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Abstract As brain ventricles lose their ability to regulate the cerebrospinal fluid (CSF)

pressure, serious brain conditions collectively named hydrocephalus can appear. By mod-

elling ventricular dynamics with the laws of physics, dynamical instabilities are evidenced,

caused by either CSF transport dysregulations or abnormal properties of the elasticity of

the ependyma. We show that these instabilities would lead, in most cases, to dilation of

the ventricles, establishing a close connection to hydrocephalus, or in some other cases

to a ventricular contraction as observed in the slit ventricle syndrome. Signs seem to

indicate the possibility of phase transitions occurring as a result of these instabilities, which

might have important clinical consequences, such as the inability to recover a healthy

state. Even so, our dynamical approach could allow the development of a unified view

of these complex intracranial conditions along with a classification that might be clinically

relevant.

Keywords Hydrocephalus · Brain ventricles · Instabilities · Biomechanics ·
Thermodynamics

1 Introduction

Hydrocephalus [1] overlaps a series of medical conditions sharing a common feature:

expansion of brain ventricles. The large amount of clinical knowledge about hydrocephalus

arises from the powerful magnetic resonance imaging (MRI) technique allowing CSF
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flow measurements [2, 3]. The usual classification of hydrocephalus, based on clinical

criteria [4], reflects their wide spectrum. According to this classification scheme, two

major types of hydrocephalus are distinguished, referred to as non-communicating or

communicating classes. The former type can be induced by a stenosis of the aqueduct

of Sylvius (obstructive hydrocephalus) [5], resulting in an accumulation of liquid within

the ventricles [6]. The latter type encompasses Normal Pressure Hydrocephalus [7],

characterized by the Hakim triad [8] consisting of gait disturbance, incontinence and mental

changes. For these classes, in spite of a “normal” CSF transport to other compartments,

expansion of the ventricles occurs. Nevertheless, apart from well-identified situations such

as trauma, meningitis or haemorrhage, the causes of communicating hydrocephalus remain

puzzling.

To go beyond the clinical picture, a model of the enlargement of the ventricles is

required. It first seems reasonable to keep the question of the mechanism of the condition

connected to an adequate depiction of the intracranial dynamics. A first type of model

often met in the literature involves electrical analogues of the intracranial dynamics [9].

In an attempt to completely describe the whole intracranial system, these models lead to an

unavoidable structural complexity, making this kind of model difficult to exploit [10]. The

most prominent problem arises certainly from the yet non-elucidated way any pathological

behaviour manifests itself in the structure of electrical analogues. Other interesting attempts

inspired by a biomechanical description of brain and ventricles focus on the consequences

of the hydrocephalic state [11–13]. These models treat the brain as a poroviscoelastic

continuum through which the cerebrospinal fluid diffuses [14]. Though these models

account well for the effects of non-communicating hydrocephalus, such as development

of brain oedema, they do not assume any precise mechanism.

A rigorous description of intracranial dynamics is needed to highlight two basic

problems: determination of the steady-state configuration of the brain ventricles and

the fundamental causes of the condition. The identification of the steady state of each

compartment allows for the derivation of a linearized scheme describing the dynamics

of small perturbations around the steady-state configuration. From this linear scheme can

be deduced both stability studies and interpretation of the dynamics in terms of electrical

analogues.

The physical description of the whole intracranial system is too complex a task to

be carried out because of its complex anatomical structure, that is, the great number of

interconnected compartments to deal with and the lack of knowledge of the coupling

between the compartments. Nevertheless, as the ventricular space is the only one expanding,

we felt it natural to focus solely on ventricles to understand hydrocephalus. A first approach

built up in an earlier study [15] led to structural instabilities in simplified geometry of the

ventricles controlled either by the elastic properties of the tissues or the CSF transport with

likely connections to hydrocephalus. This first approach gave an unsatisfactory depiction

of the dynamics: some aspects of these instabilities remained fuzzy, especially the very

origin of the conductance threshold. A unified derivation of ventricular dynamics and

related instabilities is carried out in this paper. We indeed propose a realistic description of

ventricular dynamics from which both instabilities can be rigorously derived as bifurcations.

These are shown to induce a loss of the ability of the system to regulate CSF pressure.

We further establish connections with hydrocephalus and identify these instabilities as the

theoretically fundamental causes of hydrocephalus.
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2 The dynamics of brain ventricles

2.1 Motion equation of the ependyma

The ventricular space, schematized on Fig. 1, is composed of four CSF compartments

communicating with each other. The lateral ventricles and the third ventricle exchange CSF

through small apertures (foramina). The third ventricle is connected to the fourth by the

aqueduct of Sylvius, this last ventricle ensuring CSF exchange with the subarachnoid space

surrounding the brain and in the spinal cord. The ependyma is a thin elastic membrane of

thickness about 500 μm [16] demarcating the ventricles. Its complex shape is modulated

around a steady-state configuration, due to the arterial blood pulsating flow entering the

brain.

