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Purpose: The goal of this paper is to extend our recently developed FBP (filtered backprojection)

algorithm, which has the same characteristics of an iterative Landweber algorithm, to an FBP algo-

rithm with the same characteristics of an iterative MAP (maximum a posteriori) algorithm. The

newly developed FBP algorithm also works when the angular sampling interval is not uniform. The

projection noise variance can be modeled using a view-based weighting scheme.

Methods: The new objective function contains projection noise model dependent weighting factors

and image dependent prior (i.e., a Bayesian term). The noise weighting is view-by-view based. For

the first time, the FBP algorithm is able to model the projection noise. Based on the formulation of

the iterative Landweber MAP algorithm, a frequency-domain window function is derived for each

iteration of the Landweber MAP algorithm. As a result, the ramp filter and the windowing function

are both modified by the Bayesian component. This new FBP algorithm can be applied to a projec-

tion data set that is not uniformly sampled.

Results: Computer simulations show that the new FBP-MAP algorithm with window function

index k and the iterative Landweber MAP algorithm with iteration number k give similar recon-

structions in terms of resolution and noise texture. An example of transmission x-ray CT shows that

the noise modeling method is able to significantly reduce the streaking artifacts associated with

low-dose CT.

Conclusions: View-based noise weighting scheme can be introduced to the FBP algorithm as a

weighting factor in the window function. The new FBP algorithm is able to provide similar results

to the iterative MAP algorithm if the ramp filter is modified with a additive term. Nonuniform sam-

pling and sensitivity can be accommodated by proper backprojection weighting. VC 2012 American
Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.3697736]

Key words: image reconstruction, iterative MAP algorithm, analytical reconstruction algorithm,

tomography

I. INTRODUCTION

The filtered backprojection (FBP) algorithm is simple and fast,

and can be used to reconstruct images in nuclear medicine,

x-ray CT, or even MRI for some special data acquisition meth-

ods.1 Compared with iterative reconstruction algorithms, the

FBP algorithm generally produces noisier images, even when

the iterative algorithm (e.g., the iterative Landweber algo-

rithm) does not model the projection noise or does not model

the projection noise correctly.2,3 As a result, the FBP algorithm

has gradually been replaced by iterative image reconstruction

algorithms. Recently, we have developed a windowed FBP

algorithm that is able to produce similar images to those recon-

structed by the iterative Landweber algorithm.4 One goal of

this paper is to modify this windowed FBP algorithm so that it

can produce similar images to those reconstructed by the itera-

tive Landweber MAP algorithm. Another goal of this paper is

to extend the windowed FBP algorithm to model the projection

data noise.

Iterative maximum a posteriori (MAP) algorithms can

produce noise/resolution balanced images and have wide

applications.5–8 Due to their huge projection operator matrix

size, MAP algorithms use iterative methods to optimize the

objective function. Recently, Cao et al. proposed a special

representation of the huge sparse projection matrix so that

the condensed projection matrix can be stored in a computer

and a noniterative reconstruction becomes possible.9 How-

ever, this sparse-matrix transformation approach is not easy

to implement. Three new methods of the FBP algorithms are

presented in Sec. II. The new methods are practical and can

include some noise information and image prior information

in the FBP reconstruction.

II. METHODS

A simple FBP-MAP approach is derived in Sec. II.A; the

implementation of this FBP-MAP algorithm is almost the

same as a regular FBP algorithm. Nonuniform angular sam-

pling is considered in Sec. II.B. In Sec. II.C, computer imple-

mentation issues are considered. In Sec. II.D, the noise

modeling strategy is introduced, and a noise variance

weighted FBP algorithm is derived.

II.A. A new FBP algorithm that emulates an iterative
MAP algorithm

A typical MAP (maximum a posteriori) algorithm is to

optimize the Bayesian estimation as
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X̂ ¼ arg min
X
f P� AXk k2þbXTRXg: (1)

In the context of tomography, A in Eq. (1) is the projection

matrix, X is the image array written as a column vector, P is

the projection array written as a column vector, and b is a

relative weighting factor that adjusts the importance of the

Bayesian term XTRX relative to the fidelity term jjP-AXjj2.

