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Abstract During bacterial chemotaxis, a cell acquires information about its environment

by sampling changes in the local concentration of a chemoattractant, and then uses that in-

formation to bias its motion relative to the source of the chemoattractant. The trajectory of a

chemotaxing bacteria is thus a spatial manifestation of the information gathered by the cell.

Here we show that a recently developed approach for computing spatial information using

Fourier coefficient probabilities, the k-space information (kSI), can be used to quantify the

information in such trajectories. The kSI is shown to capture expected responses to gradients

of a chemoattractant. We then extend the k-space approach by developing an experimental

probability distribution (EPD) that is computed from chemotactic trajectories collected

under a reference condition. The EPD accounts for connectivity and other constraints that

the nature of the trajectories imposes on the k-space computation. The EPD is used to

compute the spatial information from any trajectory of interest, relative to the reference

condition. The EPD-based spatial information also captures the expected responses to

gradients of a chemoattractant, although the results differ in significant ways from the

original kSI computation. In addition, the entropy calculated from the EPD provides a useful

measure of trajectory space. The methods developed are highly general, and can be applied

to a wide range of other trajectory types as well as non-trajectory data.
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1 Introduction

Bacterial chemotaxis is a simple example of an organism acquiring information from

the environment and making purposeful use of that information [1]. In this system, the

bacterium acts as an “observer” that gathers information, such as the local concentration of

a chemoattractant, and uses the information to modify its swimming trajectory. In particular,

the movement of a bacterium in a gradient of a chemoattractant is biased relative to

spatial differences in concentration. Bacterial swimming is characterized by two types of

behaviors, runs in which swimming is an uninterrupted forward movement and tumbles

in which the bacteria stops and turns. The biased movement along a gradient is achieved

by changing the balance of runs and tumbles. By increasing the frequency of tumbles

under relatively unfavorable conditions and decreasing the frequency under favorable

conditions, a movement toward more favorable conditions is produced. Chemotaxis in

E. coli has been especially well studied, and the biochemical pathways that connect

sensing of the chemoattractant to the biased motion are well understood [2, 3]. Further, the

physical parameters of the E. coli swimming have been well characterized [1, 3]. Together

with advances in computational capabilities, this has led to the development of several

computational models that reproduce experimental measurements of bacterial swimming

trajectories [3, 4].

Chemotactic trajectories, records of the path taken by a cell over some period of time,

have been extensively studied. For bacterial chemotaxis, the path of motion has been shown

to be well modeled as a biased diffusion [5], although one recent study suggests that, at least

in some instances, chemotaxis is better characterized as a fractional Brownian motion [6].

Information theoretic approaches have been used to quantify trajectories of chemotaxing

Dictyostelium cells [7, 8]. In that case, the trajectories are typically reduced to a set of angles

that reflect the direction a cell is moving at different points in time, from which a measure

of information is computed. The relationship of the angle distributions to the orientation of

a gradient can then be quantified to provide some insight into how spatial information in the

gradient is converted to information in the movement of the cells. However, this angle-based

approach to quantifying the information in a trajectory has the potential to produce some

counter-intuitive results. As an extreme example, a cell performing a random walk would

have the same angle entropy as one swimming in a perfect circle. Here we present a new

approach for quantifying chemotactic trajectories that overcomes this limitation and has a

number of useful properties, and then test it on simulated trajectories from chemotaxing

bacteria.

We define information as the reduction of uncertainty. The Shannon formalism for

information theory considers information transfer between a sender and a receiver. From

the perspective of the receiver, there is some uncertainty before a message (information)

is received and some smaller uncertainty after it is received [9]. For a cell moving in a

uniform environment, there is at any given time a high degree uncertainty of where it is

and in what direction it is moving, relative to some point of reference. However, if we

introduce a chemoattractant, the movement of the cell becomes biased, and there is less

uncertainty about the cell’s movements. It will be more likely be close to the source of the

chemoattractant than far away, and more likely to be swimming toward the chemoattractant

than in other directions. This reduction of uncertainty is a reflection of the information

that the cell gathered from the chemoattractant. We can also look at trajectories in terms

of how frequently they occur. For example, for a bacterium that starts swimming in the
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center of a shallow Petri dish, in the absence of a chemoattractant, there is some universe

of possible trajectories it might take over the next 5 min. Out of all of these trajectories,

the bacterium will usually swim and tumble in a path that is not biased in any particular

direction. Recalling in mind the limitations discussed above, if one measures the angle at

which it is swimming at random points in time—these angles will be close to uniformly

distributed between 0
◦

and 360
◦
. The trajectories that meet this criterion are for our purposes

thereby equivalent, and form a very large subset of all possible trajectories. Any one of these

trajectories would be considered common, and therefore have low information. In contrast,

on a very (very) rare occasion, a bacterium might start at the center of a test tube and swim

straight toward the edge of the dish, without turning. There are a relatively small number of

unique ways to form this path, and this constitutes a small subset of all possible trajectories.