This steady-state configuration is an out of equilibrium state of the intracranial system.

It is controlled by the steady CSF pressures within the compartments, the stress distribution

within the brain and the CSF secretion process within the choroid plexus [17]. From a

mathematical point of view, the ependyma is treated as a surface (Σ) of the Euclidean

space and its motion is described by a small amplitude displacement field u(x ,t) defined

on (Σ) . It is decomposed as a tangential motion (coordinates ua = (u1, u2)) and a normal

displacement ξ =n · u such that u (x ,t) = ua ea + ξ n.

Our method for the derivation of the motion equation of the ependyma comes

from the laws of thermodynamics, namely the first one. The internal energy of the

Fig. 1 Schematic view of the ventricular system. It is composed of four ventricles filled with cerebrospinal

fluid. The two lateral ventricles are connected to the third one through the foramina of Monro. CSF exchange

with the fourth ventricle occurs through the aqueduct of Sylvius, which is about 10–20 mm long with a

diameter between 1.5 and 4 mm. Three apertures (the foramina of Magendie and the foramina of Luschka)

control the communication with the subarachnoid space. Finally, the CSF diffusion distributed on the whole

surface of the ependyma is limited by the permeability of the tissues to CSF
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ependyma/ventricular CSF system is governed by the functional of the displacement

field,

U = 1

2

∫

�

σ
·u

2

d� + �A+ 1

2
k
(A− Ae)

2

Ae
+ β

∫

�

H2d� (1)

It comprises a kinetic energy contribution from the moving ependyma (with σ the

ependymal mass per unit area) and a potential energy grouping the interfacial and elastic

contributions. These terms form a Helfrich-like functional [18], composed of an interfacial

energy governed by the CSF interfacial tension � [19], a stretching elasticity contribution

(modulus k with units of energy per area) and a bending elasticity [20] contribution

(bending stiffness β with units of energy). The stretching term, if alone, would constrain the

ependyma to its equilibrium area Ae. The last term, depending functionally on the squared

mean curvature H2
of the moving ependyma, is the Willmore functional [21–23]. The

steady-state configurations are solutions of a highly non-linear equation obtained through

a minimization of the potential energy in (1) with a constrained ventricular volume. The

rigorous motion equation of the ependyma can be derived by varying the energy (1) with

respect to the appropriate degrees of freedom and imposing energy dissipation (viscous

damping of the motion). We can equivalently derive it more “intuitively” from the first

law of thermodynamics. The main influence (and complication) of the Willmore term

relies then on both polynomials of the mean curvature and a bi-Laplacian term (involving

the displacement field) usually developed from the theory of elastic envelopes. A first

simplification of the dynamics consists in dropping the bi-Laplacian terms in the limit

of small bending stiffness or sufficiently large areas (or high radii of curvature) obeying

the condition |A− Ae| >>
√

8πβ Ae/k. This yields in fact a major simplification of the

dynamical equations. A second simplification arises from the condition of small amplitude

displacement fields allowing a linearization of the motion equation of the ependyma around

its steady-state configuration.

The first law of thermodynamics, which states that the total energy of a system is

conserved, is written as

·
Q = ·

U − ·
W . (2)

In this equation, the left-hand side is the heat power dissipated within the biological tissues

composing the ependyma (tissues identical to pia mater) due to the friction forces (η is a

friction coefficient per unit mass) which reads

·
Q = −ησ

∫

�

·u
2

d�. (3)

On the right-hand side, the term
·

W is the work per unit time of both internal and external

forces exerted by both the ventricular CSF and the moving brain on the ependyma. It can

be written as

·
W =

∫

�

(p− pb (x, t))
·
ξ d� +

∫

�

τab

·
uabd� (4)

The first term groups the contribution from the pressure forces (p within the ventricles) and

the “pressure” pb arising from the normal component of the stress tensor σij within the brain
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matter. The tangential part (shear stress) of this tensor, τab, couples to the strain rate tensor
·

uab
in the second integral.

Neglecting the contribution from the bending energy W� = β
∫
�

H2d� (by remember-

ing that the mean curvature H is sufficiently small) and introducing the modulation δp (δpb)

of the pressure p (pb) around its steady value p (pb), we are led to the projections of the

motion equation along the normal direction (5) and the tangent plane (6):

ησ
·
ξ +σ

··
ξ −keff n · ��u = δp(t) − δpb (x, t) , (5)

ησ
·ua + σ

··ua + ∇cτac = 0. (6)