The square matrix R in Eq. (1) can be understood in such a

way that X is modeled by a Gaussian random field with a co-

variance matrix R�1. In practice, X is not random, the matrix

R is used to enforce some smoothness of the image so that

the reconstruction is not too sensitive to noise. One way to

promote the smoothness is to suppress the difference

between the central pixel value and its neighbors. A Laplace

operator that is the second-order derivative, for example, can

be used in the matrix R.

The optimization problem (1) has a quadratic objective

function, so the solution can be obtained by the Landweber

algorithm

Xðkþ1Þ ¼ XðkÞ þ a½ATðP� AXðkÞÞ � bRXðkÞ�; (2)

where AT is the backprojection matrix, X(k) is the estimated

image at the kth iteration, and a> 0 is the step-size. This re-

cursive relation can be rewritten as a nonrecursive expres-

sion as

Xðkþ1Þ ¼ XðkÞ þ a½ATðP� AXðkÞÞ � bRXðkÞ�
¼ aATPþ ðI � aATA� abRÞXðkÞ

¼
Xk

n¼0

ðI � aATA� aRÞn
#
aATP

"

þðI � aATA� aRÞkþ1Xð0Þ: (3)

If the initial image X(0) is set to zero, the result from k itera-

tions of the Landweber algorithm is

XðkÞ ¼ a
Xk�1

n¼0

ðI � aATA� abRÞn
" #

ATP: (4)

This noniterative expression of the Landweber algorithm

resembles a “backproject first, then filter” algorithm, in the

sense that the projection data P are first backprojected by the

operator AT and then filtered by a½
Pk�1

n¼0 ðI � aATA� abRÞn�.
When the positive real number (i.e., step-size) a is small

enough, the Landweber algorithm will converge and we

have

a
Xk�1

n¼0

ðI � aATA� abRÞn
" #

! ðATAþ bRÞ�1
as k!1;

(5)

if ðATAþ bRÞ�1
exists, otherwise ðATAþ bRÞ�1

is replaced

by a generalized inverse. For a finite k, we have

a
Xk�1

n¼0

ðI�aATA�abRÞn
" #

¼ ATAþbR
� ��1

�½I�ðI�aATA�abRÞk�:
(6)

The proofs of the above equations are available in a review

paper by Schafer et al.10

The Landweber algorithm is a linear algorithm, but it

may not be shift-invariant. The PSF (point spread function)

of the combined operator of projection-and-backprojection

plus the Bayesian term R, ATAþbR, is almost shift-invariant

in the central region of the image array, which can be veri-

fied by putting a point source in the image, and then per-

forming the projection-backprojection operation. After the

operation, the resultant blurred point source image is almost

shift-invariant if the point source is close to the center of the

image array. When the point source is close to the array

edges, the blurred point source image is no longer shift-

invariant. If we use a large image array (say, the array size is

twice as large as the image object) in the iterative Land-

weber MAP algorithm, the PSF can be considered shift-

invariant in the object region.

As shown in image reconstruction textbooks and in our

previous paper, if the projection operator A is the line-integral

(i.e., the Radon transform) in the two-dimensional (2D) space

and AT is the adjoint operator (i.e., the backprojection trans-

form), the combined operator of projection-and-backprojec-

tion, ATA, is the 2D convolution of the original image with a

2D kernel 1/r, where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
in the x-y Cartesian coor-

dinates.11 The 2D ramp filter is able to cancel the 1/r blurring

effect.10 In this ideal situation, the (ATA) operation is a 1/r
convolution, the (ATA)�1 operation is 2D ramp filtering, and

½I � ðI � aATA� abRÞk� in Eq. (6) can be treated as a win-

dow function in the frequency-domain

Wkð�x;�yÞ¼1�ð1�að1= �
*
�� ��þbhð �*

�� ��ÞÞÞk;
with �

*
�� ��¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
x þ�2

y

q
; (7)

where �x and �y are the frequencies with respect to x and y,

respectively, �
* ¼ ðvx; vyÞ is the 2D frequency vector, and h is

the Fourier transform of R when R is expressed as a convolu-

tion kernel. Thus, the conceptual shift-invariant Landweber

algorithm is equivalent to: first, backprojecting the data into

the image domain; second, filtering the backprojected image

with a 2D windowed ramp filter defined in Eq. (7).

