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Abstract. Quantitative estimations of first-in-human (FIH) doses are critical for phase I clinical trials in
drug development. Human pharmacokinetic (PK) prediction methods have been developed to project
the human clearance (CL) and bioavailability with reasonable accuracy, which facilitates estimation of a
safe yet efficacious FIH dose. However, the FIH dose estimation is still very challenging and complex.
The aim of this article is to review the common approaches for FIH dose estimation with an emphasis on
PK-guided estimation. We discuss 5 methods for FIH dose estimation, 17 approaches for the prediction of
human CL, 6 methods for the prediction of bioavailability, and 3 tools for the prediction of PK profiles.
This review may serve as a practical protocol for PK- or pharmacokinetic/pharmacodynamic-guided
estimation of the FIH dose.
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INTRODUCTION

Estimation of a first-in-human (FIH) dose is an essential
element in clinical development of a drug molecule for
approval by the Food and Drug Administration (FDA).
Selection of the starting dose in humans is a complex process,
as it must fall within an optimal window. The starting dose
must be low enough to be safe but high enough to avoid
excessive dose escalations, which are costly and time-
consuming. The most widely used method for FIH dose
estimation is based on no observable adverse effect levels
(NOAELs) in multiple species (1,2). NOAELs are deter-
mined in relevant animal studies and normalized to body
surface area (in milligrams per square meter), and then
extrapolated to human equivalent doses (HEDs). The
HED from the most appropriate species is then divided
by a safety factor to generate the maximum recommended
starting dose (MRSD) in humans. However, the NOAEL-
based approach relies on a somewhat arbitrary safety
factor to estimate the starting dose, and the method is
very conservative for FIH dose estimation (3). In contrast,
pharmacokinetic-guided approaches provide a more mech-
anistic rationale and are becoming more common with
many pharmaceutical companies and institutes. Accurate

predictions of human pharmacokinetics (PK) prior to phase
I studies have resulted in significant time savings, ranging
from 1 to 6 months, during dose escalations (4).

Clearance (CL) and bioavailability (F) are two important
pharmacokinetic parameters which are related directly to
FIH dose estimation. Using the lowest area under the curve
(AUC) observed at NOAEL in one animal species and the
predicted human CL and F, one can estimate the FIH dose
(5). Over the past few decades, many empirical and physio-
logical approaches have been developed for quantitative
prediction of human CL (3,6–13) and F. These predictive
approaches typically require in vivo preclinical data, in vitro
metabolism and disposition data obtained from animal and
human tissues, and/or physicochemical parameters of the
drug compounds. Each approach has its advantages and
disadvantages. Although several excellent review articles
have discussed and compared some predictive approaches
(3,14–23), to our knowledge, a comprehensive and practical
summary of all the prediction approaches is still not available.
Therefore, this review introduces commonly used methods
for FIH dose estimation and summarizes 17 approaches to
predict human CL, 6 methods to predict bioavailability, and 3
tools to generate PK profiles. For each approach, we discuss
the assumptions, equations, required data and parameters,
accuracy of prediction, advantages, and limitations. This
review article may be used as a practical manual to predict
FIH doses.

ESTIMATION OF FIRST-IN-HUMAN DOSE

Many methods have been used for FIH dose estimation
and no consensus has been reached for which method is most
accurate (5). Currently available approaches are based on
NOAELs (2,5,24), minimal anticipated biological effect levels
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(MABELs) (25), pharmacokinetic prediction (5,24,26,27),
pharmacokinetic/pharmacodynamic (PK/PD) simulation
(16,28,29), and similar drug comparison (5,24). Advances in
PK and PK/PD modeling and simulation have increased the
use of these approaches (5). Unlike the empirical estimation
methods, these model-guided approaches have a mechanistic
rationale to understand the effect of physiological variables or
disease status on pharmacokinetic parameters (16).

NOAEL-Based Approach

In July 2005, the US FDA issued the Guidance on
Estimating the Maximum Safe Starting Dose in Initial
Clinical Trials for Therapeutics in Adult Healthy Volunteers
(2). The suggested process for selecting MRSD involves the
following: (1) determine the NOAEL in each animal species
tested, (2) convert the NOAEL to an HED using appropriate
scaling factors, (3) apply a safety factor to the HED to define
the human MRSD. For mice, rats, and dogs, HED scaling
based on body weight rather than surface area will increase
the HED by 12, 6, and 2 times, respectively. To generate a
conservative HED, the conversion is based on dose
normalization by body surface area for most systemically
administered low molecular weight therapeutics. The body
surface area conversion factor is a unitless number that
converts milligrams per kilogram doses for each animal
species to the milligrams per kilogram dose in humans
(HED). The species that generates the lowest HED is
deemed the most appropriate one. When preclinical
toxicity data indicate that a particular species is more
relevant for assessing human risk, the HED for that species
may be used in subsequent calculations regardless of
whether it is the most sensitive (4). To define the MRSD
in humans, the safety factor applied to the HED from the
most appropriate species is generally at least 10 (5).
Finally, the MRSD may need to be adjusted based on the
pharmacologically active dose.

For small molecule chemical entities, the conservative
NOAEL-based approach has a good safety record and is
simple and practical. However, consideration of the pharma-
cologically active dose may be overlooked. The importance
of adjusting the MRSD to prevent toxicity was illustrated
in the 2006 FIH clinical trial for TGN1412, a monoclonal
antibody directed against T lymphocytes. TGN1412 produced
multiorgan failure in six healthy volunteers (30). The NOAEL
was 50 mg/kg, and interspecies scaling (from cynomolgus
monkeys) based on body weight gave an HED of 16 mg/kg.
Although a very conservative safety factor of 160 was applied to
generate an MRSD of 0.1 mg/kg, adverse effects were still
observed in humans (31).

MABEL-Based Approach

The tragic incident of TGN1412 led to the introduction
of the MABEL by European Medicines Agency (EMEA)
(25), which issued a guideline in 2007 containing strategies to
identify and mitigate risks in FIH trials with investigational
medicinal products. The MABEL is the lowest dose that is
associated with any biological effect, whether it be toxicity or
a desired pharmacological effect (16). MABEL is calculated
using the following PK/PD data: (1) in vitro target binding

and receptor occupancy in target human and animal cells, (2)
in vitro concentration–response curves in target human and
animal cells, (3) in vivo dose–exposure–response profiles in
relevant animal species, and (4) exposures at pharmacological
active doses in relevant animal species. To minimize the
potential risks of adverse effects in humans, a safety factor is
applied in the calculation of the FIH dose from the MABEL.
The value of the safety factor depends on the novelty of the
active substance, the biological potency, the mode of action,
the degree of species specificity, and the shape of the dose–
response curve and the degree of uncertainty in the
calculation of the MABEL. Per the EMEA guideline, the
FIH doses are calculated from the NOAEL and MABEL
and the lowest value is recommended for the clinical trial
(25). For biotherapeutics with potentially agonistic modes
of action on key body systems, no more than 10%
occupancy is proposed for the first-in-man trial (16). In
the case of TGN1412, the estimated FIH dose is 0.001 mg/kg
using the MABEL-based approach (31). In contrast, the
0.1 mg/kg FIH dose of TGN1412 estimated by the
NOAEL-based approach leads to a receptor occupancy
greater than 90%, which is very likely to cause adverse
effects.