The final equation of motion (5) rules the macroscopic dynamics of a system composed

of the ventricular CSF interacting with the viscoelastic ependyma. The Laplacian term

involved arises from the definition of the steady mean curvature H(x) = −n · ��x, and its

coefficient, the effective stretching modulus keff = k( �
k + A

Ae

− 1), derives from a lineariza-

tion of the complete, nonlinear equation written from (2), where we replaced the area A by

its steady-state value A. There is a simpler way to derive this effective modulus, allowing us

to highlight its physical significance. From the internal energy expression associated with

a steady-state configuration (kinetic energy dropped) we retain the only area-dependent

terms and calculate the variation of this energy δU upon any area variation δA, that is

δU = (� + k(A− Ae)/Ae)δA. This result evidences an effective stretching modulus keff =
δU/δA which might also be regarded from a thermodynamical point of view as an effective

interfacial tension. The right hand side of Eq. 5 is the normal projection of the force per

unit area f b(x, t) exerted on the ependyma by the stress field within the brain matter.

This force contains a shear stress contribution and a normal “pressure force” −δpb(x, t)n,

opposing the CSF pressure-induced force δp(t)n. This relation contains a diffusion-like

term associated with the Laplace–Beltrami operator [24] �� on the ependyma. It exhibits

an effective diffusion constant D = keff/ησ proportional to the effective stretching modulus

keff = k( A
Ae

+ �
k − 1) depending on the steady area A/Ae (in units of the equilibrium area) of

the ependyma. This effective parameter, associated with the steady-state configurations

of the ependyma, originates mainly from the interaction between CSF and the ependyma

and the linearization procedure. It should be noticed that the relation between diffusion

constant D and the effective modulus keff has an algebraic nature.

This equation can be viewed as an “effective” Laplace–Young law [25] describing the

way the CSF surface is constrained to curve to adapt to the shape of the ependyma. Indeed,

this last equation leads to

p− pb (x) ≈ keff H (x) . (7)

This last condition defines the steady-state configuration of the ependyma through its mean

curvature H in the retained approximation (neglecting the bending energy contribution).

Having the form of a Laplace–Young equation, it shows clearly that the effective modulus is

to be thought of as an interfacial tension. This interpretation is fundamental in the following

discussions of the instabilities.

2.2 CSF transport equation

The equation of motion (5) must be completed by a CSF mass conservation equation

accounting for the fluid exchange between ventricles and outer compartments. This con-
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servation equation relates the ventricular volume modulation δV(t) = ∫
�

u(x, t) · nd� to

the CSF exchange and secretion processes. Simplification of this equation depends on the

nature of the CSF flow between compartments.

The most important CSF exchange process holds between ventricles and subarachnoid

spaces (pressure δps) through the aqueduct of Sylvius (in fact this conduit connects the

fourth ventricles to the other ventricles). While the simplest and most encountered way to

model the CSF flow through the aqueduct of Sylvius would be to take it as a Poiseuille flow,

we will show here that it seems an unreasonable assumption.

For a fluid flow to obey the law of Poiseuille, the following criteria must be met: it

must be laminar, steady, incompressible, irrotational, and the walls delineating the flow

are to be rigid. Although the CSF flow is incompressible to a good approximation, other

hypotheses are not necessarily verified. Indeed, related work held on pulsatile flows in

stenotic geometries [26] indicated the possibilities for vortices, and possibly turbulences,

to develop. It should be noted that with the heart acting as a pump, pressure gradients of

fluid flows through the body are inverted with every beat. This makes blood and CSF flows

oscillatory, and thus renders them unable to develop a steady state. They must therefore be

described with a more accurate law than that of Poiseuille. Womersley [27] studied these

flows, albeit still considering rigid walls. The analytical expression of the hydrodynamic

conductance of the flow can be deduced from his work and yields:

γ W (α) = π R4

iμLα2
− 2π R4

μLα3
i3/2

J1

(
αi3/2

)
J0

(
αi3/2

) (8)

where i = √−1, R is the radius of the aqueduct, L its length, μ is the dynamic viscosity of

CSF, Jk(x) denotes Bessel functions of the first kind, and α = R
√

ω/ν is a dimensionless

number, called the Womersley number. It is expressed as a function of the angular frequency

ω of the heartbeat and the CSF kinematic viscosity ν. This conductance is a complex

number, but we shall focus on the real part, as it is the one we can compare to the Poiseuille

conductance (which simply reads γP = π R4/8μL).

It can be easily shown that as the frequency of the oscillations vanishes (and so the

Womersley number α vanishes as well), the Womersley conductance γW is exactly equal

to that deduced from the law of Poiseuille. Let us now assess both conductances: for a

typical and healthy CSF flow through the aqueduct [28], with radius R ≈ 1.5 mm, viscosity

ν ≈ 10
−6

m
2

s
−1

and excited at the heartbeat frequency ω ≈ 2π s
−1

, we obtain α ≈ 4.

