines indicate the reactions of cofactors. Dashed lines connect metabolites that
are assumed to be in equilibrium so that their concentration changes are directly proportional to each other. The proportions of the individual
concentrations of these metabolites then depend solely on their equilibrium constants.
doi:10.1371/journal.pone.0034686.g003
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assessment of newly detected pathway characteristics that are not

yet part of a comprehensive kinetic model, and (2) that the

regulatory mechanisms assessed in this manner indeed have a high

impact on the system’s behavior. The latter point motivates the

extension of existing kinetic models of the Calvin-Benson cycle

through the incorporation of these additional regulators, because

they can be expected to have significant effects on the results of

simulation studies.

Stability of the Calvin-Benson cycle as an isolated
subsystem

In order to investigate whether instabilities can also occur in the

CBC as a stand-alone system, we created 105 SK-models

containing only those metabolites of the kinetic model that were

exclusively used by the CBC (see section Methods for details). The

resulting reaction network is shown in Figure 5. In doing so, we

observed that 100% of these models were stable. This lack of

unstable states is interesting because previous SKM-based analyses

of the stability of metabolic cycles showed that, while non-

autocatalytic cycles tend to be always stable, autocatalytic cycles

are more sensitive and can lose their stability as a response to

changes in model parameters or concentrations [12].

It is known that chloroplast metabolism depends critically on

the balance of the available reducing equivalents (ATP, NADPH)

[25]. However, these metabolites were excluded from the

subsystem because they are used by more than just CBC enzymes.

The CBC is an autocatalytic cycle with interwoven side-branches

causing rearrangements of C-atoms between sugar-phosphates of

different chain-length. Our results indicate that when omitting the

restrictions imposed by limited availability of reducing equivalents

and resources, this CBC architecture ensures stability of the

investigated steady state independently of the saturation of

individual enzymes.

Figure 4. Stable steady states for increasing values of regulatory TPT parameters. Effect of increasing SK-model parameters for the triose-
phosphate translocator (TPT) under different assumptions regarding regulatory mechanisms. Transporter-associated model parameters were
sampled from consecutive intervals of length 0.1. For each interval, 105 SK-models were generated.
doi:10.1371/journal.pone.0034686.g004

Table 1. The impact of regulation on plant energy
metabolism.

Stable Unstable

Original model with regulation 84:60+0:08 15:40+0:08

Without regulation 71:20+0:12 28:80+0:12

Regulation at random positions 56:09+19:72 43:91+19:72

Additional regulators (BRENDA database) 97:89+0:03 2:11+0:03

Occurrence (in %) of stable cases in 105 randomly generated SK-models with
different types of allosteric regulators. Standard deviations were obtained by
repeating the sampling procedure ten times. Original model: regulatory effects
as described in the kinetic model; Without regulation: omitting all allosteric
regulators; Regulation at random positions: replacement of the regulators in the
original model by regulators at random positions in the network; Additional
regulators: Incorporation of regulators from the BRENDA database in addition
to those in the original model.
doi:10.1371/journal.pone.0034686.t001
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Identifying stability patterns by machine learning
SKM enables the identification of stable and unstable steady states

for a large number of randomly generated parameter sets. When

searching for model parameters with high discriminatory power

between stable and unstable steady states, SKM experiments in

previous research have only focused on the detection of single

enzymes that played ‘key roles’ in maintaining the stability of a

steady state [5]. However, experimental results indicate that

metabolic control is not conducted by few key enzyme alone.

Instead, changes in flux distributions can also be caused by the joint

orchestration of several enzymes [7,8]. Such orchestration of enzyme

activities cannot be detected by univariate tests that simply compare

the distributions of SK-model parameters between stable and

unstable models. Instead, methods based on supervised machine-

learning that apply either classification or regression algorithms can

help identify such patterns in the model parameter space.

By using stable and unstable states as class labels, we could train

classifiers based on decision trees to detect discriminating patterns

in the parameter space. In doing so, we created a training data set

that contained 105 SK-models of the system in Figure 3. Each set

of 87 randomly sampled model parameters served as a feature

vector for classifier training. Binary class labels were introduced to

indicate the presence or absence of stability associated with each

parameter set. The whole procedure of model generation and

machine learning is illustrated in Figure 1.