Similar Drug Comparison Approach

The similar drug comparison approach may be used
when human PK/PD data are available for a drug similar to
the one under investigation (5,24). The dose of the investi-
gated drug can be calculated from the dose of the reference
drug: Dosei ¼ Doser � NOAELi=NOAELrð Þ . The dose
obtained is usually corrected by an arbitrary safety factor to
accommodate uncertainty (5).

Pharmacokinetic-Guided Approach

As discussed above, the advances in CL, steady-state
volume of distribution (Vdss), and plasma concentration–time
profile predictions have made it possible to approximate
human pharmacokinetics with reasonable accuracy, which
facilitates estimation of the FIH dose.

In a pharmacokinetic-guided approach, the NOAEL and
corresponding AUC in several animal species are deter-
mined. The species that results the lowest NOAEL is used as
the index species for scaling. The starting oral dose is the
product of the AUC of the drug in the index species and
the predicted human CL, corrected by oral bioavailability
(F): Dose ¼ CL�AUCð Þ=F (5,16,24). Besides AUC, the
steady-state concentration (Css) or maximum concentration
(Cmax) may also be used as the systematic exposure (5,27).
The starting dose can be calculated as follows: Dose ¼
CLhuman � Css � tð Þ=F ; where τ is the dosing interval.

Mahmood et al. (26) proposed dose calculations using
the AUC in a species whose clearance (per kilogram of
body weight) is nearest to that predicted in humans. A
correction factor is then obtained by dividing the clearance
of the chosen species by the predicted human clearance.
Thus, the starting dose is defined by the following
equation: Dose ¼ AUCanimal � CLhumanð Þ=correction factor .

Collins et al. (32) applied the pharmacokinetic-guided
approach to three anticancer drugs, which reduced the phase
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I clinical trials for each drug by 12–24 months. However, a
few assumptions are made with pharmacokinetic-guided
approaches: (1) only the parent compound is active, and (2)
given equal plasma concentrations, the drug shows equal
pharmacological activity or toxicity in human and nonhuman
animal species. This results in the inability to account for
interspecies differences in pharmacodynamics, which are
extremely important to identify prior to phase I trials
considering the TGN1412 incident. Preclinical predictions of
both human PK and PD parameters are necessary to
accurately estimate a nontoxic yet efficacious FIH dose
(4,27).

PK/PD Model-Guided Approach

To avoid inaccuracy caused by interspecies differences
in exposure–response relationships, PK/PD modeling has
been utilized to estimate the FIH dose (4,16,27,33). Lowe
et al. (16) reported the estimation of human doses using a
four-step approach requiring multiple sources of informa-
tion. In the first step, by using in vitro and in vivo
pharmacological experiments, they set up the concentra-
tion–effect relationships to identify biomarkers, determined
PD parameters such as EC50, and developed the PD
models. The second step identified the interspecies differ-
ences in the concentration–response profiles, for both
desired and adverse effects. This included differences in
tissue distribution, tissue and plasma protein binding, blood
cell binding, and target receptor occupancy. In the third
step, human pharmacokinetic parameters, such as CL,
bioavailability, and plasma concentration–time profiles,
were predicted as described in “Prediction of Human
Clearance”, “Prediction of Bioavailability”, and “Prediction
of Human Plasma Concentration–Time Profiles” sections.
The final step was integrating human PK and PD models to
predict human dose–response relationships, which involved
two approaches. The simple one is the threshold model,
which assumed no response delay in the PD model. Based
on the predicted human PK profile, a dosing regimen was
designed to keep drug concentrations above the threshold
of efficacy (e.g., EC50) but below the threshold of adverse
effects. The other approach used a PK/PD model to
simulate the dose–exposure–response–time profiles, which
could incorporate the complex PD models.

Heimbach et al.(29) further improved the four-step
approach by incorporating formulation and biopharma-
ceutical parameters (e.g., Biopharmaceutics Classification
System), which made it possible to project the PK/PD
profiles of drugs with various dosage forms and properties.
They also demonstrated that the human PK/PD profile
could be projected using animal data from a single
species. It is worth mentioning that the PK/PD model-
based approach is especially successful for a well-studied
class of biotherapeutics such as monoclonal antibodies,
whose PK properties are usually uniform based on their
isotype. The receptor occupancy (RO), which can be
measured by in vitro experiments, may be used as the
biomarker for the human PK/PD model. When estimating
the starting dose, due to the downstream biological effect,
the RO value is recommended to be low for an agonist
and high for an antagonist (28).

Summary of FIH Dose Estimation

An accurate estimation of human starting doses is critical
for phase I trials. The assumptions, applicability, advantages,
and disadvantages of the above five approaches are
summarized in Table I. Although PK- and PK/PD-guided
approaches are increasingly used, it is strongly recommen-
ded that the NOAEL, MABEL, PK, and PK/PD modeling
and similar drug comparison approaches also be utilized to
obtain several estimated doses (5). Subsequently, all
toxicological, pharmacological, pharmacokinetic, and bio-
pharmaceutical information should be evaluated to deter-
mine the optimal FIH dose.

In order to use PK- and PK/PD-guided FIH dose
selection, human pharmacokinetic parameters (CL, bioavail-
ability, and AUC) need to be predicted. The following
sections summarize the available methods for human CL,
bioavailability, and PK profile prediction.

PREDICTION OF HUMAN CLEARANCE

The 17 approaches for human clearance prediction
discussed in this review are from three categories: interspecies
scaling, physiologically based in vitro–in vivo extrapolation
(IVIVE), and computational (in silico) approaches.

The interspecies scaling includes simple allometry (SA),
allometric scaling of CL of unbound drug, rule of exponents
(RoE), allometric scaling of drugs with renal and biliary
excretion, allometric scaling after normalization by in vitro
CL, multi-exponential allometry, the two term power equa-
tion, the fu corrected intercept method (FCIM), and the liver
blood flow method (LBF). Most interspecies scaling predic-
tions were empirical approaches and based on in vivo animal
data. However, additional animal and human in vitro
metabolism data have been introduced to allometric scaling
to improve the accuracy of prediction (8).