Taking the length of the aqueduct L ≈ 15 mm, the Poiseuille conductance is estimated as

γP ≈ 1.3 × 10
−7

m
3

s
−1

Pa
−1

, and the real part of the Womersley conductance is γW ≈
2.3 × 10

−8
m

3
s
−1

Pa
−1

, evidencing a difference of one order of magnitude between them

(Fig. 2).

We can consider that the conductance of the aqueduct involved in our model is more

precisely given by the law of Womersley (γaq ≈ γW(α ≈ 4)), in spite of some limitations:

the curvature of the aqueduct, although low, is totally neglected, as well as its elasticity (it

is supposed rigid). Taking into account its curvature would modify the characteristics of the

flow so that vortices would appear which, if in a sufficiently high density, would possibly

render the flow turbulent.

An additional exchange process with brain (pressure fluctuation δpb) is also present

through the whole ependymal surface. Indeed, due to the porosity of this envelope, the

CSF flow is associated with a velocity field given by Darcy’s law v = − κ
μφ

∇ p where

κ is the permeability of the ependyma, φ its porosity, μ the dynamic viscosity of CSF,

and ∇ p the pressure gradient between the ventricles and the neighbouring brain matter.
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Fig. 2 Plot of the hydrodynamic conductances vs the Womersley number. The hydrodynamic conductances

of a healthy aqueduct of Sylvius have been computed, deduced from the law of Poiseuille (straight line),

and from the Womersley description, with both real (dashed) and imaginary (dotted) parts included. The

Poiseuille conductance remains constant for any Womersley number: it does not take into account the

oscillatory nature of the flow. The values of the parameters used to calculate the conductances were displayed

previously. A normal flow through a healthy aqueduct should have a Womersley number approximately equal

to 4, highlighting a large difference between the conductances deduced from both laws

The resulting total flow rate through the ependymal surface is |Q| ≈ κ A
μφl �p, where A is

the area of the ependyma, l its thickness, and �p the pressure difference through both

ends. The corresponding hydrodynamic conductance is then γep = κ A
μφl . The CSF crossing

the ependyma saturates the brain pores neighbouring the ventricles, and will barely flow

throughout the brain matter, except in some extreme conditions. In fact, this flow is also

ruled by Darcy’s law, with an associated conductance of exactly the same expression. It

is now clear that for sufficiently low pressure gradients and under normal conditions, the

flow rate of CSF throughout the brain parenchyma will be insignificant. On the contrary, in

the case of an extreme hydrocephalus, the brain being under severe compressive stress, its

thickness is reduced, resulting in a larger amount of CSF flowing through the parenchyma.

The sum of the conductances ruling both flows is the total conductance γ = γaq + γep. An

additional term accounting for the CSF secretion process in the choroid plexus [17] is also

required. Its component modulated by the pressure variations reads in first approximation

δS(t) ≈ γCδp(t) with a constant γC > 0, usually referred to as secretion conductance [9]

and connected to CSF synthesis kinetics. Exact calculation of the secretion conductance

is difficult (and unnecessary here) since it requires a complete description of the secretion

process. Retaining a positive γC ensures that increasing secretion leads to an increase in

CSF pressure and vice versa. The third main equation of our model finally reads

dδV (t)
dt

= − (γ − γC) δp(t) + γepδpb (t) + γaqδpS (t) . (9)

This last equation is closely related to observation since it involves CSF flow through the

aqueduct and the transependymal diffusion which could be accessible through flow MRI

[2, 4].
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Introducing the compliance of the ventricular compartment allows us to write Eq. 9 as

a pressure evolution equation. Adopting a physical point of view, we define compliance

as the susceptibility connecting the ventricular CSF volume variations to its pressure

modulations. More precisely, within the linear response approximation, it is defined as

the time Fourier transform of the corresponding response, that is, the functional derivative

C(t − t′) = δV(t)/δp(t′) or equivalently, the volume variation is the convolution of the

pressure variations with the response function C(t). This approach leads naturally to a

frequency-dependent compliance (dynamical compliance). It shows also that both the

evoked response function and the compliance are completely determined by the Green’s

functions [29] of the motion equation of the ventricles (5). Thus, compliance is no longer

an arbitrary fitting parameter, but rather a function of the biomechanical properties of the

intracranial system, which can be estimated. The vanishing frequency limit of the dynamical

compliance defines the static compliance,

C = (1/keff)

∫
�

∫
�

[(−�� + H2 − 2kG
)]−1

δ
(
x − x′) d�d�′. (10)

This depends on the area of the ependyma, the stretching elasticity modulus, the interfacial

tension �, and an always positive factor given by the double integration over the ependymal

area. This last factor expresses the dependence of the brain ventricles’ compliance upon the

ependymal shape, since it appears as a functional of the steady-state mean curvature H and

Gaussian curvature kG of the ependyma. The action of the inverted differential operator

within the integrals on the Dirac distribution is nothing but the Green’s function (its static

limit) of the motion equation of the ventricles. The differential operator involved in the