Classifier performance. Using 105 training samples, 10-

fold cross validation resulted in a generalization error of

12:16+0:35%. The class-dependent specificity (precision) and

sensitivity (recall), summarized over all ten holdout data sets, is

given in Table 2. The constructed decision trees resulted in

551+11:44 patterns per cross-validation run. Here, a pattern is a

collection of conditions that restrict model parameters by upper or

lower boundaries. Consequently, patterns can be understood as

ensembles of coordinated criteria for enzyme-metabolite

interactions responsible for maintaining or losing stability. Each

pattern contained between 1 and 15 conditions. 348+22:67
patterns provided criteria for maintaining stability (stability

conditions), and 202+15:17 for losing it (instability conditions).

All derived patterns are provided in Table S3.

Since our aim was to derive and investigate reliable conditions

for ensuring stability or instability, we restricted our analysis to

those patterns with highest accuracy. The accuracy of a pattern

was assessed by its Laplace ratio, which took the number of errors

(e) relative to the number of training samples meeting the

conditions (hits h) into account (see section Methods for details).

The closer the Laplace value was to 1, the more reliable was the

pattern in defining conditions for either stability or instability.

Restriction of the analysis to patterns with Laplace ratio §0:99
left 62+7:45 patterns with stability conditions, but only 3+0:82
patterns with instability conditions per cross-validation run. The

small occurrence frequency of reliable criteria that ensured

Figure 5. Isolated CBC subnetwork. Isolated subnetwork after restriction to metabolites which are exclusively used by the CBC. Compounds
written in italics represent external substances the concentrations of which are kept constant in the model. Dotted lines indicate the reactions of
cofactors. Metabolites connected by dashed lines are assumed to be in equilibrium.
doi:10.1371/journal.pone.0034686.g005

Table 2. Classifier performance.

Class Precision Recall

Stable 0:8896 0:8635

Unstable 0:8674 0:8929

Precision and recall for each class computed by 10-fold cross-validation with
105 training samples. The precision of a class Ci is the fraction of correct
predictions compared to all predictions for this class ( true Ci

predicted Ci
); recall of a class

Ci is the fraction of class members that were correctly predicted ( true Ci

total Ci
).

doi:10.1371/journal.pone.0034686.t002
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instability might be related to a general inherent tendency towards

stability in the system, which leaves only limited possibilities to

cause instability in a reliable manner. These results agree with the

findings in Table 1 for unbalanced data.

Analysis of stability conditions. After restriction to Laplace

ratio §0:99, the patterns detected for the stable class each

contained between 2 and 14 conditions, affecting 84 different

model parameters associated with 28 enzymes and 34 metabolites.

Figure 6 shows the frequencies of reactions and metabolites per

pattern, obtained in each cross-validation run. The strongest

control on stability was detected for the stromal metabolites Pi,

adenosine diphosphate (ADP) and ribulose 1,5-bisphosphate

(RuBP). The frequencies of Pi and ADP exceeded 1 due to

patterns containing criteria for their interaction with more than

one enzyme. The comparison of enzyme frequencies showed that

the stromal reactions catalyzed by ATPase, phosphoribulokinase

(PRK) and 3-phosphoglycerate kinase/glyceraldehyde 3-

phosphate dehydrogenase (PGK/GAPDH) conducted most

control on stability. When comparing cytosolic enzymes, the

sucrose synthesis pathway enzymes SPS and sucrose 6-phosphate

phosphatase (SPP) were most abundant, but still occurred only in

less than half of all patterns.