II.B. Nonuniform angular sampling

The conventional FBP algorithm assumes that the object is

uniformly sampled. However, one can use variable sampling

strategies, such as sampling the more important angular range

with a smaller angular interval and sampling the less impor-

tant angular range with a larger angular interval. The angular

sampling can be normalized in the backprojection as a

weighting function. The backprojection is an integral over the

sampling angle. Angular sampling density compensation can
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be achieved by using a normalization factor in the backprojec-

tion integral, which is essentially a Jacobian factor. Mathe-

matically, a backprojection image can be expressed as

bðx; yÞ ¼
ðp

0

pðt; hÞjt¼x cos hþy sin hdh; (8)

where p can be the raw projections at angle h if the algorithm

requires the raw projections be backprojected first, p can

also be the filtered projections at angle h if an FBP algorithm

is used, and t indicates the detector bin location. A simple

discrete implementation of Eq. (8) is given as

bði; jÞ ¼ p
M

XM

m¼1

pðn;mÞ
�����
n¼INT½x cos hþy sin h�

; (9)

where n is the detector location index, m is the projection

angle index, M is the total number of views at which projec-

tions are acquired, and “INT” is used to indicate the nearest

neighbor interpolation. In fact, a typical implementation

does not use an “INT” function, but uses linear interpolation

between two neighboring detector bins. For the purposes of

illustration, we stay with the simple implementation (9).

When the angular sampling is not uniform, it obeys a density

function d(h), which is the number of views per unit angle.

For example, if the sampling interval is 1� for 0 � h < p=4

and 3� for p=4 � h < p, then the density function is

dðhÞ ¼
1 for 0 � h < p=4

1=3 for p=4 � h < p;

(
(10)

and the backprojection (9) can be modified as

bði; jÞ ¼ p
.XM

m¼1

dð1Þ
dðmÞ

 !XM

m¼1

dð1Þ
dðmÞpðn;mÞjn¼INT½xcoshþy sinh�:

(11)

Here, the sampling density function is a function of the angle

index m, instead of the actual angle h.

II.C. Implementation

In fact, a “backproject first, then filter” algorithm is equiv-

alent to an FBP algorithm, which filters the projections first,

then backprojects.4,11 The one-dimensional (1D) frequency-

domain filter in the FBP algorithm is the 1D profile of the 2D

filter in the “backproject first, then filter” algorithm.4,11 There-

fore, an iterative-Landweber-MAP-equivalent FBP-MAP

algorithm can be obtained, and the implementation steps are

Step 1: Perform the 1D Fourier transform of the projec-

tion at each view.

Step 2: Filter the frequency-domain data with a 1D win-

dowed ramp filter

Hkð�tÞ ¼½1� ð1� að1= �tj j þ bhð �tj jÞÞÞk�= 1= �tj jj
þbhð �tj jÞj and Hkð0Þ ¼ 0; (12)

where �t is the frequency with respect to the linear variable

on the 1D detector.

Step 3: Perform a 1D inverse Fourier transform of the fil-

tered data.

Step 4: Perform the backprojection.

When k¼1 and b¼ 0, (12) is the ramp filter in the con-

ventional FBP algorithm.

An alternative way to implement this new FBP algorithm

is to use convolution to replace the Fourier-domain projec-

tion data filtering. The convolution kernel is the inverse Fou-

rier transform of the Fourier-domain filter function Hk(vt)

defined in Eq. (12).

Similarly, two ways can be used to implement the pro-

posed FBP algorithm in the form of “first backprojection,

then filtering.” The filtering can be performed in the Fourier-

domain as multiplication, or can be performed in the spatial

domain as convolution.

II.D. Noise variance weighted FBP algorithm

In order to make the derivation more clearly, we turn off

the Bayesian term in the objective function by setting b¼ 0.