Green’s function exhibits an interesting connection with the Dirac operator on a curved

manifold [30]. Its interest is magnified in the assessment of the response of the ventricles

to the physiological noise or equivalently, the effect of fluctuations of the ependyma

which might be clinically relevant. Equation 10 gives the most general expression of the

ventricular compliance (or any closed deformable compartment). The simplest case of

spherical ventricles corresponds to a compliance C = A2/8πkeff. The compliance given

by (10) allows then a complete characterization of the compartment under study: first,

dynamical through the Green’s function depending on biophysical properties, such as the

viscoelasticity of tissues and of the liquid confined within them, and second, geometrical,

through the steady-state shape of the surface �, that is, its curvatures. These considerations

point out the quantitative influence of the shape of the ependyma on ventricular dynamics.

This important result should have a deeper physical significance which remains to be

highlighted. It should be noticed that the compliance scales always as 1/keff, whatever the

shape of the ependyma, be it simple (e.g., a sphere) or more complex.

The above mentioned relationship between the volume and the pressure variations

can be given the form of a series expansion of the pressure and its derivatives. With

heartbeats being the excitation of the system, and their frequency being sufficiently low

(approximately 1 Hz), the ventricular pressure will vary slowly. This allows us to truncate

this expansion to the first order, leading to the pressure fluctuations dynamics equation

(γ − γC) δp(t) + Cδ
·p(t) = γaqδps (t) + γepδpb (t) , (11)

governed by a natural frequency scale

1

τ
= γ − γC

C
= (γ − γC) keff∫

�

∫
�

[(−�� + H2 − 2KG
)]−1

δ (x − x′) d�d�′
. (12)
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This equivalently defines the time scale τ for the elimination of pressure fluctuations.

Equation 10 replaces Eq. 9 in the low excitation frequency limit. If needed, corrections

to that scheme can be obtained straightforwardly by adding the higher-order derivatives we

dropped in the volume expansion. Whatever the refinement of the simplest model given by

(11), this characteristic time τ is always present, and its algebraic nature, clearly evidenced

in (12), generates dynamical instabilities analyzed in the next section.

3 Evidence for bifurcations of ventricular dynamics

3.1 Elastic and transport instabilities

The characteristic time τ appearing in Eq. 12 being of algebraic nature, structural insta-

bilities are expected to occur if it becomes negative, that is, either for a total conductance

γ < γC (and keff > 0) or for keff < 0 (but γ < γC). This can be deduced from the solutions

of this equation, taking the form δp(t) ∝ e−t/τ
: with τ > 0, pressure fluctuations are quickly

damped, whereas they grow exponentially with time as τ becomes negative. The first

bifurcation (γ < γC, keff > 0), controlled by the hydrodynamic conductances of the CSF

pathways, will be referred to as the “transport instability”. The second one (γ < γC, keff >

0), governed by the elastic properties of the ependyma, is called the “elastic instability”.

Intuitively, the transport instability can be understood as a competition between CSF

secretion and its evacuation through the aqueduct and the ependyma: the evacuation process

cannot overcome its secretion, and CSF accumulates within the ventricles. The elastic

instability is, on the contrary, not intuitive, since it proceeds from the competing effect

of the elastic modulus k and the CSF interfacial tension �, but with normal CSF evacuation

abilities. We notice that the elastic instability becomes evident in the motion equation of the

ependyma (5). Indeed, a diffusion process of the displacement field is evidenced, with an

algebraic diffusion constant D = keff/ησ , this last one being negative when keff < 0.

It is clear from Eq. 11 that both instabilities share a common feature, that is, pressure

fluctuations develop exponentially inside the ventricles: they lose their ability to regulate

the CSF pressure. Obviously, the pressure does not diverge to infinity, as our linear stability

analysis holds for small fluctuations and is only valid for short time spans. As the pressure

grows, non-linear terms will act to saturate the pressure evolution toward a fixed, anomalous

value. It is, however clear that both this intracranial pressure disorder and its subsequent

abnormal high or low value have to be thought of as pathological behaviours. Connections

of our model to clinical situations have to be handled in this way: it can be directly seen

from Eq. 5 that, for both unstable regimes, the unbounded pressure evolution leads to

unbounded displacement fields u. As a consequence, ventricular dilations or contractions

occur depending on the “initial” pressure conditions within the ventricles. We suggest

that ventricular dilations would connect our instabilities to hydrocephalus. But, the most

unanticipated result is the contraction likely to occur in some conditions. Contractions of

ventricles have been observed and are clinically described as “slit ventricle syndrome” [31].