In order to assess the role of assumed ‘key enzymes’ of the

investigated pathways, we examined how often they appeared in

the patterns. First, we analyzed the occurrence of PRK, ribulose-

bisphosphate carboxylase (Rubisco), GAPDH, SBPase and stromal

FBPAse, which have classically been regarded as ‘key enzymes’ of

the CBC [13]. We also included the plastid aldolase (Aldo) and

transketolase (TK) reactions, because in vivo experiments showed

that these enzymes can have large impact on the rates of

photosynthesis and carbohydrate accumulation [26]. Further-

more, we investigated ATPase as a key enzyme of ATP

metabolism, AGPase for starch metabolism [27], and cytosolic

FBPase and SPS for sucrose metabolism [23].

As shown in Tables 3 and 4, 100% of all patterns contained

either conditions for model parameters associated with Rubisco,

PRK, FBPase, PGK/GAPDH and SBPase. Surprisingly, condi-

tions for sedoheptulose 1,7-bisphosphatase (SBPase) showed an

average occurrence frequency of less than 4% of all patterns, even

if experimental results indicated that this enzyme can play an

important role in controlling flux through the network [6,28]. The

AGPase reaction, which is a committed step in starch synthesis

and subject to allosteric control, also appeared rarely in the

patterns, whereas enzymes associated with cytosolic carbohydrate

metabolism occurred in 40% of all patterns. In contrast, the

ATPase reaction was included in almost all patterns.

Figure 7 shows examples of stability patterns with either two or

three conditions each. The quantitative thresholds for each

condition were averaged over several values obtained in different

cross-validation runs. Each of the depicted patterns described high

saturation of ATPase by its substrate Pi. If the saturation of

GAPDH by its product Pi was sufficiently high (cw0:93), no

further conditions were required (pattern 1). Because of this strict

threshold, only few randomly sampled SK-models fulfilled the

conditions of this pattern. Patterns with less strict thresholds that

were fulfilled by larger proportions of SK-models required a third

condition that either imposed upper limits on the saturation of

PRK (pattern 2) or Rubisco (pattern 3) by RuBP. The positions at

which the conditions of each pattern occurred in the network are

illustrated in Figure S1. All three patterns indicate that it is

favorable for stability to maintain high levels of Pi in the stroma, so

that the corresponding enzymes are sufficiently saturated. Fast

metabolization of RuBP, which reduces the saturation of PRK and

Rubisco by RuBP, also favors stability.

Figure 6. Relative frequencies of metabolites in the patterns. The boxplots show the occurrence frequencies of a) the metabolites and b) the
reactions in the detected stability patterns with Laplace ratios §0:99 in different cross-validation runs. Cytosolic reactions begin with a lowercase ‘c’.
doi:10.1371/journal.pone.0034686.g006
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Discussion

We have extended SKM by a novel machine-learning based

approach for determining stabilizing patterns in the parameter

space using decision trees. In contrast to previous studies that used

univariate tests to search for single, important parameters, it

enables the search for ensembles of enzymes and metabolites

ensuring stability. In algorithmic terms, these ensembles are

represented by rulesets, which can be understood as ‘patterns’ of

enzyme-metabolite relationships that mark the transition from

stable to unstable steady states, or vice versa. This new approach

allows the determination of fine-tuned interactions between

combinations of several enzymes and metabolites that cannot be

investigated by classical in vivo studies focusing only on a limited

number of enzymes per experiment.

We presented and analyzed a detailed SK-model of the Calvin-

Benson cycle, starch synthesis, and cytosolic carbohydrate

metabolism. In total, it comprised 35 metabolites, 29 reactions

and 87 model parameters. Using a Monte Carlo approach, we

showed the effect of different kinds of regulation for the triose

phosphate transporter. Our findings highlight the importance of

choosing appropriate rate equations when modeling transport

processes that serve as bottlenecks of flux between compartments.

We also investigated the effects of metabolic regulation and

showed that it can significantly facilitate to maintain stability.

However, we also showed that regulatory interactions have to

occur at very specific positions in the network to cause this effect.

Even without allosteric regulation the system was stable in more

than 70% of all randomly created models. This trend towards

stability was confirmed when we investigated a subsystem

restricted to Calvin-Benson cycle metabolites only.

The machine-learning detected patterns contained up to 15

conditions, indicating that it is often insufficient to change the

saturation of only one enzyme in order to induce an effect. Rather,

Table 3. CBC enzyme occurrences in the derived patterns.