IVIVE predictions are physiologically based approaches.
Human clearance is extrapolated from in vitro metabolism in
human liver microsomes, hepatocytes, or human cDNA recom-
binant CYP450 isoenzymes by using a physiologically based
scaling factor (PB-SF). The IVIVE is further improved by
incorporating correction factors such as a drug-specific factor
(SF) derived from the animal CL, an empirical factor deter-
mined by a regression between human in vivo intrinsic CL
(CLint, in vivo) and human in vitro intrinsic CL (CLint, in vitro) or
protein binding in plasma and/or microsomes. For renally
excreted drugs, a physiologically based IVIVE approach
(20,34) was developed to predict human renal clearance (CLR).

Computational approaches and statistical tools such as
multivariate linear regression (MLR), principle component
analysis (PCA), partial least squares (PLS), and backpropa-
gation neural and artificial neural network (ANN) can be
employed to establish correlations between human CL and
animal CL or physiochemical properties of the compounds.

Interspecies Scaling

Simple Allometry

As shown in Table II, simple allometric scaling is based
on a power function CL=a×Yb, where Y may be the body
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weight (W) or body surface area and a and b are the
coefficient and exponent of the allometric equation,
respectively. For the compounds with high hepatic
extraction ratios, the hepatic clearance (CLH) is limited by
LBF. Since LBF is correlated with body weight across species,
SA is expected to be more predictive for compounds with
high CLH (14). This is supported by Tang’s global
examination of SA for CL prediction (10). Among 57
hepatically eliminated compounds, prediction accuracy
depended upon the value of CL: high CL (n=11) >
moderate CL (n=17) > low CL (n=29). The study also
revealed that CL prediction by SA was more accurate for
proteins (n=10) than nonprotein chemicals (n=102).
Consistently, Wang and Prueksaritanont (35) reported that
human CL of therapeutic proteins can be predicted
reasonably well by simple allometric scaling with a fixed

exponent of 0.8. On the other hand, as with tubular and
intestinal secretion, reabsorption, and metabolism, the
accurate prediction of renal (CLR) and bile clearance
(CLbile) using SA is difficult (19,20). A coefficient of
determination (r2), which is obtained from a linear
regression of log-transformed animal body weights and the
corresponding CL, has been reported in most allometric
scaling studies. Tang and Mayersohn (36) proved there is no
correlation between r2 and prediction accuracy of human CL
by using a mathematical model and literature data.

Allometric Scaling of Unbound CL

The rationale for predicting unbound CL (CLu) is that
plasma protein binding of many drugs varies from one
species to another and only unbound drug can be eliminated.

Table I. Assumptions, Applicability, Advantages, and Disadvantages of Five Approaches for FIH Dose Estimation

Method Assumptions Applicability Advantages Disadvantages

Simple allometry Doses scale 1:1
between species
when normalized to
body surface area
or body weight (2)

Scaling based on body
surface area: for most
small molecules. Scaling
based on body weight:
The therapeutic is
administered orally,
intranasally, subcutaneously,
or intramuscularly and the
dose is limited by local
toxicities. Proteins
administered intravascularly
with Mr >100 kDa (2)

Good safety record for
small molecule drugs;
easy to use

Arbitrary safety factor
makes the approach very
conservative. Neglect the
interspecies differences in
pharmacology, such as
binding affinity and potency

MABEL Starting with lowest
active dose is safer
that the starting with
NOAEL

Applicable to both
biotherapeutics and small
molecule chemical
entities; pharmacological
mechanisms and
knowledge are required,
for example, the binding
affinity to molecular targets

Based on pharmacologic
knowledge rather than
an empirical factor

Requires extensive
mechanistic data

Similar drug
comparison

Drug candidates with
similar chemical
structures have
similar PK and PD
properties and the
ratio of the starting
dose to the NOAEL
will be the same for
both compounds

Human PK data are
available for a drug similar
to the oneunder investigation

Easy to use; very limited
data are required

Only applicable to very
limited drug candidates

PK-guided
approach

Dose-limiting toxicities
are correlated with
PK parameters such
as plasma drug
concentrations and
AUC (32)

Human PK parameters such
as CL and bioavailability
are predicted from
preclinical data with a
reasonable accuracy.
In vitro data show no
dramatic differences in
pharmacology between
animals and human

Based on pharmacokinetic
properties rather than
an empirical factor

Neglect interspecies
differences in
pharmacodynamics;
depends on the prediction
accuracy of human PK
parameters

PK/PD modeling-
guided approach

PK/PD models
developed using
preclinical data can
provide a reasonable
simulation of human
PK/PD–time profile

This approach can be used
whenhumandose–exposure–
response relationships are
simulated by a mathematic
model

Interspecies differences in
both PK and PD are
considered; reduce the
reliance on empirical
safety factors

A lot of efforts are required
to establish and validate
PK/PD models
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Obach et al. conducted a comprehensive retrospective analysis
(Table II) to compare the allometric scaling of total CL (n=14)
and CLu (n=13) (12). Based on average fold errors (AFEs)
(1.91-fold for CL prediction and 1.79-fold for CLu prediction)
and the percentages of compounds falling within twofold error
(64% for CL prediction and 69% for CLu prediction),
prediction of CLu was slightly improved. This was supported
by a recent study, which compared the prediction performance
of allometric scaling for CL and CLu by evaluating 24
compounds (37). Whereas only 17% of predicted CL by SA
fell within twofold error, 62% of the CL values predicted by
unbound CL approach showed less than twofold error. In
another study, Mahmood compared allometric scaling of total
CL and CLu by analyzing the data of 20 drugs from literature
(38). Defining success as a difference between predicted
and observed CL of 30% or less, allometric scaling of CLu

did not show advantages. However, allometric scaling of
CLu is superior to allometric scaling of CL if the success
cutoff is set as twofold error (45% for total CL approach
and 55% for unbound CL approach). Thus, the cutoff
selection is critical for assessing the predictability of
various approaches.

Two Term Power Equation

Since the CL of compounds with low hepatic extraction
is not correlated with body weight, Boxenbaum and Fertig
(39) related CL of compounds with low hepatic extraction in
humans to two other physiological parameters: brain weight
(BrW) and maximum lifespan potential (MLP) (Table II). In
another proposed equation, the product of CL and MLP was
allometrically scaled with body weight. CL prediction studies
using this approach are limited.