Except the fact that slit ventricle syndrome may occur due to CSF overdrainage and as a

consequence of a hydrocephalus, there was no physical evidence for its intrinsic connection

with this condition. Our approach indicates that it would proceed from the instabilities

of the ependymal dynamics. Unexpectedly, our model of intracranial dynamics unifies

hydrocephalus and slit ventricle syndrome by associating them with two symmetrical

processes, dilation or contraction of ventricles.
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3.2 Bifurcation diagram

Bifurcation diagrams are depicted in Fig. 3a and b. The transport instability condition

reported in Fig. 3a can be regarded as an area-dependent critical threshold imposed on the

conductance γaq of the aqueduct. This shows that stability corresponds to sufficiently large

areas or conductances. In a similar way, the critical elasticity conditions reported on Fig. 3b

show that stability is favoured by sufficiently large areas and/or �/k ratios. It can be more

easily understood if we notice that high values of � make it very difficult to change the area

of the ependyma-CSF interface (higher cost in energy). In fact, this plot is the section of

the plane A/Ae = f(�/k) defined by the more complex surface plotted in Fig. 4 giving the

influence of the area and biophysical properties of the ependyma on the relaxation frequency

1/τ . Both instabilities are associated with divergent susceptibilities: on the elastic stability

boundary-line (keff = 0) the compliance is infinite. Similarly, for the transport instability the

characteristic time τ = C/(γ − γC) diverges. If the compliance has been clearly defined as

a susceptibility, we yet have to determine if the characteristic relaxation time τ behaves like

a susceptibility as well.

In fact, this time scale is closely connected to the Green’s functions of the equation ruling

the pressure fluctuation dynamics (Eq. 11). We rewrite Eq. 11 as

Lδp(t) = γaqδps (t) + γepδpb (t) , (13)

where the linear differential operator L = (C d
dt + γ − γC) acts on the pressure fluctuations

δp(t). The Green’s function G(t) of this differential equation is obtained from

LG (t) = δD (t) (14)

where δD(t) denotes the Dirac delta function. Taking the Fourier transform of this equation

then yields the transfer function of the ventricular pressure dynamics,

H (ω) = 1

jω + (γ − γC) /C
. (15)

Fig. 3 Elastic and transport instability domains. Left Localization of the transport instability domain in the

conductance (γ ) – area (A) plane. Below the conductance threshold γC , the transport instability develops

(that is, under the straight line). This instability threshold amounts to a critical conductance of the aqueduct

γ C
aq = γC − γep decreasing when the area of the ependyma increases. In the instability domain, CSF pressure

regulation ability is lost. Right The elastic instability domain in the plane �/k + A/Ae < 1 corresponds to the

shaded area. In the elastic stability domain, located above the stability boundary line keff = 0, CSF pressure

fluctuations are damped, while they develop exponentially in the instability domain
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Fig. 4 3-D plot of the variations

of the relaxation frequency with

the biophysical parameters of the

CSF-ependyma system (�, k).

For given biophysical properties

(�, k fixed), the evolution of the

relaxation frequency with the

area A is obtained by a section of

this surface defined by the a

vertical plane �/k = constant.

The elastic stability boundary

corresponds to the section by the

plane 1/τ = 0

This is an equation of a linear first order filter whose vanishing frequency limit is clearly

divergent at the crossing of the transport stability boundary (γ → γC). This transfer

function thus behaves as a susceptibility in the sense of phase transitions where the

static susceptibility δψ/δh connecting the variations of the order parameter ψ to those

of its conjugate field h diverges at the transition. As usual phase transitions are driven

by temperature; the most useful analogy in our case consists in treating the conductance

γ as temperature and the critical conductance γC as the critical temperature TC. As a

susceptibility, our transfer function connects the intraventricular pressure variations to

the pressure variations in outer compartments. Beyond this useful operational analogy,

the evidenced susceptibilities suggest a likely interpretation of our bifurcations as phase

transitions of the intracranial system. The main question raised by such an interpretation

regards the very nature of these phase transitions: Is there any broken symmetry process, as

in the study of thermodynamics of phase transitions?

4 Parameter estimation

This section is devoted to the assessment of the parameters of the model from relevant

available data. Retaining the experimental stretching stiffness k ≈ 0.19 N/mm reported for

pia mater [32], tissue of the same nature as the ependyma, a Poisson ratio ν = 0.36 and

their connection [20] with Young’s modulus E satisfying k ≈ 12π El/(1 − ν2) we are led

to an estimate of the Young’s modulus of the ependyma E ≈ 0.92.10
4

Pa. Keeping in

mind that the ependyma is made up of soft tissues, the value we find for E is in good

agreement with the range of those of elastic materials. As keff ≥ k, the compliance C of

a steady-state configuration—close to the sphere—is bounded by a maximal value, C ≈
A2/8πkeff ≤ A2/8πk. According to the values of the preceding biophysical parameters and

by adopting a “healthy” typical ependymal area A ≈ 50 cm
2

(as calculated by Balédent and

Bouzerar, using MRI analysis and the software Mimics), the maximal compliance is about