Assumed ‘key enzymes’ of the CBC Further CBC enzymes

Enzyme Rubisco PRK FBPase PGK/GAPDH SBPase Aldo TK

Occurrence in stability patterns (in %) 17:61+5:70 87:34+4:61 49:42+6:71 86:74+4:93 3:63+2:90 7:80+3:50 7:07+4:14

Occurrence of union set in stability patterns (in %) 100+0:00 14:19+4:35

The occurrence of parameters associated with CBC enzymes in all patterns that contain stability conditions. The enzymes are divided into assumed ‘key enzymes’, and
further stromal enzymes for which high experimentally determined flux control coefficients have been reported in the literature [26]. The PGK and GAPDH reactions
share common model parameters, and therefore conditions on these two reactions are joint in the patterns.
doi:10.1371/journal.pone.0034686.t003

Table 4. Enzyme occurrences in the derived patterns (ATP, starch and sucrose metabolism).

ATP metabolism Starch metabolism Sucrose metabolism

Enzyme ATPase AGPase SPS cFBPase

Occurrence in stability patterns (in %) 98:97+1:42 3:18+2:10 36:88+5:30 6:00+2:77

Occurrence of union set in stability patterns (in %) { { 40:63+5:27

The occurrence of parameters associated with ‘key enzymes’ of ATP, starch and sucrose metabolism in all patterns that contain stability conditions.
doi:10.1371/journal.pone.0034686.t004

Figure 7. Example patterns with a) two or b) three stability conditions each. For each enzyme-metabolite pair, a threshold for the saturation
c is given. Enzymes are marked in red, their reactants are marked in green. Pattern 1 exhibited an average Laplace ratio of 0:9918+0:0018
(h~528+66:53, e~3:4+1:34). Pattern 2 affected less training samples because of its less strict threshold on the parameter associated with PGK and
GAPDH but also produced more training errors and a lower Laplace value (L~0:99+0 h~1068+5:29, e~10+0). Pattern 3 affected an even larger
number of hits but nevertheless, it produced fewer training errors than pattern 2. As a consequence, it exhibited the highest Laplace value of all the
depicted patterns (L~0:9963+0:0012, h~1783:67+155:47, e~5:67+2:89).
doi:10.1371/journal.pone.0034686.g007
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a change in dynamic properties often requires concerted

alterations in several model parameters. We investigated the

detected patterns with respect to their prediction accuracy,

discovering more patterns that reliably ensured stability than

patterns ensuring instability. We found that a criterion for

ensuring stability is a sufficiently high saturation of ATPase by

its substrate Pi. This makes a drop of stromal phosphate the most

likely threat to stability.

The patterns that reliably ensured stability all contained

conditions for at least one of the enzymes Rubisco, FBPase,

PGK, GAPDH, PRK or SBPase. In contrast, aldolase or

transketolase occurred much less frequently in the detected

patterns, indicating that they play less important roles in

maintaining the stability of the investigated steady state. However,

in in vivo experiments they exhibited comparably strong influence

on the flux through the pathway [26,28]. This contradictory

behavior can be explained when comparing the variables

measured in vivo to the criteria used in this study. In the mentioned

experiments, flux control coefficients were computed to assess the

influence of an enzyme on carbon fixation or carbohydrate

accumulation. Consequently, they described the impact of an

enzyme on the flux through the system from source to sink. In

contrast, using SKM we could analyze the role of enzymes in

controlling the dynamic behavior of the system in a steady state

under the assumption of constant influx and efflux. Consequently,

the detected mechanisms helped to maintain constant internal

fluxes through the cycle in a slightly perturbed system, requiring

that both influx and efflux remain unchanged.

The abundance of CBC enzymes in the patterns highlighted the

importance of the fine-tuned control of fluxes through the CBC in

order to ensure stability of the entire network. However, none of

the CBC ‘key enzymes’ appeared in 100% of the detected

patterns. This shows that none of these enzymes were sufficient to

ensure stability by themselves without also taking into account the

activity of other enzymes.