Any one of these trajectories would be considered uncommon, and would therefore have

high information. Thus common trajectories reflect a high degree of uncertainty, and rare

trajectories reflect less uncertainty.

Fig. 1 Schematic illustrating how information is computed in k-space using the Parseval’s-based probability

distribution (adapted from [11]). Starting with a data object f(x) with N elements, here using an image of a

duck as an example, a probability distribution is computed using Parseval’s theorem (the PPD). The PPD is

Gaussian, and gives the probability distribution of the Fourier coefficients for all possible images of the same

size and histogram as f(x). An entropy (HkS) is then computed from this distribution. The data object is then

Fourier transformed to F(x), and an information (IkS) based on the Fourier coefficients in F(x) is computed

using the PPD. The kSIP is then defined as the difference between the IkS and the HkS
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We have recently developed a new formalism to compute the information in an arbitrary

data object, in which the data object is recast via a Fourier transform and the likelihoods

of the Fourier coefficients from this transform are used to compute a measure of how

likely or unlikely it is that the object would have occurred randomly (Fig. 1) [10]. The

k-space information (kSI) metric is a general way to compute a value for the information

in a data object produced under any particular constraints of interest, and the kSI is small

for a common object and large for a rare object. In the case where the data object is a

spatially defined collection of values, such as a bacterial trajectory, the kSI is a measure of

the spatial information. The original implementation of the kSI metric was based on using

Parseval’s theorem to obtain a probability distribution of the Fourier coefficients in some

data object (e.g., an image). This is the least constrained approach, and it depends on only

the dimensions of the data object and the composition of elements in the object. Thus, for

an image, the Parseval’s distribution depends on the size and histogram. We use an image

format in which the histogram is identical for all images of a certain size, and in this case

the Parseval’s distribution accounts for all possible images of that size. We here refer to this

Parseval’s-based probability distribution as the PPD.

Here we begin by applying the kSI formalism to analyzing the information in simulated

chemotactic trajectories, and show that the k-space information can be used to quantify

information that is reflected in the trajectories. We then proceed to extend the k-space

formalism to account for physical constraints that are imposed by the system. For bacterial

trajectories, there are a number of constraints that will be reflected in the probability

distributions. For example, the points in a bacterial trajectory must be connected; there

are no trajectories in which a bacterium hops between disconnected points in a field. These

constraints are not accounted for in the PPD, which could influence the use of the kSI in

ways that are not understood. We address this limitation by developing an experimental

probability distribution (EPD) that is system-specific. The idea is to collect Fourier

coefficients from a large number of chemotactic trajectories obtained under a reference

condition, and use these coefficients to estimate a probability distribution for the Fourier

coefficients of all possible trajectories subject to the constraints of the reference condition.

The EPD is then used to compute an information value essentially as described above. This

information is a measure of how rare or how common a particular trajectory is under some

set of constraints, relative to trajectories in the reference state. To distinguish kSI values

computed with the different distributions, we use the subscripts E for experimental and P

for Parseval’s.

Chemotaxis was simulated using a program developed by Bray and coworkers [3, 6],

where the underlying biochemistry is based on the well-established BCT program [3].

Specifically, we use the version of the program described Zonia and Bray [6]. The Zonia and

Bray Program (ZBP) simulates a bacterium swimming in a two-dimensional arena, where

the concentration and distribution of a chemoattractant can be controlled. Here aspartic

acid was used as the chemoattractant and the gradients were exponential. The bacteria were

wild-type, although the program allows extensive control over the genetic properties and

physical behavior of the bacterium. The output from the program is a real-time graphical

display of the current position of a bacterium as a function of time and a step-wise list of xy

coordinates at 0.1 μm increments for the trajectory. For our purposes, trajectories are then

converted in graphical representations of the entire path followed by a bacterium, trajectory

plots, which are used for the information analysis. The behavior of bacteria in this model

has been shown to agree well with experiments [3, 6].
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2 Methods

2.1 Simulation of bacterial chemotaxis

We use the ZBP program developed by Bray and coworkers to simulate chemotaxis [6].

The C++ source code for the program was generously provided by Dr. Dennis Bray. Some

modifications to the code as received where made. To shorten the simulation duration, the

time step for the graphical display was reduced from 25 ms to 1 ms. Several tests were

performed to show that the shorter time step only changed the speed of the real-time

display, but otherwise produced trajectories identical to the longer time step. Further, the

contrail size was reduced to 10. An infectivity value of 35 was used, except where indicated.