Cmax = A2/8πk ≈ 0.69 ml/mmHg, to be compared to the typical value of the compliance

reported in the literature C ≈ 0.25 ml/mmHg [33]. From this last value, we can estimate the

effective stretching modulus keff ≈ A2/8πC ≈ 0.6 N/mm. In normal conditions, with the

interfacial tension [34] � ≈ 64 mJ/m
2
, the ratio �/k can be neglected. We are thus led to

the area ratio A/Ae ≈ 1 + keff/k ≈ 4, corresponding to an equilibrium area Ae ≈ 13 cm
2
.
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The maximal compliance we were led to requires a minimal stretching effective modulus

keff min ≈ 0.23 N/mm, corresponding to a minimal size of the ventricles Amin/Ae ≈ 1.2 (up

to the accuracy of the measurements reported in [32]).

A typical value of the hydrodynamic conductance of an open, healthy aqueduct

(γaq ≈ 2.3 × 10
−8

m
3

s
−1

Pa
−1

assessed in the Womersley regime) and a CSF secretion

conductance of about γC ≈ 10
−9

m
3

s
−1

Pa
−1

reported by Czosnyka et al. [35] lead to

a ratio (γ − γC)/C ≈ 14.5 s
−1

. This yields a typical relaxation time τ ≈ 0.07 s to be

compared to a heartbeat period of 1 s. The minimal value of the relaxation frequency is

(γ − γC)/Cmax ≈ 5.5 s
−1

or equivalently the maximal relaxation time τmax ≈ 0.18 s.

We can finally compare the parameter values in healthy and pathological situations.

MRI data analysis carried out on a population of ten hydrocephalic subjects (Balédent and

Bouzerar) leads to an average ependymal area A′ ≈ 300 cm
2

(±78 cm
2
), that is, about six

times greater than the healthy area A. This amounts to a static compliance C′ = 6C, six

times as large as the “healthy” value since A′/Ae ≈ 18. This yields a relaxation time which

is also six times greater (τ ′ ≈ 0.42 s). Since the relaxation time corresponds to the required

time for the ventricular dynamics to dampen pressure fluctuations, a larger relaxation time

indicates that the CSF pressure regulation is less efficient. The gap between this time and

the maximal time reinforces that conclusion. How should this be understood? Without

referring to our instabilities, all that, can be said is that upon dilation, the pressure fluctuation

damping process of the ventricles becomes less efficient (the lifetime of the fluctuations is

increased). If the initial state of the brain ventricles corresponds to a normal size, the short

lifetimes of the pressure fluctuations does not allow for the ventricles to dilate because of

the damping of the fluctuations. In other words, inflation cannot arise spontaneously from

healthy ventricles. Now, if instabilities are present, the situation is drastically different:

the change in sign of the relaxation frequency indicates an amplification of the pressure

fluctuations, now allowing for dilation. It is interesting to point out that dilation occurs

for the ventricular system to recover a positive compliance (for the elastic instability)

and normal pressure fluctuation damping conditions. No return to the initial state is then

possible since the instability would again drive ventricles to a higher size. In that sense, our

instabilities are phase transitions.

Another conclusion to be drawn regards the lower bound on the ventricular system size:

we expect that ventricular areas smaller than Amin might indicate a slit ventricle syndrome.

Apart from the elastic instability, we notice that the compliance should not exceed the upper

bound given by Cmax. The value of this upper bound is dependent on the mechanical moduli

such as the Young’s modulus of tissues: since it is inversely proportional to this modulus,

a large Young’s modulus E will result in a small Cmax. It is thus clear that the dynamics of

brain ventricles requires materials that are not too rigid in order to operate efficiently.

5 Discussion

In our approach, both the elastic and the transport bifurcations of ventricular dynamics

generate pathological states through the loss of CSF pressure regulation ability, reminiscent

of some clinical features of hydrocephalus [36]. These instabilities are followed by a dilation

process: they act as likely causes of hydrocephalus. But, contraction is also likely to occur

under some conditions: our theory unifies slit ventricle syndrome and hydrocephalus on the

basis of the reciprocity of the dilation and contraction processes. The natural reciprocity of
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these processes inspires a fundamental perspective of our work, the possibility of conceiving

hydrocephalus and/or slit ventricle syndrome as phase transitions in the brain. This could

be supported by the search for a symmetry connecting dilation and contraction and the

corresponding spontaneous symmetry breaking mechanism. The idea of a phase transition

is supported by the reciprocity of the inflated and collapsed ventricular states on one hand

and the diverging susceptibilities associated with our instabilities on the other hand.