When noise is modeled, Eq. (1) becomes

X̂ ¼ arg min
X
f P� AXk k2

Wg

¼ arg min
X
fðP� AXÞTWðP� AXÞg; (13)

where W is a diagonal square matrix with weighting factors

as the diagonal elements. In principle, a larger weighting

factor is assigned to a less noisy measurement and a smaller

factor for a noisier measurement. For example, the weighting

factors can be chosen as a function of the noise variance of

the corresponding projection. Since an FBP algorithm has a

shift-invariance PRF, we require that the weighting factor

has the same value for all projections in each view. In x-ray

CT imaging, this weighting factor assignment strategy is

reasonable. When the x-rays travel in the direction from

shoulder to shoulder, the projections are noisier than when

the x-rays travel in the direction from the front to the back of

the torso. If an iterative Landweber algorithm is used to

solve (13), following the similar derivation as in Sec. II.A

and replacing ATA by ATWA everywhere, the result of the kth

iteration is given as

XðkÞ ¼ a
Xk�1

n¼0

ðI � aATWAÞn
" #

ATWP

¼ ½I � ðI � aATWAÞk�ðATWAÞ�1ATWP: (14)

FIG. 1. The 2D convolution kernel used in the iterative MAP algorithm to

promote the smoothness of the image.
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TABLE I. Iterative MAP vs FBP-MAP with b¼ 0.1 (i.e., small Bayesian term weighting) using noiseless data.

Iteration index k¼ 2 k¼ 20 k¼ 200

Iterative result

FBP result

Central horizontal profiles

(vertical scale is from 0 to 250)

TABLE II. Iterative MAP vs FBP-MAP with b¼ 0.3 using noiseless data.

Iteration index k¼ 2 k¼ 20 k¼ 200

Iterative result

FBP result

Central horizontal profiles

2173 Gengsheng L. Zeng: An FBP-MAP algorithm with noise model 2173

Medical Physics, Vol. 39, No. 4, April 2012



In this symbolic derivation, we assume that ðATWAÞ�1

¼ A�1W�1ðATÞ�1
exists. Thus, Eq. (14) is simplified as

XðkÞ ¼ ½I � ðI � aATWAÞk�A�1P: (15)

Following the same steps as in Sec. II.C, Eq. (15) can be turned

into an FBP algorithm and the windowed ramp filter is given as

Hkð�tÞ ¼ ½1� ð1� aðwview= �tj jÞÞk� � �tj j
and Hkð0Þ ¼ 0; (16)

where wview is the weighting factor for the projection at a

particular view. The implementation procedure of this noise

variance weighted FBP algorithm is the same to that dis-

cussed in Sec. II.C except that (12) is replaced by Eq. (16).

III. COMPUTER SIMULATION RESULTS

III.A. FBP-MAP

Some computer simulations are provided in this section.

The Shepp-Logan phantom1 was used in computer simulation

studies. A 1D parallel-hole detector was rotated over 180�

TABLE III. Iterative MAP vs FBP-MAP with b¼ 0.1 (i.e., small Bayesian term weighting) using noisy data.

Iteration index k¼ 2 k¼ 20 k¼ 200

One iterative reconstruction

One FBP reconstruction

S/N image from 100 noise realizations

of iterative reconstructions

S/N image from 100 noise realizations

of FBP reconstructions

Central horizontal profiles of the S/N

images (vertical scale is from 0 to 250)
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with 120 views and 128 detector bins on the detector. The

images were reconstructed in a 256� 256 array and the central

128� 128 array was used for display and image comparison

studies. Noiseless data were used for resolution comparison

studies. Poisson noise was added to the projection data in noise

studies, where 100 noise realizations were used to generate the

signal-to-noise (S/N) images. The signal-to-noise ratio is

defined as the mean value over the standard deviation. Ensem-

ble mean and ensemble standard deviation were calculated for

each image pixel with 100 noise realizations.

In all computer simulations, both the iterative MAP

algorithm and the new FBP-MAP algorithm used the same

step-size a¼ 0.5, the same parameter b (¼ 0.1 and 0.3) and

the same iteration indices k¼ 2, 20, and 200, respectively.