This effectively set the chemoattractant concentration range over which the bacterium was

responsive to 1×10
−9

M to 5×10
−7

M. The original program used a tumble angle of

+/−72
◦

centered at zero. This was modified to an angle centered at +/−68
◦

with a standard

deviation of 36
◦
, based on the experimental values [11, 12]. The angle resolution was also

reduced from 10
◦

to 1
◦
. Simulations were run on Intel-based Macintosh computers running

OSX version 10.5 or higher.

2.2 Producing trajectory plots

Trajectories were converted to three-dimensional binary surfaces for the information

computations. The ZBP program outputs trajectories in steps of 0.1 μm. However, to

simplify the computation, we plotted this data into a 400 × 800 μm arena divided into

1 x 1 μm pixels in the plane. The arena also has an 8-bit third dimension (z) to account for

trajectories crossing the same pixel multiple times. The voxels within the arena are binary,

and thus have value of 0 or 1. For the kMax arena, the z = 0 voxels values are initially set

to 1 and all other voxels are set to 0. As a bacterium swims through the arena it visits

different xy positions, and each time it crosses the boundary between two xy pixels, the

z value for the xy position being entered is incremented. Thus, the more times a bacterium

crosses the same xy position, the larger the z value for that position. This representation

has several important features. First, it accounts for bacteria revisiting the same areas of

the arena many times. Second, the image histograms of all possible trajectories (for a given

arena size) are identical. There are 400 × 800 voxels with the value 1, and 400 × 800 ×
255 voxels with the value 0. This holds for all trajectories, until any given point within the

arena has been visited more than 255 times. In a 100,000 step simulation, it was very rare

for a position to be visited more than 20 times, and thus the z limit of the arena was not

an issue. Trajectory plots in the kMin arena were created in the same way, except that the

empty arena was first populated (value set to 1) at random z values (one z value for each xy

position). The first time a position was visited in a kMin arena, the z = 1 voxel was set to 1,

and then incremented as above.

2.3 Computing the spatial information

The kSIP is computed from a trajectory plot. In this approach, we use Parseval’s theorem

to compute a probability distribution for all possible images of a given size (when using the



370 J.H. Hoh et al.

binary surface representation) [11]. Parseval’s theorem equates the sum of the square of a

function with the sum of the square of the Fourier transform for the function:

∑

x,y
f 2

xy = C
∑

m.n
F 2

mn = CN
〈
F 2

〉 = 2CNσ 2

a (1)

Here, f is a function of x and y, and F is the corresponding Fourier transform with the indices

m and n. C is a constant, N is the number of elements in f, and σ is the standard deviation

of the distribution of the Fourier coefficients. Treating the coefficients as independent

identically distributed random variables [13] and invoking the central limit theorem, we

obtain a Gaussian probability distribution. The information for an image is then computed

using the PPD as outlined in Fig. 1.

Fig. 2 Schematic illustrating the new approach described here for computing the k-space information

for chemotactic trajectories using experimental probability distributions. In this approach, the probability

distribution is established using the Fourier coefficients from a number of chemotactic trajectories collected

under some reference condition. These distributions (the EPDs), for the real and imaginary parts of the

coefficients, are used in place of the PPD to compute a kSIE. Note that the EPDs shown are schematic, but

they do not have a simple analytical shape
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To compute the kSIE for a trajectory plot, we typically begin with 1,216 trajectories

computed under a reference condition. These trajectories are used to build a Fourier

coefficient probability distribution from which a kSIE is computed. We use a uniform

arena of 10
−9

M aspartic acid as the point of reference, and trajectory lengths of 100,000

steps (10,000 μm) (unless otherwise specified). The bacteria are wild-type. The EPDs are

constructed by first converting the reference trajectories to trajectory plots. The number of

trajectories was selected to balance computational time and precision, which is addressed

in more detail below. Fourier transforms of these trajectory plots produce ∼10
11

Fourier

coefficients. The real and imaginary parts of these coefficients are each binned and

normalized to form an EPD for each. The kSIE is then computed in a similar manner to

the kSIP, but using the two EPDs (Fig. 2).