Rule of Exponents

To improve the prediction of human CL by SA, based on
a comprehensive analysis of data of 50 drugs from at least
three animal species, Mahmood and Balian (3) developed the
rule of exponents. They introduced two correction factors
(BrW and MLP) into SA and proposed guidelines for the
selection of correction factors based on the exponents of the
simple allometry approach (Table II). In terms of accuracy of
RoE for human CL prediction, 42 out of 45 drugs fell within
twofold error compared to 35 out of 45 for the SA approach
(40). A recent comparative study of 68 compounds consis-
tently showed that RoE provided better predictions than
other allometric scaling methods and similar accuracies to
IVIVE, especially for low lipophilic and intermediate/high
clearance compounds (41). However, the performance of
RoE was controversial. Nagilla and Ward (42) comprehen-
sively evaluated the roles of correction factors, such as BrW,
MLP, glomerular filtration rate (GFR), uridine diphosphate
glucuronyltransferase (UDPGT) activity, and bile flow rate,
by using a dataset of 103 compounds. The results showed that
none of the correction factors resulted in improved predict-
ability. This was supported by the predicted oral CL of 24
compounds in Sinha's report (37). The RoE approach
resulted in only 37% of predicted human oral CL falling
within twofold error, suggesting that the predictability of RoE
somehow depends on the selection of datasets.

Allometric Scaling for Renally and Biliarily Excreted Drugs

Considering the complicated mechanisms of renal excre-
tion (filtration, reabsorption, and active secretion), SA may
not be used to predict human CL of drugs with high renal CL.
Mahmood (3,43) proposed a modified scaling approach
(Table II) to improve the predictability of drugs eliminated
renally by using GFR, kidney blood flow (Qkidney), body
weight (W), or kidney weight as the correction factor.
Similarly, bile flow rate or UDPGT activity was used as the
correction factor to predict CL of drugs with biliary excretion
(44). Both corrected approaches showed improved predict-
ability compared with SA and RoE, although the sizes of the
datasets were small (n=8 and n=10). For drugs undergoing
enterohepatic recirculation, prediction of CL is difficult
because less is known about the interspecies differences in
hepatobiliary transporter expression (16).

Allometric Scaling After Normalization by In Vitro Intrinsic
CL

The clearance of compounds with low or intermediate
hepatic extraction ratios is strongly dependent on both liver
blood flow and intrinsic CL (8). SA usually fails to predict the
CL of such compounds. Lave et al. (8,45) used the human
and animal in vitro intrinsic CL (CLint, in vitro) to correct
the in vivo animal CL (Table II). CLint, in vitro was derived
from in vitro incubation with liver microsomes or hepato-
cytes (CLint, in vitro=Vmax/Km). In order to measure the
Vmax (enzyme's maximum metabolic rate) and Km (the
substrate concentration at which the reaction rate is half of
the Vmax), an assay for the metabolite is required.
However, in the early drug development stage, a standard
of the metabolite is usually not available. Hence, the
CLint, in vitro is derived from the in vitro half-life (T1/2) of
the drug in liver microsomes or hepatocytes (46) as
described by the following equations. For the liver microsomal
assay, CLint, in vitro≈0.693/(T1/2× Cprotein)=Ke/Cprotein, where
Ke andCprotein are the rate constant of drug metabolism and the
concentration of the liver microsomes, respectively. For the
hepatocyte assay, CLint, in vitro≈Ke/Ccell, where Ccell is the
hepatocyte concentration. Lave et al. (14) used this approach to
predict human CL of 11 hepatically eliminated drugs. The
results showed that 82% of the predictions (9 out of 11) fell
within a twofold factor of the actual human CL values, with an
AFE of 1.6-fold. This was consistent with their earlier study, for
which eight out of ten drugs fell within twofold error (8).

Multi-Exponential Allometry

To eliminate uncertainty in selecting the preferred
correction factor used with SA, Goteti et al. (9) developed a
new multi-exponential allometric approach (MA) (Table II).
The assumption of MA is that CL is correlated with both
body weight and volumes of eliminating organs (liver and
kidneys). The proposed MA function is CL=a×Wb+c×Wd,
where a and b are the coefficient and slope from SA,
respectively; c and d are the coefficient and slope from MA,
respectively; and W is body weight. When the organ volumes
of the liver or kidney of preclinical species were plotted
against body weight, the slopes were approximately equal to
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0.9 (47). Hence, the MA slope d was selected as 0.9. By
analyzing training datasets (n=102 and n=50), a correlation
between c and a was established: c=a×(1–1.5b)/(1–0.5b). The
new approach improved predictability compared with SA
(AFE=1.19% and 76% of predictions with <twofold error for
training set, and AFE=1.39% and 54% of predictions with
<twofold error for test set). In another study, Goteti et al. (48)
compared MA, SA, and RoE approaches by analyzing 45
drugs with data from at least three species. The results
showed that the performance of MA was superior to SA but
inferior to RoE. However, the prediction accuracy of SA was
superior to that of MA when the exponent of SA was less
than 0.7.

Liver Blood Flow Approach

For hepatically eliminated drugs, the human CL can be
extrapolated by using the hepatic blood flow ratio between
humans and animals (Table II). In a comprehensive evalua-
tion of allometric scaling and LBF approaches using data for
103 drugs, Ward and Smith (49) found that the monkey LBF
was the most accurate approach for human CL estimation.
This method was superior to three-species and two-species
allometric scaling with or without correction factors, where
the correct predictions were 72% for monkey LBF versus 62–
66% for various allometric scaling. It was also superior to rat
and dog LBF (66% for both rat and dog LBF). These findings
were supported by Nagilla et al. (42) and Tang et al. (11). A
recent study showed similar results, concluding that the
prediction accuracy by mouse and monkey LBF methods
was better than that by rat and dog LBF methods (41).

Scaling from One or Two Animal Species

Based on the intravenous CL of 102 drugs in rats, dogs,
monkeys, and humans in a training dataset, Tang et al. (11)
developed one- and two-species scaling methods for human
CL prediction. The optimized equations are listed in Table II.
A test dataset of 26 compounds was used to examine the
methods. The results showed that the one- or two-species
approaches generally were at least as predictive as RoE or
SA. Controversially, Mahmood (50) tested the one- and
two-species approaches using another dataset of 45 drugs
and found that the prediction accuracy of RoE was
superior to that of one- and two-species approaches.
Recently, Deguchi et al. compared the prediction accuracy
of RoE and single-species scaling (fixed exponent=0.75)
for 12 drugs metabolized by UDP-glucuronosyltransferases
(UGTs) and found that one-species scaling from monkeys
was superior to RoE (51).