Interactions between enzymes and metabolites can only be

assessed by SKM if they are incorporated into the fixed network

structure. Consequently, all metabolites or enzymes associated

with model parameters must be represented by separate rows or

columns of the stoichiometric matrix. We used a kinetic model as a

reference for the model structure [17]. This model was chosen

because of its capability to well reproduce experimentally

measured data. However, there are some limitations to this

model. For example, the low abundance of AGPase in the patterns

could be caused by the simplified representation of starch synthesis

in the model. The detection of starch-associated conditions might

require a more refined representation of the starch pathway,

possibly including starch degradation [27,29–31]. Furthermore,

CO2 could not be represented by SK-model parameters because

its concentration depended predominantly on the atmospheric

conditions, and not on enzymatic reactions included in the

stoichiometric matrix. Because changes in ambient CO2 can

strongly affect flux control coefficients of CBC enzymes on

photosynthesis [26], the incorporation of CO2 in the SK-model

could potentially refine the patterns detected by the presented

machine learning approach. Alternatively, the impact of varying

CO2 saturation on stability could also be systematically investi-

gated using the same SK-model, but different steady states

measured under varying CO2 concentrations.

In the presented work, we applied our method to steady state

data that represents the operating point in a C3 plant under

atmospheric conditions (360mmol mol{1 CO2) and high light

(2276 mmol photon m{2s{1). Using this particular steady state,

we demonstrated the application of our combined SKM and

machine learning approach, and we showed how to reveal the

regulatory patterns ensuring its stability. However, if the aim is to

gain a full understanding of the patterns that can emerge in the

CBC, it would also be necessary to investigate alternative steady

states under varying physiological conditions. For example, a

comparison of stabilizing mechanisms could provide hints about

the robustness of specific types of network regulation.

The CBC is a well-studied system for which detailed kinetic

models are already available, even though there is still an ongoing

debate about their quality and predictive power [9,10]. However,

an advantage of SKM is that it does not rely on such detailed

information in order to yield meaningful results. Under the

prerequisite that accurate measurements of steady state concen-

trations and fluxes are available, the proposed method also enables

the detection of stabilizing mechanisms in networks for which

comprehensive kinetic models have not yet been developed. We

showed in this work that incorporation of known allosteric

interactions can significantly increase the tendency towards

stability. Under the hypothesis that regulatory mechanisms can

generally be expected to improve stability of a steady state, SKM

could potentionally also be applied to detect unknown allosteric

effects in such networks. In doing so, randomly inserted regulatory

effects could be assessed by SKM, and those mechanisms that are

most beneficial for stability could be selected and tested

experimentally.

Methods

Algorithmic background
Stability analysis of metabolic systems. A metabolic

system can be formulated as an ordinary differential equation

system that describes the time-dependent changes in metabolite

concentrations:

dS

dt
~N:v~f, ð1Þ

where the vector S : ~(S1,S2, . . . Sm) contains the concentration

of m metabolites, the vector v : ~(v1,v2, . . . vr) contains the

velocities of r reactions, and the stoichiometric matrix N[Rm,r

contains the molecularities of substrates and products in each

reaction, which are stored in its elements ni,j [32]. The time-

dependent changes in each concentration are then summarized in

the vector f : ~(f1,f2, . . . fm). In metabolic networks, the reaction

rates vj ,j~1 . . . r depend non-linearly on the metabolite

concentrations so that vj : ~vj(S,k). The parameter vector k

contains additional kinetic information like maximum velocities or

binding affinities of the enzymes.

A steady state is defined as a point S� in the state space where

N:v(S�,k)~0: Hence, no net changes in the concentrations can

occur, and the rate of production equals the rate of consumption

for each metabolite. Consequently, a system can only leave a

steady state in response to changes caused by external factors, for

example affecting the flux into the system or variations in enzyme

concentrations.