3 Results and discussion

3.1 Rendering the trajectory plot: kMax versus kMin arenas

Conversion of the trajectory coordinates to a trajectory plot requires making some choices

about the form of the plot. The most direct approach is to start with an empty image of the

arena, and then increment the z-value at each xy position each time the bacterium visits that

coordinate (Fig. 3). This produces a familiar representation where the path of the bacterium

is seen against a uniform (typically white) background. Because the kSIP for the empty

arena is effectively the maximum possible, these are called kMax arenas. Alternatively, an

arena can first be populated by a random value at each xy position. The kSIP for an arena

of this type is in practice almost always ∼0, and thus these are called kMin arenas. The

trajectory is then introduced into either arena by setting the z value of an xy coordinate to

1 the first time it is visited, and subsequently incrementing each time the bacterium crosses

that position. While these two arena types start from opposite limits, they converge as the

trajectories become long enough that each point in the arena has been visited at least once.

While these two types of arenas produce similar results, we have elected to use the kMax

arenas (unless otherwise specified).

Fig. 3 Trajectory plots for a 10,000-step-long simulation of a wild-type bacterium chemotaxing in an

exponential gradient of aspartic acid from 1×10
−9

M at the edges to 5×10
−7

M at the center (red dashed
line). The boundaries are periodic such that a bacterium that exits on the top side of the arena re-enters on the

bottom side, or one that exits on the left re-enters on the right. The simulation was equilibrated for 50,000

steps prior to collecting the coordinates used, as described below. The same trajectory is shown plotted in a

kMax arena (left) and a kMin arena (right). The brightness and contrast in the images was adjusted to clearly

show the paths, thus the images do not provide an accurate representation of the z axis of the images
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3.2 Equilibration length

The ZBP program is a complex simulation of chemotaxis that includes a number proteins

and biochemical reactions, for which there are concentrations, kinetic parameters, and other

variables. The simulations do not start with these parameters optimized for any given set of

conditions, and there is thus an equilibration time. In most cases, it is desirable to remove

the unequilibrated parts of the trajectories to remove influences of initial parameters.

To characterize the equilibration dynamics, changes in the spatial information of short

trajectory segments obtained from the first 50,000 steps of a simulation were examined. For

these tests, 50,000 step trajectories were computed for uniform aspartic acid concentrations

of 1 × 10
−6

M, 1 × 10
−7

M, 1 × 10
−8

M and 1 × 10
−9

M (with a random starting point

and random starting angle). The trajectories were then subdivided into a set of 2,000 step

segments, and the kSIP for the trajectory plot of each of these segments was computed

(Fig. 4). The PPD is sufficient here because we are simply seeking to determine when the

equilibration is achieved, and using the EPD is unduly laborious. The results from this

analysis show that bacteria take the longest to equilibrate in the highest concentrations of

aspartate, and the shortest time at the two lowest concentrations examined. For the 1 × 10
−3

M case, the equilibration is complete for the trajectory at ∼24,000 steps. For the lower

concentrations, the equilibration appears to be complete by ∼10,000 steps. Thus, to ensure

that the starting parameters do not influence the trajectories, the first 50,000 steps were

discarded. So to produce the 100,000-step trajectories used in the present work, a simulation

was run to 150,000 steps and the trajectory plot was generated from steps 50,001 to 100,000.

3.3 Experimental probability distributions

To account for deviations from the PPD that arise from constraints in a system, an

experimental probability distribution was constructed by producing a large number of

randomly generated bacterial trajectories under conditions that serve as a point of reference.

The EPD has a form quite different from the PPD (Fig. 5). In broad strokes, very small

and very large coefficient values are more common in the EPD. The central part of the

EPD distributions of the real and imaginary coefficients are essentially identical, but further

toward the edges of the distribution there are significant differences (Fig. 5c, d). The EPD

coefficients at the largest values are >700 SD from the mean of PPD, and arise from

Fig. 4 Equilibration dynamics

of simulations of a wild-type

bacterium in uniform aspartic

acid concentrations. The spatial

information in trajectory plots

from 2,000 step segments

along a 50,000-step trajectory

are computed and plotted.

Each data point is an average

of 100 trajectories



Spatial information analysis of chemotactic trajectories 373

Fig. 5 Example of an EPD for bacterial chemotaxis and comparison with the PPD. The Fourier coefficients

from 1,216 trajectory plots were histogrammed and normalized. The real and imaginary parts are treated

independently. The probability space is quite large, and 20,000 bins are used in order to provide sufficient

resolution. Thus, only small sections of the distributions are shown. The PPD is computed as described earlier

[11]. a The central part of the PPD for an 800 × 400 pixel 8-bit image. This distribution is Gaussian with

a standard deviation of 4.86 × 10
−6

. The distributions of the real and imaginary parts of the coefficient are

indistinguishable, and only the real coefficients are shown (blue circles). b The central part of the EPD for

100,000 step trajectories of a wild-type bacterium in a 800 × 400 μm arena with a uniform concentration

of 1 × 10
−9

M aspartic acid. Here again the distributions of the real and imaginary parts of the coefficient

are indistinguishable. c High-resolution view of the left side of the EPD, illustrating how non-uniform the

distribution is, and showing differences between the distributions of the real (blue circles) and imaginary

(red squares) parts. d High-resolution view of the right side of the EPD, near the limit of the distribution.