Vertical Allometry and fu Corrected Intercept Method

A compound exhibiting a large overprediction of human
clearance by allometric scaling is considered to follow vertical
allometry (52). The allometric scaling approaches corrected
by various factors and RoE are not able to accurately
predict CL of compounds following vertical allometry (10).
Empirical criteria (Table II) have been proposed by Tang
and Mayersohn (6) to identify vertical allometry: compounds
with ClogP (calculated octanol–water partition coefficient) > 2,

a ratio of unbound fraction in plasma between rats and humans
Rfu>5, and elimination by metabolism. The criteria can identify
the compounds following vertical allometry (VA) but cannot
improve the quantitative prediction of CL alone. Based on
empirical criteria, Tang and Mayersohn (10) hypothesized that
Rfu, ClogP, coefficient a, and exponent b from SA could be
potentially useful to quantitatively predict human CL and
reduce the inaccuracy of VA predictions. Using a dataset from
literature and a backward stepwise procedure, they established
a relationship between human CL, a, b, Rfu, and eClogP, which
resulted in a simplified equation:

CL ¼ 33:35 mL=min� a=Rfuð Þ0:77 ð1Þ
The new approach was named the FCIM. The perfor-

mance of FCIM was compared with those of SA and RoE.
The average absolute percentage errors by FCIM, RoE, and
SA were 78%, 185%, and 323%, respectively. In another
study, Sinha et al. (37) showed that 17%, 37%, 50%, and
62% of CL predictions (n=24) fell within twofold error by
using SA, RoE, FCIM, and unbound CL approaches.
Depending upon the SA exponent (b) value and the
method used, the percentage of predictions that fell within
twofold error increased. They were 79% when applying
FCIM for b<0.5 or b>1.2 and applying the unbound CL
approach for 0.5<b<1.2. Mahmood (40) also compared the
performances of RoE and FCIM by using a dataset
containing 40 drugs. Eighty-nine percent of predictions by
FCIM had percentage errors less than 200%, which was
superior to SA (78% of predictions) but inferior to RoE
(93% of predictions). The predictions of FCIM were more
accurate when 0.9<Rfu<2 or b>1.3.

In Vitro–In Vivo Extrapolation

With the progress of in vitro techniques in drug
development, especially the determination of in vitro intrinsic
clearance (CLint, in vitro) from human liver microsomes,
hepatocytes, and recombinant CYP450 isoenzymes, IVIVE
is attracting more attention from the pharmaceutical industry.
Different from the empirical allometric scaling approaches,
IVIVE is a physiologically based prediction approach and can
be validated by using human and animal tissues. Although the
predictive performances of early IVIVE approaches were
not satisfactory, this has recently improved with corrected
IVIVE approaches (14). Two excellent review articles have
summarized the advances in human hepatic CL prediction
using IVIVE (14,23).

IVIVE Using Physiologically Based Scaling Factors

The prediction of hepatic clearance from in vitro
metabolic data was proposed by Houston in 1994 (43). The
first step of this approach was to determine the intrinsic in
vitro CL (CLint, in vitro) from human liver microsome or
hepatocyte data as described in “Allometric Scaling After
Normalization by In Vitro Intrinsic CL”. CLint, in vitro was then
converted into CLint, in vivo using a PB-SF (Table II), which
was 3.1×109 hepatocytes per kilogram of human body weight
(120×106 cell/g liver×25.7 g liver/kg body weight) (47) or
1,028 mg microsomes per kilogram human body weight
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(40 mg microsome/g liver×25.7 g liver/kg body weight)
(12,53). The relation between hepatic clearance (CLH) and
CLint, in vivo depends on three mathematical models used for
describing the disposition of drug in the liver (23). For the
well-stirred model, the drug is assumed to be mixed instantly
in the liver. In contrast, for the parallel tube model, the drug
is only mixed in the small sections along the blood flow path
from the input to the output of the liver. In addition to these
two extreme cases, the dispersion model is used to describe
the flow dynamics of the drug based on analysis of the
biodistribution of hepatic residence time of solutes after a
bolus injection into the liver. CLH prediction accuracies of the
parallel tube and dispersion models were similar and both
were superior to the well-stirred model (54), although the
latter was widely used due to the calculation simplicity. For
drugs with high CLH, the dispersion model provided the most
reliable predictions (55).

Underprediction of human CLH was observed when the
PB-SF was used to scale the CLint, in vitro to CLint, in vivo. Ito
and Houston (13) predicted the CLH of 55 compounds from
human liver microsomal data and observed a ninefold
underprediction of the CLint, in vivo. The CLH scaled from
hepatocyte incubation, which offers a complete set of
clearance pathways, is expected to be more accurate than
scaling from liver microsomes and liver slices. For example, in
liver microsome incubation, inhibitory metabolites may
accumulate due to the lack of subsequent conjugation and
slow down the metabolism of parent drugs (56). Also,
UDPGT activity in liver microsome preparations is much
lower than that in isolated hepatocytes (57). Brown et al. (58)
predicted the CLint, in vivo of 37 compounds using human
hepatocyte data. As expected, a significant reduction in
prediction bias was obtained. However, on average, a 4.5-
fold underprediction of CLint, in vivo was still observed. Chiba
et al. (23) offered a few explanations for these results. First,
the preparation process and storage condition of the liver
tissues are likely responsible for the potential loss of
metabolic activity. Second, the extrahepatic metabolism
(e.g., in the intestine and kidneys) of drugs in humans can
significantly contribute to the total clearance, resulting in
CLH underprediction from in vitro data. Third, the
underprediction may also be caused by the lack of
appropriate correction of nonspecific binding of the drug
with microsomal lipids and cellular components. Finally,
clearance is more often underpredicted for substrates of
hepatic uptake transporters than other compounds, sug-
gesting that the transporter-mediated hepatic uptake can
increase CLH and contribute to the underprediction from
in vitro data. Although liver microsome and hepatocyte
systems caused similar underprediction of CLH (9-fold
versus 4.5-fold), the average P450 enzyme maximal activity
(Vmax) of human hepatocytes has been found to be
between 2- and 20-fold less than that of microsomes (59).
To minimize the underprediction of human CLH, the
IVIVE approach was modified by introducing some cor-
rection factors as discussed in the following sections.

IVIVE Corrected by Drug-Specific Scaling Factors

This approach requires human microsomal or hepatocyte
data, PB-SF, and a drug-specific scaling factor (the ratio of

CLint, in vivo and CLint, in vitro obtained from an animal species)
(13,60,61). The animal CLint, in vitro is obtained from animal
microsomal or hepatocyte incubation and the animal CLint, in vivo

is calculated from CLH, animal, which is derived from the
animal total CL. Ito and Houston determined the drug-
specific scaling factors of 33 compounds in rats and found
that the drug-specific factors improved the predictive
accuracy of human CLH. The AFE decreased from 6.17
to 2.33 and the percentage within twofold error increased
from 15.2% to 39.4%. In another study, Naritomi et al. (60)
used the drug-specific factors obtained from rats and dogs
to predict human CLint, in vivo of eight drugs. The results
showed that the rat and dog drug-specific factors reduced
the AFE from 4.02 to 1.57 and 1.68, respectively, and
increased the percentage within twofold error from 25% to
69% and 77%, respectively.