The requirement of choosing parameter a is that a= �tj j � 1

in the newly developed FBP-MAP algorithm and

a wview =j�t j � 1 in the newly developed noise variance

weighted FBP algorithm, where wview is a noise weighting

factor. In order to use the same parameter a¼ 0.5, we

scaled the iterative algorithm’s projection/backprojection

operator ATA by 0.00005, that is

Xðkþ1Þ ¼ XðkÞ þ a½0:00005 � ATðP� AXðkÞÞ � bRXðkÞ�:
(17)

TABLE IV. Iterative MAP vs FBP-MAP with b¼ 0.3 using noisy data.

Iteration index k¼ 2 k¼ 20 k¼ 200

One iterative reconstruction

One FBP reconstruction

S/N image from 100 noise realizations

of iterative reconstructions

S/N image from 100 noise

realizations of FBP reconstructions

Central horizontal profiles of the S/N images

(vertical scale is from 0 to 250)
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This value of 0.00005 and the parameter a were selected by

trial-and-error. If the step-size a was chosen to be too large,

the iterative algorithm would diverge and the FBP algorithm

would produce unreasonable images. In Eq. (13), RX(k) was

implemented as a two-dimensional convolution with a con-

volution kernel as shown in Fig. 1.

In the FBP-MAP algorithm, the Bayesian operator R was

a Laplacian, whose convolution kernel is f�0.5, 1, �0.5g.
The discrete Fourier transform of this kernel is h(n), which is

a constant 1 minus a cosine function

hðnÞ ¼ 1� cos n
2p
N

� �
; (18)

where n is the frequency index and N is the projection array

size.

Computer simulation results are shown in Tables I–VI.

Each image is displayed from its minimum image pixel

value (black) to its maximum image pixel value (white). No

post processing of the images was performed. The negative

values in the images were not altered.

TABLE V. Iterative MAP vs FBP-MAP with b¼ 0.3 using nonuniform angular sampling (noisy data).

Iteration index k¼ 2 k¼ 20 k¼ 200

One iterative reconstruction

One FBP reconstruction

S/N image from 100 noise realizations

of iterative reconstructions

S/N image from 100 noise realizations

of FBP reconstructions

Central horizontal profiles of the S/N

images (vertical scale is from 0 to 250)
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Images in Tables I–II used noiseless projections, and they

are used to illustrate the resolution improvement as the index

k gets larger. The profiles are drawn horizontally at the cen-

ter of the images. The images almost converge when

k¼ 200. From the profiles, one can tell that a larger b value

makes the image smoother. With the same index k, the itera-

tive Landweber MAP algorithm and the windowed FBP

algorithm give almost the same resolution.

In Tables III–IV, Poisson noise was added to the projec-

tions. Typical reconstructions are displayed in the rows 2

and 3. As the index k increases, the resolution improves, but

the noise is amplified. Signal-to-noise (S/N) ratio images

were obtained by using 100 noise realizations and are dis-

played in the 4th and 5th rows. In the S/N image each pixel

represents the ratio of the mean value over the standard devi-

ation. As shown by the line profiles drawn horizontally

across at the center of the S/N images, the iterative Land-

weber MAP algorithm and the proposed FBP algorithm have

almost the same noise property for the same index k.

III.B. Nonuniform angular sampling

In Table V, the angular sampling was nonuniform. The

sampling interval was 1� for 0 � h < p=4 and 3� for

p=4 � h < p; the density function is given in Eq. (10). One

can observe many differences between the iterative results

and the FBP results: In early iterations, the results of the iter-

ative MAP algorithm contain 45� directional blurring due to

the nonuniform angular sampling effect. The FBP-MAP

algorithm does not have this artifact.

III.C. Noise weighted FBP

In this section, an example that simulates low-dose trans-

mission x-ray CT is provided. When the object shape is elon-

gated, streaking artifacts are most likely to appear in the

direction of the longest dimension. In order to show the streak-

ing artifacts, the Shepp-Logan phantom was modified and

elongated. First, the projection data p were generated analyti-

cally as line-integrals of the phantom. Second, transmission

data N¼N0e�p were formed with incoming flux N0¼ 8000.