Notably, these coefficients are ∼700 standard deviations from the mean. Symbols are as in c

the white background in the kMax arena. This is because while coefficients that derive

from white sections of the arena are common in the EPD, they are exceptionally rare in

the PPD.

The number of trajectories used to compute the EPD was selected to balance adequate

sampling with computational resources. To establish adequate sampling, the entropy from

the probability distribution was computed as a function of the number of trajectories in

the EPD (Fig. 6). Somewhat surprisingly, even for individual trajectories, the coefficient

of variance for the trajectory plot entropy is only 0.14%. At 1,216 trajectories (∼1×10
11

coefficients) the entropy of variance falls to 0.004% (∼35 kbits). With the resources at our

disposal, an EPD based on 1,216 trajectories takes about 2 CPU days to compute, which in-

cludes computing the trajectories, converting the trajectories into trajectory plots, and com-

puting the EPD. While this process could likely be significantly shortened by optimizing the
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Fig. 6 Convergence of experimental probability distributions. The entropy is computed from the probability

distributions by summing -PLog2P for each bin in the distribution, and averaging this value for the number

of trajectories indicated. The downward trend in the mean arises from the padding of zero values with 1, the

effect of which makes a significant contribution to an EPD from a single trajectory but becomes negligible at

larger numbers of trajectories. For a single trajectory, the padding contributes an offset of ∼500 kbits, while

for 1,216 trajectories the padding contributes ∼20 bits

programs used, it at present represents an acceptable balance of precision and time for our

purposes.

It should also be be noted that the coefficient distributions are padded by adding a 1 to

each bin prior to normalization. This is needed to prevent getting undefined values in the

information calculation (from zeros in the EPD). This padding has a negligible effect on

the distribution (20,000 counts are added to 1 × 10
11), and contributes only 20 bits to the

entropy. The padding does mean that the information values computed should be considered

upper bounds, since no matter how rare a coefficient, it will never have a probability

< 1 × 10
−11

.

Fig. 7 Quantification of

trajectory plot entropy as a

function of trajectory length.

EPDs based on thousands of

trajectories at each trajectory

length are plotted as a function of

trajectory length. The trajectories

were from bacteria in a uniform

arena of 1 × 10
−9

M aspartate.

From 300 steps to 100,000 steps,

the trajectory plot entropy

increases logarithmically

(R
2 = 0.9998). Above 100,000

steps, the field size begins to

limit the number of possible

trajectories
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3.4 Quantifying trajectory space

In the k-space formalism, the entropy computed from the Parseval’s distribution provides

a measure of the number of ways the system can be arranged. This can be extended to the

EPD, thus providing a measure of how many unique trajectories are possible under some

given constraints. As noted above, this entropy is computed by simply summing -PLog2P

for each bin in the distribution.

To illustrate how the trajectory plot entropy depends on constraints imposed, we

examined the trajectory plot entropy as a function of trajectory length. In this case, the

longer the trajectory the larger the number of different trajectories that are possible. Thus

the trajectory entropy should increase with trajectory length, which it does (Fig. 7).

We note that the entropy scales with the size of the image [11], but the entropy density

is scale-invariant. It is also true for the k-space information in general, and chemotactic

trajectories in particular, that the total information depends strongly on the size of the

system. However, when properly normalized, the information density is constant. For the

simulated chemotactic trajectories, this entails setting the trajectory length proportional to

the arena size, and subsequently normalizing the information to the area of the arena.

3.5 Spatial information in trajectory plots depends on steepness of the gradient

Bacterial motion is highly sensitive to the steepness of the gradient in which they are

swimming [14]. The steeper the gradient the more biased their movement toward higher

concentration. From the information theoretic perspective, one would expect a gradient to

bias the movement of a bacterium such that an otherwise rare (high information) trajectory is

more common. The steeper the gradient, the more frequent the high-information trajectories

become. An examination of the average trajectory information as a function of gradient

steepness shows that this is indeed the case (Fig. 8).