IVIVE Corrected by an Empirical Scaling Factor

Lave et al. (62) conducted a nonlinear iterative least
squares regression analysis on a training dataset to obtain the
best fit of human CLint, in vivo and human CLint, in vitro. The
average coefficient was determined as an empirical SF. The
SF was utilized to convert the human CLint, in vitro of drugs in
the test dataset into CLint, in vivo. The incorporation of the
empirical SF into IVIVE increased the percentage within
twofold error from 15.2% to 45.5% (n=33) (13). Using the
empirical SF, Zuegge et al. (63) found the AFE decreased
from 2.01 to 1.64 and the percentage within threefold error
increased from 77.3% to 95.5%. To further improve the
predictions, Fagerholm (64) used drug class scaling factors
(CD-SFs) to replace the single empirical SF. Based on
CLint, in vivo (low and high) and drug class (acid, neutral, and
base), the drugs were divided into six subgroups and the CD-SF
for each subgroup was estimated by least squares regression
analysis. Compared with the IVIVE using a single SF, CD-SFs
improved predictions: AFE=1.3 and percentage within
twofold error=76% (n=29).

IVIVE with Protein Binding Correction

Since only unbound compound is subjected to metabo-
lism, lack of protein binding correction may cause under-
prediction of CLH. To reduce the prediction bias, IVIVE
models were developed to incorporate factors such as the
fraction of unbound drug in plasma (fu, p), in liver microsomes
(fu, micro), or in hepatocytes (fu, hepa) (Table II). The unbound
fractions can be measured using in vitro assays (65) or
calculated using Hallifax equations (66). Obach (65) exam-
ined the effect of protein binding corrections on CL
predictions for 29 basic, neutral, and acidic compounds. For
basic and neutral compounds, human CL was well predicted
with or without both plasma and microsomal protein binding
corrections but including only fu, p resulted in poor predic-
tions. For the acidic compounds, IVIVE without protein
binding correction yielded poor predictions of human CL and
inclusion of both protein binding corrections improved
predictions. Hence, both plasma binding and microsomal
binding corrections are recommended. An alternative
strategy for protein binding correction is to add human
plasma to the incubation solution. Skaggs et al. (67)
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showed that correction with fu, micro and fu, p resulted in
57% of CL predictions within twofold error (n=7), but
liver microsome incubation in the presence of human
plasma increased predictions within twofold error to 71%
(n=7).

IVIVE of Clearance from Individual Metabolic Enzymes

Recombinant enzymes represent an alternative in vitro
metabolic system to hepatic microsomes or hepatocytes for
human CLH predictions (Table II) (68). This approach can
account for interindividual variation of P450 expression.
Furthermore, it avoids the batch-to-batch variation in the
metabolic activities of human hepatocytes and liver
microsomes.

To estimate CLint, in vitro from intrinsic CL in individual
recombinant P450 enzymes (CLint, CYPi), two approaches
have been proposed. In the relative abundance approach,
recombinant P450 enzyme activities are adjusted according to
levels of immunoquantified protein (61). The relative activity
approach utilizes a relative activity factor (RAF) (69). RAF is
the ratio of the metabolic rate of a specific marker in human
liver microsomes to that of a specific recombinant P450
enzyme. The equations for both approaches are listed in
Table II. Stringer et al. (68) predicted the CLint, in vivo of 72
drugs using the relative abundance or relative activity
approach, with or without protein binding correction. The
results showed that IVIVE predictive accuracy from recom-
binant P450 enzymes (AFE=1.53, n=72) was superior to
accuracy from liver microsome (AFE=2.32, n=41) and
hepatocytes (AFE=5.21, n=57). The most accurate CLint, in vivo

predictions, in terms of lowest bias and highest precision, were
obtained by using the parallel tube model, protein binding
correction, and the RAF approach.

IVIVE can predict CL of compounds metabolized by
non-P450 enzymes. Kilford et al. demonstrated the use of
IVIVE of glucuronidation-mediated CL from human liver
microsome incubation in the presence of both P450 and
UGT cofactors (70). Recently, Zientek et al. proposed an
IVIVE method to predict human aldehyde oxidase-mediated
CL using pooled human liver cytosol and liver S-9 fractions
(71).

Physiologically Based Approach for Renal Clearance
Prediction

The IVIVE approaches discussed above are not
applicable for renally excreted drugs. Allometric scaling
corrected with GFR and kidney blood flow was proposed
to predict CLR. However, the performance of the empirical
approach may not be satisfactory considering the interspecies
differences in unbound fraction, urine pH, active transport, and
fraction of reabsorption (freabs) (20). Based on in vitro passive
permeability (Pe), Fagerholm (20,34) proposed a permeability-
based classification system and established the relationship
between in vitro Pe and freabs. CLR was calculated using the
following equation, although the method was not validated
using data sets.

CLR � GFR� fu;p þ CLsecr � fu;b �QR

CLsecr � fu þQR

� �
� 1� freabsð Þ ð2Þ

If there is no active transport (CLsecr=0) and Pe is less
than that of atenolol (freabs=0):

CLR � GFR� fu;p

If there is no active transport (CLsecr=0): CLR �
GFR� fu;p � 1� freabsð Þ .

If Pe is higher than that of carbamazepine (freabs=1),
CLR=0

Computational (In Silico) Approaches

Besides the interspecies scaling and physiologically based
IVIVE, computational (in silico) approaches were also
developed for human CL prediction (Table II). Statistical
methods such as MLR (72), PLS (73), and ANN (63) have
been employed to quantitatively relate observed human CL
to in vitro animal data, in vivo animal data, in vitro human
data, or molecular descriptors.

Wajima et al. (72) selected rat and dog CL, molecular
weight, ClogP, and the number of hydrogen bond acceptors as
the descriptors for MLR analysis to establish a quantitative
relationship with observed human CL. The regression equa-
tion is listed in Table II. The authors claimed that the
performance of this approach is superior to allometric scaling.
However, it was criticized by Mahmood (3) because the same
dataset was used for regression analysis and performance
evaluation.

Recently, Yu created a fully in silico model to predict
total clearance of compounds in humans by using a k-nearest
neighbors technique (74). The model was developed by
utilizing a training set of 370 compounds and examined by a
test set of 92 compounds. The average prediction accuracy of
the test set was within twofold error. When the model was
applied to a collection of 20 drugs from literature, the
prediction accuracy was inferior to RoE but better than SA.
Since in silico models only rely on one- and two-dimensional
molecular descriptors, they are capable of rapidly screening
virtual compounds before chemical synthesis in early drug
discovery stages.