The response of the system to small perturbations depends on its

stability properties. When the steady state is stable, a coordinated

system response enables the return of concentrations and fluxes to

the same values as prior to the perturbation. If the steady state is

unstable, such a return is not supported. The stability of a steady

state of system (1) can be assessed by the system’s Jacobian matrix

J~
Lfj

LSi

h i
i~1...m, j~1...m

evaluated in the steady state. The Jacobian

matrix contains the partial derivatives of the metabolite turnover
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rates with respect to all substrates, products and regulators that

take part in the reactions. If the largest real part of its eigenvalues

is negative, changes evoked by perturbations diminish over time

and the steady state is stable [32].

The principles of structural kinetic modeling. Computation

of the Jacobian matrix of a metabolic system at an arbitrary point in

the state space requires knowledge of all enzyme kinetic rate laws and

kinetic parameters describing the reactions in the system. In a steady

state with concentrations S� and fluxes v� : ~v(S�,k), however,

SKM enables the computation of the Jacobian matrix JS� without

requiring this knowledge. Instead, the Jacobian matrix can be derived

from a set of model parameters H[Rr,m, the stoichiometric matrix N,

and the steady state information according to the formula

JS�~L:H: ð2Þ

Here L[Rm,r is a matrix of normalized stoichiometric coefficients

with elements li,j : ~ni,j
:

v�
j

S�
i

,i~1 . . . m,j~1 . . . r. The matrix H

contains the model parameters hj,i~
ln (vj )

ln (Si )
,j~1 . . . r,i~1 . . . m,

which describe the relative influence of each metabolite on each

reaction rate in the steady state (see Document S1 for details).

While the stoichiometry, the steady state concentrations and the

fluxes are experimentally accessible, the model parameters are

often unknown in practice. However, they can be sampled in a

Monte Carlo approach, which enables the creation of a large

number of models followed by the exploration of the parameter

space to detect regions associated with stability or instability.

Sampling intervals are derived from the type of kinetics the

reaction is expected to follow (for example Michaelis-Menten or

Hill kinetics).

In total, the SKM approach can be summarized by the

following steps: (1) normalization of the stoichiometric matrix with

respect to steady state fluxes and concentrations; (2) random

sampling of the model parameters from intervals chosen according

to the type of kinetics that is assumed for the reaction (see

Document S1 for details); (3) computation and evaluation of the

Jacobian matrix for each sampled parameter set.

Deriving a measure for enzyme-metabolite saturation

from the SK-model parameters. The closer the absolute

value of a parameter Dhj,i D is to the upper limit of its sampling

interval (for example 1 for Michaelis-Menten kinetics), the less the

enzyme catalyzing the reaction vj is saturated with its metabolite

Si. Therefore we define by

cj,i~1{gj,i ð3Þ

the actual saturation implied by the model parameters

hj,i, j~1 . . . r, i~1 . . . m. Here, gj,i : ~
Dhj,i D{a

b{a
is the absolute

value of h[½a,b� normalized to the interval ½0,1�.
Matlab implementation of structural kinetic

modeling. We developed a MATLAB algorithm for generic

creation and evaluation of structural kinetic models for arbitrary

pathways. Necessary input information are the stoichiometric

matrix of the pathway, the steady state concentrations and fluxes

and the limits of the sampling intervals for each model parameter.

The sampling procedure can be modified by user-defined options,

for example to omit regulatory interactions or to exclude

individual metabolites from the analysis. Automatic evaluation

routines are provided to assist analysis of the produced models, for

example by plotting the eigenvalue distributions, computing the

proportions of stable and unstable models, or producing training

data as input for the C5.0 classification algorithm [33]. Currently,

the code is available on request, a manuscript introducing the

algorithm in greater detail is in preparation.

Building the structural kinetic model of the Calvin-
Benson cycle

Computation of steady state data. Steady state

concentrations and fluxes were computed using the kinetic

model by Laisk et al. (2009) [17]. The model was slightly

modified compared to the original version by introducing separate

differential equations for dependent metabolites and for pooled

metabolites. After implementing the model in MATLAB, we

performed numerical integration using the ode15 s solver starting

from the initial values which were provided by the authors in their

original PASCAL implementation of the model. Integration was

performed over 1000 seconds until all concentration changes were

below 10{17 mol
l

.