The main clues suggesting the signs of a phase transition are collected in Table 1. This

table establishes clearly an analogy with the well-known paraelectric to ferroelectric state

phase transition. The ferroelectric state which develops under a critical temperature Tc (the

Curie temperature) is described by a non-zero spontaneous polarization P in keeping with

the ordering of microscopic dipoles. The polarization is the associated order parameter

of that transition. At the transition, the dielectric susceptibility follows the Curie–Weiss

law δP/δE ∼ 1/(T − TC). This susceptibility connects the polarization to its “conjugated”

field, the electric field E. All these fundamental ingredients have their counterparts in our

approach. Indeed, the role of temperature being analogous to the conductance of the Sylvian

aqueduct γ for the transport instability, and the ventricular area A for the elastic one,

the corresponding susceptibilities scale as 1/(γ − γC) for the transport instability and as

1/keff ∼ 1/(A− AC) for the elastic one. Both expressions follow the Curie–Weiss law and

diverge at the “transition”. The collapsed and inflated ventricles correspond to two possible

orientations of the polarization in a ferroelectric solid: polarization reversal costs additional

energy. We thus expect a similar energy cost to reduce the ventricle size, explaining why no

spontaneous return is possible.

The search for the formulation of our approach as a theory of phase transitions would

be of great physical and clinical interest. Such a formulation can be reached through the

identification of any “thermodynamic potential” of which the minima are the steady states

of the ventricles. Identification of the symmetry “broken” at the transition would be of great

help for the construction of this potential. This fundamental step is still in progress because

of the complexity of our dynamical equations.

The clinical relevance of this formulation relies on the kinetics of the phase transition

describing the time evolution of the state of the system, that is, the way CSF pressure, the

area of the ventricles and their shape evolve with time. It would then allow for the prediction

of the evolution of the condition.

Table 1 Biophysical parameters compared do parameters of physical phase transitions

Transport instability Elastic instability

Driving parameter Aqueduct conductance γ Ventricular area A
Critical parameter Conductance threshold γC Critical area AC connected to equilibrium

connected to secretion rate area and biophysical parameters

Order parameter/ CSF pressure p/ CSF flow Ventricular volume V / CSF pressure p

conjugated “field” through the aqueduct

·
Q

Susceptibility δp/δ
·
Q ∼ 1/(γ − γC) Compliance C = δV/δp ∼ 1/(A− AC)

Divergence at the Yes Yes

transition

In both cases, all parameters are analogous to the parameters driving the paraelectric–ferroelectric phase

transition
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The electrical interpretation of our equations is also an interesting and clinically relevant

perspective. Indeed, Eq. 15 is the transfer function of a low pass filter which defines the

simplest electrical analogue to be associated with “healthy” ventricles. Keeping this line of

thought, we expect a more complex electrical interpretation of “sick” ventricles. The search

for electrical analogues of intracranial dynamics is one of the most often encountered ways

[9] to model ventricles and other intracranial compartments. Though not rigorously derived

and rarely allowing for the identification of some causes of the intracranial pathologies,

their intuitive content and their easier handling cannot be disputed. In our approach, these

analogues can be rigorously derived from ventricular dynamics and the signature of the

pathologies is a drastic change of the electrical analogues. But this is not the main interest

of a predictive dynamical theory of hydrocephalus. It also allows us to understand and

to model the possible issues of any curative strategy. For instance, the installation of a

ventricular shunt [37] to restore normal conditions can be approached through our model.

The external conduit evacuating excess CSF offer new pathways to CSF with additional

conductances. If the pathological state originates from transport instability, the adjustment

of the new conductance and its consequences on ventricular dynamics can be calculated

(and its effects anticipated) rigorously.

6 Conclusion

Looking for a mechanism of the observed enlargement of hydrocephalic ventricles, we

found a description of the ventricular wall dynamics pointing out fundamental causes

which overlap several categories of hydrocephalus. A unified picture of hydrocephalus and

slit ventricle syndrome as consequences of bifurcations of ventricular dynamics follows

from our approach. More precisely, the expansion or contraction of brain ventricles are the

clinical signatures of two bifurcations of their dynamics. The “elastic instability” results

from a competition between the elastic properties of the ependyma and the interfacial

tension of CSF in contact with the tissues. It is associated with a negative compliance.

The “transport instability” arises from a competition between the ability of the aqueduct to

evacuate CSF and its secretion by choroid plexus. Unlike the elastic instability case, the

transport instability may either lead to a dilation of the ventricles, or their contraction. The

remarkable dependence of the compliance on the ventricles’ shape factor raises the question

of the influence of the shape of the ependyma on its dynamics. This problem remains to

be solved but it is intimately connected to the formulation of the rigorous dynamics of

the ventricles and their steady state. Viewing hydrocephalus as a “dynamical” condition

of the intracranial system associated with structural instabilities of the brain ventricles

yields two fundamental consequences. The usual distinction between communicating and

non-communicating hydrocephalus is given a physical justification which should be of

interest to physicians from a clinical point of view. But more fundamentally, the divergent

susceptibilities associated with these bifurcations suggest an interpretation in terms of phase

transitions of the intracranial system opening the way to new curative strategies.
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