Summary of Human CL Prediction

To assist pharmacokineticists in method selection, we
summarize the assumptions, applicability, advantages, and
disadvantages of each approach in Table III. Most interspe-
cies scaling and IVIVE approaches are applicable to com-
pounds eliminated by hepatic metabolism, and reasonable
prediction accuracy has been achieved for compounds with
intermediate to high hepatic extraction. In contrast, accurate
prediction of human renal and biliary excretion is still
difficult, although this has improved with the incorporation
of correction factors such as GFR and bile flow into
allometric scaling. Physiologically based approaches have
been proposed to predict human renal and biliary CL.
However, their performances have not been widely examined
using comprehensive datasets.

The reported prediction accuracies of various
approaches were assessed by the percentage of predictions
that fell within twofold error (Fig. 1) and absolute average
fold error (AAFE) (Fig. 2). Generally, interspecies scaling
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Table III. Assumptions, Applicability, Advantages, and Disadvantages of 17 Approaches for Human CL Prediction

Method Assumptions Applicability Advantages Disadvantages

Simple allometry (SA) Relationships between
anatomy and physiologic
functions are similar
among mammalian species

Compounds with high
hepatic clearance;
therapeutic proteins

Simple and widely used Empirical method, requires
in vivo data from multiple
species, neglect interspecies
differences

Allometric scaling
of unbound CL

Interspecies differences in
protein binding decrease
the accuracy of prediction

Compounds with
interspecies differences
in protein binding

Minimizes interspecies
differences in protein
binding

Accuracy and reliability of the
published unbound fraction
in plasma (fu, p)

Two term
power equation

For compounds with low
hepatic extraction, the
product of CL and MLP,
or brain was allometrically
scaled with body weight

Compounds with low
hepatic extraction

Simple and only require
in vivo preclinical CL

Based on an empirical
assumption; not
commonly used

Rule of exponents (RoE) The prediction accuracy of
allometric scaling depends
on the exponents

Low lipophilic and
intermediate or
high clearance
compounds (41)

Provides a guideline for
selection of correction
factors

Its prediction accuracy
superior to that of SA
is still controversial

Allometric scaling for
renally and biliary
excreted drugs

For renal and biliary excreted
drugs, total CL is correlated
with not only body weight but
also renal or biliary
physiological parameters

Renal and biliary
excreted drugs

Minimizes interspecies
differences in renal
or biliary physiological
parameters

Active transport and
enterohepatic recirculation
are neglected

Allometric scaling
after normalization
by CLint, in vitro

Interspecies differences in
CLint,in vitro affect
prediction accuracy

Compounds with low
or intermediate
hepatic extraction ratios

Minimizes interspecies
differences in CLint,in vitro

Its predictability is controversial;
not suitable for compounds
eliminated by active secretory
processes (10)

Multi-exponential
allometry (MA)

CL is correlated with both
body weight and volumes
of eliminating organs
(liver and kidneys)

Compounds with an
exponent of SA b>0.7

Eliminates the uncertainty
around the choice of the
preferred correction
factor used with SA

Prediction accuracy is superior
to SA but inferior to RoE

Liver blood
flow method

Hepatic extraction ratios (EH) and
blood–plasma ratios keep
constant in monkey and human

Hepatically metabolized
compounds

Only requiresCLfrommonkey Neglect interspecies differences
in BP ratios and protein
binding

Scaling from one or
two animal species

A data-driven empirical
one-species method is more
predictive than empirical
LBF method

Hepatically metabolized
compounds

Only requires CL from one
or two species

Its predictability is controversial;
neglect interspecies differences
in metabolism and protein binding

fu corrected intercept
method (FCIM)

Rfu and ClogP, as well as
coefficient a and exponent
b from simple allometry,
could quantitatively
predict human CL; Rfu<10

Compounds with an
exponent of SA
b<0.5 or b>1.2

Simple; can be applied to
compounds following
vertical allometry

No solid physiological or
biochemical basis; neglect
interspecies differences in
metabolism

In vitro–in vivo
extrapolation (IVIVE)
using physiologically
based scaling factors

Drug metabolic enzymes
have comparable activities
under in vitro and
in vivo situations

Hepatically metabolized
compounds

Has a firmer physiological
basis than SA; requires
only in vitro data

CL is always underpredicted;
extrahepatic metabolism is
neglected

IVIVE corrected by a
drug-specific
scaling factor

Underprediction of CLH by
IVIVE keeps constant
across species

Hepatically metabolized
compounds

Partially corrects the
underprediction caused
by decreased in vitro
enzyme activities and
extrahepatic metabolism

Neglects interspecies differences
in extrahepatic metabolism,
protein binding, and active
transport

IVIVE corrected by an
empirical scaling factor

Underprediction of CLH by
IVIVE keeps constant
among different drugs

Hepatically metabolized
compounds

Partially corrects the
underprediction caused
by decreased in vitro
enzyme activities

Neglects drug-specific differences
in extrahepatic metabolism,
protein binding, and active
transport

IVIVE with protein
binding correction or
in the presence of
human plasma

Underprediction is caused
by the nonspecific binding of
the drug with microsomal
lipids and cellular components

Hepatically metabolized
compounds

Corrects the underprediction
caused by protein binding

Neglects extrahepatic metabolism,
active transport, and different
in vitro and in vivo enzyme
activities

IVIVE using
recombinant enzymes

Recombinant enzymes have
constant intrinsic CL under
in vitro and in vivo situations

Hepatically metabolized
compounds

Incorporates interindividual
variationofP450expression;
can predict CL of
compounds metabolized
by non-P450 enzymes

Underprediction was observed

Physiologically based
approach for renal
clearance prediction (34)

In vivo fraction of reabsorption
can be predicted from in vitro
passive permeability

Renal excretion drugs Interspecies differences in
unbound fraction, urine
pH, active transport, and
fraction of reabsorption

Not validated using comprehensive
data sets

Computational approaches:
multiple linear regression
(MLR), partial least
squares (PLS), artificial
neural network (ANN),
and k-nearest neighbors
approach (kNN)

Correlations can be established
between in vitro, in vivo animal
data, in vitro human data, or
molecular descriptors and
observed human CL using
statistical models

Rapid screening of virtual
compounds before
chemical synthesis in
early drug discovery stages

High-throughput, low costs,
in vivo data, and
experimental are not
always required

Black box model; predictive
performance is not acceptable
for some drugs
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and IVIVE approaches exhibit comparable prediction accu-
racies but the AAFEs of IVIVE approaches show higher
variation than those of interspecies scaling (Fig. 2), which is

likely due to the smaller datasets in IVIVE studies. In
addition, both Figs. 1 and 2 show that RoE and MA are
superior to SA while LBF is comparable to SA in terms of

Fig. 1. Percentages of human CL predictions fell within twofold error (the size of each data set is labeled
in brackets)

Fig. 2. Absolute average fold errors of human CL predicted by various approaches (the size of each data
set is labeled in brackets)
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twofold errors and AAFEs. Similarly, the incorporation of
drug-specific or empirical scaling factors decreases the
AAFEs of IVIVE by correcting the underprediction of
IVIVE. However, it is difficult to conclude which approach
is most accurate due to variations among datasets, including
dataset sizes (n ranges from 5 to 103), properties of
compounds (base, neutral, acid, and zwitterion), and
elimination mechanisms (hepatic metabolism, renal excre-
tion, and biliary excretion). Hence, a comprehensive
comparison of various approaches using a large and
exhaustive dataset is warranted to address the controver-
sies in human CL prediction. Obach et al. (75) have
presented a dataset including human intravenous PK data
of 670 drugs which might shed light on the assessment of
various approaches.