Deriving model parameter intervals for enzymatic

reactions. We derived interval boundaries for most reactions

based on their rate laws in the kinetic model. Some enzyme-

catalyzed reactions were represented by simplified rate equations

in the kinetic model, for example by using mass action kinetics

instead of Michaelis-Menten kinetics. This would correspond to a

situation where the model parameters are set to 1, and the enzyme

is barely saturated. In the SK-models, we treated these reactions as

if following Michaelis-Menten kinetics in order to enable

investigation of a broader range of saturation values (see the

Document S1 for details).

SK-model parameters for the triose-phosphate

translocator (TPT). Regulatory mechanisms in the transport-

associated rate equations used in the kinetic model were

represented by four positive (activating), and four negative

(inhibiting) parameters, each accounting for an interaction on

the stromal, as well as on the cytosolic side of the membrane. The

four positive parameters describe antiport-induced activation of

import reactions by stromal species, and of export reactions by

cytosolic species. The four negative parameters describe the

inhibition of export reactions by their stromal substrates, and of

import reactions by their cytosolic substrates. In order to assess the

influence of these interactions on stability, we created 105 SK-

models by randomly sampling all 8 parameters from predefined

intervals with increasing upper and lower boundaries. To assess

the effects of competitive inhibition, we repeated the sampling

procedure, this time only regarding those parameters that

described inhibition of export by stromal species or inhibition of

import by cytosolic species (see Document S1 for details).

Analyzing the structural kinetic model of the Calvin-
Benson cycle

Assessing the influence of allosteric regulation in the

kinetic model. In the kinetic model, the enzymes AGPase,

cytosolic FBPase, as well the reactions for synthesis and

degradation of cytosolic F26BP are allosterically regulated by

sugar phosphates or inorganic phosphate. In total, we obtained 6

positive and 3 negative model parameters. A comprehensive list of

all regulatory parameters and their sampling intervals is given in

Table S2. In order to determine the influence of these interactions,

we created a set of 105 SK-models were these parameters were set

to zero. Based on the eigenvalues of the resulting Jacobian matrix

we then determined the number of stable models. Standard

deviations were obtained by repeating this procedure ten times.

For validation, we created SK-models with allosteric regulation at

random positions in the network. In doing so, we randomly

selected 9 positions in the matrix H which we occupied by
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allosteric regulators. Using this set of regulatory parameters, we

randomly sampled 102 SK-models. This procedure of randomly

assigning positions for regulatory interactions and sampling SK-

models using these interactions was repeated 103 times. Mean

values and standard deviations were computed from the

proportions of stable models obtained by each repetition.

Incorporation of additional regulatory interactions from

the BRENDA database. In order to assess the impact of

experimentally obtained activators and inhibitors of the

investigated system, we included model parameters for

regulatory interactions that were reported in the BRENDA

database for either of the organisms Arabidopsis thaliana, Nicotiana

tabacum, and Spinacia oleracea. In total, we obtained 14 additional

model parameters describing activating effects, as well as 7

parameters for inhibitory effects. A detailed list of these parameters

and their sampling intervals is given in Table S2.

Analysing a subsystem of Calvin-Benson cycle

metabolites. In order to restrict the analyses on a subsystem

that contained only CBC metabolites, we removed all rows for non-

CBC metabolites from the stoichiometric matrix N. The resulting

matrix N’ still fulfilled the steady-state requirement N’:v�~0 and

therefore allowed the construction of SK-models restricted to the

remaining metabolites and the reactions they involved. We

constructed SK-models of the CBC as a stand-alone system by

constraining the stoichiometric matrix to those stromal compounds

that were exclusively involved in CBC rations. These metabolites

comprised PGA, GAP, DHAP, erythrose 4-phosphate (E4P), ribose

5-phosphate (Ri5P), ribulose 5-phosphate (Ru5P), xylulose 5-

phosphate (Xu5P), ribulose 1,5-bisphosphate (RuBP), fructose 6-

phosphate (F6P), fructose 1,6-bisphosphate (FBP), sedoheptulose 7-

phosphate (S7P) and sedoheptulose 1,7-bisphosphate (SBP).