Fig. 8 Spatial information increases with the steepness of an exponential gradient. Chemotaxis was

simulated in exponential gradients that start at 1 × 10
−9

M aspartate and end at concentrations between

1 × 10
−9

and 1 × 10
−6

M (in the center of the arena). The greater the end (maximum) concentration,

the steeper the gradient. The information in the trajectories increased at increasingly steep gradients up

to 5 × 10
−7

M, which is the limit of the responsiveness with the infectivity value used (see Materials and

methods). Beyond this, the receptors on the bacterium become increasingly saturated, i.e., they are saturated

over an increasingly large fraction of the arena, and the information in the trajectory decreases
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Fig. 9 Variability in trajectory plot information at three different gradients (1 × 10
−9

M at the bottom). a

Distribution of trajectory plot kSIE values. b Distribution of trajectory plot kSIP values

A closer examination of the distribution of the individual trajectories for any given

gradient steepness shows a broad and long-tailed distribution (Fig. 9). In a set of 2,000

trajectories collected in a 1 × 10
−9

M uniform arena, a small number even exceed the

mean of trajectories in the 5 × 10
−7

M gradient. Similarly, for a set of 2,000 trajectories

collected in a 1 × 10
−7

M gradient, a small number of trajectories overlap with the mean

of those from the uniform arena. This type of long-tailed distribution of the trajectories is

not entirely surprising, since the dynamics of flagellar activity has been shown to have a

long-tailed distribution [15, 16]. Biologically, this type of behavior allows a bacterium to

sometimes act in a much more biased way than if its movements were Gaussian, suggesting

that there may be a benefit to occasionally making a large wager.

The distribution of the kSIP values are all positive, and because by definition IkS ≤HkS
the kSIP can never be negative. In contrast, the kSIE is computed relative to some point of

reference and negative values relative to that point of reference are possible (except where

Fig. 10 Comparison of the information in chemotactic trajectories computed using the PPD and the EPD.

Graphs are based on 2,000 trajectories that were computed in an exponential gradient of 1 × 10
−9

M to

5 × 10
−7

M aspartate. a The kSIP and kSIE values show a significant correlation (R
2
=0.99). Yet it is clear

that there is significant scatter. b The differences between the two approaches are seen more clearly in a plot

of the EPD/PPD ratio. This should be ∼0.1 for perfect correlation, but varies from ∼0.03 to >0.2
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Fig. 11 Comparison of sorting of selected individual trajectories from the data used in Fig. 10 based on kSIP
and kSIE. The individual trajectories are sorted based on their kSIP values. When doing so, one finds that the

kSIE values are not in the same order
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the point of reference is Parseval’s distribution). This property of the EPD and kSIE is

discussed further below where we discuss moving the point of reference.

The analysis of chemotaxis in gradients produces qualitatively similar results using either

the PPD or the EPD. Indeed it appears that the only difference might be an offset and

scaling. However, a further examination shows that the PPD- and EPD-based results have

significant differences. First, a direct comparison of the PPD and EPD values for a collection

of individual trajectory plots shows that, while there is a significant correlation between the

two, it is far from unity (Fig. 10). The magnitude of the differences are more easily seen in

the distribution of EPD/PPD ratios, which can vary up to a factor of ∼6.

The differences between information values computed with the PPD and EPD can also

be seen when a collection of individual trajectory plots are sorted by information (Fig. 11).

The two probability distributions produce clearly different sort orders.

3.6 Dependence of trajectory information on trajectory length

The relationship between spatial information and trajectory length was examined (Fig. 12).

Taking bacteria in a 1 × 10
−9

to 5 × 10
−7

M exponential gradient as an example, in a kmax

arena the information starts high and becomes smaller as the trajectory becomes longer.

This is because the uniform background of the arena initially contributes a large amount

to the information, but as an increasing fraction of the arena is visited, that contribution

decreases. The converse is true for the kmin arena, where the background information is ∼0

and the trajectory adds information. The information from the two arena types converge as

the trajectories approach the limit where every point in the arena has been visited at least

once.

3.7 The EPD and arbitrary points of reference

One useful property of the EPD is that information can be calculated from arbitrary points

of reference. In the above examples a uniform arena of 1 × 10
−9

M aspartate was used as

the point of reference, but one could just as well have used any condition, such a gradient

of aspartate, to serve as a point of reference. To illustrate this point, EPDs were produced

for bacteria in exponential gradients starting and 1 × 10
−9

M and ending at 1 × 10
−9

M,

Fig. 12 Trajectory length

dependence of the spatial

information for a bacterium in a

1 × 10
−9

to 5 × 10
−7

M

exponential gradient of aspartic

acid. The kMin and kMax arenas

provide opposite points of

reference
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Fig. 13 Effect of changing the

point of reference on

gradient-dependent information

in chemotaxis. The same data as

in Fig. 8 was used with EPDs

computed at 1 × 10
−9

M,

5 × 10
−8

, 1 × 10
−7

M or

3 × 10
−7

M. The 1 × 10
−9

M

gradient reproduces the data from

above (Fig. 8), and is included

for the sake of comparison

1 × 10
−7

M or 3 × 10
−7

M (Fig. 13). Here the information for trajectories from conditions

that are the same as those from which the EPD is computed should be 0. Thus, a trajectory

from a gradient of 1 × 10
−9

M to 1 × 10
−7

M would have ∼0 information if the EPD was

computed from those conditions. In this case, trajectories that are from less steep gradients

actually have a negative information.