Third, Poisson noise was added to the transmission data N.

Forth, the noisy transmission data (NþPoisson noise) were

transformed to noisy line-integrals to be fed to image recon-

struction algorithms by p¼ ln[N0/(N0e�pþPoisson noise)]. In

the noise weighted FBP algorithm, the noise variance can be

modeled as 1/N. For every projection view, the weighting fac-

tor was chosen as wview¼ (Ncentral/N0)0.2, with Ncentral being

the noisy transmission measurement of the central ray on the

detector. The power 0.2 was selected so that a smallest mean-

square-error (MSE) between the reconstruction and the true

image can be achieved.

An iterative Landweber algorithm (which is the same as

Eq. (2) except that AT is replaced by ATW and b¼ 0) was

implemented to include the view-wise noise model

wview¼ (Ncentral/N0)0.2 and used to reconstruct the image

with the same data. The stopping rule, i.e., the criterion of

selecting parameter k, is that the MSE between the recon-

struction and the true image reaches the minimum. It is clear

that this stopping rule can only be applied to computer simu-

lations, because the true image is not known for any practical

applications. The reconstruction results are shown in Table

VI. It is seen that the weighted FBP algorithm and the

weighted iterative Landweber algorithm give almost the

same reconstruction.

Table VI also shows a reconstruction using the weighted

iterative Landweber algorithm in which the ray-based

(instead of view-based) noise weighting is used and the

weighting function is wray¼ (Nray/N0) without the power of

0.2. This weighting scheme is widely accepted in imaging

community as the accurate weighting method. It seems that

TABLE VI. Computer simulations for low-dose CT

True phantom

Regular

FBP (k¼1)

View-wise noise

weighted FBP (k¼ 64)

Iterative Landweber

with view-wise

noise weighting (k¼ 64)

Iterative Landweber with

ray-wise noise

weighting (k¼ 739)

MSE¼ 0 MSE¼ 3.9 MSE¼ 0.85 MSE¼ 0.91 MSE¼ 1.17
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using the reciprocal of the noise variance as the weighting

factor may not always be optimal and the optimal weighting

strategy still needs further investigation.

IV. CONCLUSIONS

This paper derived an FBP-MAP algorithm that has a

window function with an index k that can emulate the itera-

tive Landweber MAP algorithm of the kth iteration. Com-

puter simulations show that the FBP-MAP algorithm and the

iterative MAP algorithm give very similar images and noise

texture if they have the same index k, same parameter a, and

same parameter b. The most significant advantage of the

FBP-MAP algorithm is its fast computation time; the itera-

tive MAP algorithm is 2k times slower. Another advantage

of the FBP-MAP algorithm is that it has a shift-invariant

point-spread-function (i.e., uniform resolution). On the other

hand, the iterative algorithm has a nonuniform resolution

convergent rate.

When the sampling is nonuniform, the new FBP algo-

rithm is able to compensate for it using a normalization fac-

tor. While nonuniform sampling is not a main concern in an

iterative algorithm, in early iterations, the nonuniform sam-

pling may introduce some directional nonuniformity

artifacts.

To our knowledge, noise modeling has never been con-

sidered in an FBP algorithm before. This paper first incor-

porates view-based noise model in the FBP algorithm. This

noise model may find applications in low-dose x-ray CT

imaging.

The methods introduced in this paper can be extended to

the cone-beam imaging geometries. For the circular-orbit

cone-beam imaging, Feldkemp’s FBP algorithm12 can be

modified by window functions. For the spiral-orbit cone-

beam imaging, Katsevich’s FBP algorithm13 can be modified

by window functions. This paper is only an initial investiga-

tion, many problems are yet to be solved, such as ray-based

projection noise modeling, nonideal projection geometry,

nonstationary resolution effects, very sparse data sampling, as

well as a general Bayesian term that cannot be expressed as a

convolution or a quadratic form. All these challenges will be

met in our future investigations.
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