Classification by decision trees
Using stability as class labels, we trained decision trees in order

to detect discriminating patterns in the parameter space. In doing

so, we first created a training data set by randomly sampling 105

SK-models of the system. Parameters associated with transporter

regulation were omitted so that the analysis focused on the effects

of the remaining 87 model parameters. Each set of model

parameters served as a feature vector for classifier training, and the

presence or absence of stability served as a binary class label.

Before training, the data set was balanced by repeatedly sampling

model parameters until equal numbers of stable and unstable cases

were obtained.

Training was performed using the C5.0 algorithm version 2.01

[33], a commercial version of the C4.5 algorithm [34], with

increased speed and memory efficiency that makes it well

applicable for large numbers of training samples. One interesting

feature of this algorithm is the possibility to create ‘rulesets’ that

summarize the derived conditions for each class in an easily

interpretable manner. In contrast to the classical decision tree

structure, where the abundance of a feature depends on its

position in the tree (for example, the feature in the root is always

used), features in rulesets can be mutually exclusive. This

motivates their usage for the given task in which we aim at

finding diverse combinations of features important for different

dynamic properties. The discovered rulesets describe patterns for

combinations of enzyme-metabolite interactions.

After training, the prediction performance of each of the

obtained rulesets was assessed by the Laplace ratio

Lk~
hk{ekz1

hkz2
: ð4Þ

Here, k is the ruleset index, hk is the number of training samples

meeting the conditions given by the kth ruleset (hits), and ek is the

number of samples with opposite class label to that indicated by

the ruleset (errors) [33]. The derived rulesets and their properties

are given in Table S3. Since our aim was to derive reliable

conditions for stability and instability, we selected only those rules

with Laplace ratio §0:99 for further analyses.

Supporting Information

Figure S1 Network plot showing the localization of the
patterns which have been introduced in Figure 7 of the
Results section. Blue circles highlight conditions in pattern 1,

red circles indicate conditions in pattern 2, and green circles show

conditions in pattern 3.

(PDF)

Table S1 Table of the model components. Spreadsheet
1 (‘Compounds’): model compounds which are depicted
in Figure 3 and in Figure S1. The left table contains those

compounds which served as state variables in the kinetic model,

and are therefore associated with SK-model parameters. The right

table contains those compounds which were treated as external

metabolites with constant concentrations in the kinetic model, and

therefore do not yield SK-model parameters. Spreadsheet 2

(‘Reactions’): reactions associated with SK-model parameters. For

each reaction, we provide the abbreviation used in this text, the

KEGG-ID, the stoichiometry applied in the SK-model as well as

activating or inhibiting compounds.

(ODS)

Table S2 Table of sampling intervals for the SK-model
parameters. Spreadsheet 1 (‘Regulatory parameters’): network

positions and sampling intervals of the SK-model parameters

associated with regulatory interactions. Spreadsheet 2 (‘TPT

Parameters’): sampling intervals and dependencies of the SK-

model parameters associated with the Triose-Posphate/Phosphate

Translocator (TPT). Spreadsheet 3 (‘Sampling interval modifica-

tions’): modifications of the original sampling intervals (derived

from the original rate equations in the kinetic model) used to

create the SK-models.

(ODS)

Table S3 Machine-learning derived rulesets. The whole

set of rulesets obtained by C5.0-training with 10-fold cross-

validation. Spreadsheet 1 (‘Ruleset information’): information

associated with each ruleset (ID, number of detected conditions,

assigned class, Laplace ratio etc.). Spreadsheet 2 (‘Ruleset

conditions’): detailed list of the conditions contained in each

ruleset. For each condition, the reaction-metabolite pair associated

with the corresponding SK-model parameter, as well as the type of

their interaction (product, substrate, inhibitor or activator) is given.

The corresponding threshold is described in terms of the model

parameter value (h), and the saturation value (c) which has been

computed according to equation (3).

(ODS)

Document S1 Additional background information about
structural kinetic modeling, together with further
information about the employed model.

(PDF)
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