Negative information is something that Shannon eliminated in his initial postulates for

quantifying information [10], but this is because he effectively used one of the limits as

the point of reference. Here, because we can move the point of reference, negative values

become possible. One way to rationalize this is to first consider that there is some unbiased

probability distribution for all possible chemotactic trajectories (which we estimate using

the uniform 1 × 10
−9

M aspartate arena). An EPD such as the one from 1 × 10
−9

M to

1 × 10
−7

M trajectories is constructed from a biased subset of trajectories. Thus, positive

information means that the trajectory is rare relative to the unbiased probability distribution

and rare relative to biased one. A negative information, on the other hand, means that the

trajectory is common in the unbiased distribution of all trajectories, but rare in the biased

distribution.

4 Conclusions

Living organisms commonly respond to changes in their environment by altering the

direction of motion, and the path an organism takes can be viewed as a spatial manifestation

of information it has gathered from the environment. Bacterial chemotaxis is one of the most

well-studied examples of such a process, and the swimming trajectories of chemotaxing

bacteria in response to a variety of stimuli have been extensively studied [1]. Bacterial

chemotaxis is typically quantified as a biased diffusion, where the net rate of movement

toward the source of a chemoattractant is used as a figure of merit. However, this assumes

that the bias in a trajectory produces a net directional movement over time, and usually

involves pre-judging the direction of movement. From an informational point of view, the

issue is not: how quickly does a bacterium reach some particular position, or even how

quickly does it move in any direction. The question is: how biased is the movement of a
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cell in the presence versus the absence of the external signal? A more general method for

quantifying bias in movement has been described for chemotaxing Dictyostelium, where

the distribution of pointing angles for a trajectory can be used to compute an information

entropy [7, 8]. This, however, leaves open the possibility of some results that do not make

any sense. For example, the angle-based information entropy for a perfect circle is identical

to that for a random walk.

In the present work, we developed a new approach to computing the information in

chemotactic trajectories that overcomes these limitations and has broad utility for a range

of data that takes the form of a trajectory or path. We began by showing that the original

k-space formalism based on Parseval’s distribution [11] can be used to quantify information

in graphical representations of the trajectories of chemotaxing bacteria. In particular,

responses to gradients of aspartic acid can be measured. However, the Parseval’s based

probability distribution does not account for physical constraints on the trajectory such as

the requirement of connectivity between points along the path. To address this issue, we

extended the k-space formalism and showed that a well-converged experimental probability

distribution for the Fourier coefficients from a chemotactic trajectory can be computed with

relatively modest effort. This EPD can then be used to compute a measure of the spatial

information for the information represented in trajectories of a chemotaxing bacterium in a

manner that accounts for any constraint that biases a trajectory. The EPD can be computed

for any reference state desirable, and the information for trajectories computed is relative to

that state. The EPD also provides a measure of total trajectory space available. This novel

aspect of the EPD should be applicable to a wide range of problems beyond trajectories,

such as quantifying conformational space for polymers.

Another important point is that the spatial information computed here is agnostic with

respect to the source of the chemoattractant; it reflects only the extent to which a trajectory is

biased away from common trajectories. This is unlike measures that depend on knowing the

position of sources or sinks of chemoattractants or some point toward which movement is

occurring [4, 17]. The distinction here is that the question of how much information is in the

trajectory is, strictly speaking, separate from what might be useful or correct information.

Further, the k-space information metric is easily and directly applied to situations where

there are multiple gradients that interact in complicated ways. A simple progress variable

such as biased diffusion is not useful in those types of settings.

We also showed that information values calculated based on Parseval’s distribution

and the experimental probability distributions have a high degree of covariance, but that

they differ. It is likely that the PPD will be an adequate approximation for many types of

problems, while the EPD will be required as the system becomes increasingly constrained.

Finally, we note that the methods developed here are quite general, and, like the PPD, the

EPD can be applied to any data object for which a Fourier transform can be computed. With

respect to trajectory analysis, it would appear that a wide range of trajectory types, ranging

from learning in mice [18] to neuronal pathfinding [19] and migration patterns of whales

[20], could benefit from the information-based analysis presented here.

Acknowledgements The authors are indebted to Dr. Dennis Bray for providing the chemotaxis simulation

source code, as well as important and helpful comments on the code and chemotaxis in general. We also

thank Ian Whitford for assistance with the preliminary computations of chemotaxis. A special thanks is due

to Dr. Thomas Woolf who provided interesting and helpful discussions throughout the course of the work

and comments on the manuscript.



Spatial information analysis of chemotactic trajectories 381

References

1. Berg, H.C.: E. coli in Motion. Springer, New York (2004)

2. Falke, J.J., Bass, R.B., Butler, S.L., Chervitz, S.A., Danielson, M.A.: The two-component signaling

pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and

adaptation enzymes. Annu. Rev. Cell Dev. Biol. 13, 457–512 (1997)

3. Bray, D., Levin, M.D., Lipkow, K.: The chemotactic behavior of computer-based surrogate bacteria.

Curr. Biol. 17, 12–19 (2007)

4. Vladimirov, N., Lovdok, L., Lebiedz, D., Sourjik, V.: Dependence of bacterial chemotaxis on gradient

shape and adaptation rate. PLoS Comput. Biol. 4, e1000242 (2008)

5. Alt, W.: Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol.

9, 147–177 (1980)

6. Zonia, L., Bray, D.: Swimming patterns and dynamics of simulated Escherichia coli bacteria. J. R. Soc.

Interface 6(4), 1035–1046 (2009). doi:10.1098/rsif.2008.0397

7. Andrews, B.W., Iglesias, P.A.: An information-theoretic characterization of the optimal gradient sensing

response of cells. PLoS Comput. Biol. 3, e153 (2007)

8. Fuller, D., Chen, W., Adler, M., Groisman, A., Levine, H., Rappel, W.-J., Loomis, W.F.: External and

internal constraints on eukaryotic chemotaxis. Proc. Natl. Acad. Sci. USA 107, 9656–9659 (2010)

9. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

10. Heinz, W.F., Werbin, J.L., Lattman, E., Hoh, J.H.: Computing spatial information from Fourier

coefficient distributions. J. Membr. Biol. 241, 59–68 (2011)

11. Berg, H.C., Brown, D.A.: Chemotaxis in Escherichia coli analysed by three-dimensional tracking.

Nature 239, 500–504 (1972)

12. Berg, H.C., Brown, D.A.: Chemotaxis in Escherichia coli analyzed by three-dimensional tracking.

Antibiot. Chemother. 19, 55–78 (1974)

13. Freedman, D., Lane, D.: The empirical distribution of Fourier coefficients. Ann. Stat. 8, 1244–1251

(1980)

14. Macnab, R.M., Koshland, D.E.J.: The gradient-sensing mechanism in bacterial chemotaxis. Proc. Natl.

Acad. Sci. USA 69, 2509–2512 (1972)

15. Korobkova, E., Emonet, T., Vilar, J.M., Shimizu, T.S., Cluzel, P.: From molecular noise to behavioural

variability in a single bacterium. Nature 428, 574–578 (2004)

16. Emonet, T., Cluzel, P.: Relationship between cellular response and behavioral variability in bacterial

chemotaxis. Proc. Natl. Acad. Sci. USA 105, 3304–3309 (2008)

17. Vergassola, M., Villermaux, E., Shraiman, B.I.: ‘Infotaxis’ as a strategy for searching without gradients.

Nature 445, 406–409 (2007)

18. Spink, A.J., Tegelenbosch, R.A., Buma, M.O., Noldus, L.P.: The ethovision video tracking system—a

tool for behavioral phenotyping of transgenic mice. Physiol. Behav. 73, 731–744 (2001)

19. Raper, J.A., Bastiani, M., Goodman, C.S.: Pathfinding by neuronal growth cones in grasshopper em-

bryos. I. Divergent choices made by the growth cones of sibling neurons. J. Neurosci. 3, 20–30 (1983)

20. Laidre, K.L., Heide-Jorgensen, M.P., Logsdon, M.L., Hobbs, R.C., Dietz, R., VanBlaricom, G.R.: Fractal

analysis of narwhal space use patterns. Zoology (Jena) 107, 3–11 (2004)

http://dx.doi.org/10.1098/rsif.2008.0397

	Spatial information analysis of chemotactic trajectories
	Abstract
	Introduction
	Methods
	Simulation of bacterial chemotaxis
	Producing trajectory plots
	Computing the spatial information

	Results and discussion
	Rendering the trajectory plot: kMax versus kMin arenas
	Equilibration length
	Experimental probability distributions
	Quantifying trajectory space
	Spatial information in trajectory plots depends on steepness of the gradient
	Dependence of trajectory information on trajectory length
	The EPD and arbitrary points of reference

	Conclusions
	References