PREDICTION OF BIOAVAILABILITY

Oral administration is the most favorable route for drug
delivery due to convenience and patient compliance. However,
one key issue for oral drug development is the drug candidates'
bioavailability. Many lead compounds fail in the developmental
stages due to their poor bioavailability. The definition of
bioavailability is “the rate and extent to which the active
ingredient or active moiety is absorbed from a drug product
and becomes available at the site of action.” Bioavailability
is mainly determined by absorption and first-pass metabolism
(both intestinal and hepatic metabolism). As a result,
bioavailability (F) can be mathematically represented by
the following equation:

F ¼ FA � FG � FH ð3Þ
where FA is the fraction of drug absorbed, FG is the fraction
of drug that escapes intestinal metabolism, and FH is the
fraction of drug that escapes liver metabolism.

FH can be expressed as 1� CLH=QH . As discussed
above, human CLH can be predicted quite accurately using
interspecies scaling or IVIVE methods. Compared to hepatic
clearance, intestinal metabolism is rather limited due to the
low occurrence of CYP enzymes and low blood flow.
Therefore, in general, the intestinal metabolism can be
neglected. However, it could greatly decrease the bioavail-
ability of compounds that are subjected to conjugation (such
as sulfation and glucuronidation) or CYP3A4 metabolism.
Similar to hepatic metabolism prediction, intestinal metabo-
lism can be estimated using IVIVE from human intestinal
microsome or enterocyte systems. Several physiologically
based models have also been developed to estimate intestinal
metabolism. Badhan et al. developed a physiologically based
model incorporating geometric variations, pH alterations, and
heterogeneous expression and distribution of CYP3A and
PgP which predicted the FG of ten compounds with consid-
erable accuracy (76). Recently, Kadono et al. (77) established
a simplified method to predict human FG of highly permeable
CYP3A4 substrates by incorporating an empirical scaling
factor. Intrinsic CLs of nine model compounds in enterocytes
were normalized with midazolam intrinsic CL to obtain
CLm, index. A correlation between FG and CLm. index of
model compounds was then established to estimate the
empirical scaling factor.

Various in vitro, in vivo, and in silico computational
approaches have been developed to predict human intestinal
absorption and oral bioavailability. The in vitro methods
include the Caco-2 monolayer permeability assay (78), the
parallel artificial membrane permeability assay (PAMPA)
(79) and the immobilized artificial membrane (IAM) chro-
matographic assay (80). In silico models are divided into two
classes: quantitative structure–activity relationship (QSAR)
models and physiologically based pharmacokinetic models
(PBPK).

In Vitro Methods

Caco-2 Monolayer Permeability Assay

In this assay, Caco-2 cells derived from human adeno-
carcinoma colon cells are allowed to form a monolayer on a
polycarbonate membrane in a transwell device. The apparent
permeability coefficient (Papp) can be derived from the
following equation (78):

Papp cm=sð Þ ¼ F � VDð Þ= SA�MDð Þ ð4Þ

where F is the flux rate (mass/time), VD is the donor volume,
SA is the surface area for transport, and MD is the donor
amount at t=0.

A strong correlation was observed between in vivo
human absorption and Papp obtained from the Caco-2 assay
(n=35 and r=0.95) (78). The relationship was expressed as
follows:

FA% ¼ 1:95� ln Papp
� �þ 24:4 ð5Þ

The limitation of the Caco-2 permeability assay is that it
cannot accurately predict active drug transport due to the
under- or overexpression of the active transporters in Caco-2
cells (81).

PAMPA

PAMPA is a filter-supported artificial lipid membrane
system which is designed to evaluate the passive trans-
cellular permeability. The membrane was constructed using
a lipid composition (PC/PE/PS/PI/CHO/1,7-octadiene)
which is similar to that of the intestinal brush border
membrane (79). Papp can be calculated using following
equation:

Papp cm=sð Þ ¼ �2:303 � VD � VAð Þ= VD þ VAð Þ
� 1=S � tð Þ � log 1� F%=100ð Þ ð6Þ

where VD is the donor volume, VA is the acceptor volume, S
is the membrane area, t is the incubation time, F is the flux,
and F%=ODA/ODR×100. ODA is the optical density of the
solution of the acceptor compartment, and ODR is the optical
density of the reference solution.

FA can be estimated from Papp by the following equation:

FA% ¼ 1� exp 6:21� 105 � Papp

� �� �
� 100 ð7Þ
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A study of the PAMPA and Caco-2 permeability assays
revealed that they show comparable FA prediction accuracies
(82). The PAMPA assay is advantageous over the Caco-2
assay in terms of high-throughput screening and costs.
However, it would be difficult to predict drug absorption
potential of paracellularly or actively transported compounds
using PAMPA.

IAM

The IAM chromatographic assay is based on the
partitioning of drug molecules into artificial membranes.
IAMs are chromatographic surfaces composed of silica
particles, each containing a covalently conjugated monolayer
of phospholipids (such as phosphotidylcholine) (80). As a
result, this chromatographic surface resembles half of the cell
membrane bilayer and is used to mimic the lipid environment
of a fluid cell membrane. The solute capacity factor K'IAM

obtained from the IAM chromatographic assay was found to
predict drug absorption. K'IAM can be calculated by the
following equation:

K
0
IAM ¼ tr � t0ð Þ=t0 ð8Þ

where tr is the solute retention time and t0 is the column dead
time, which can be determined by a non-retained compound
such as citric acid.

Ketecha et al. (83) established a relationship between
logK'IAM and FA:

FA ¼ 100= 1þ 10logk
0
IAM50%=10logk

0
IAM

� �slope
� 	

ð9Þ

Similar to the PAMPA assay, the IAM chromatographic
assay is used to estimate passive transcellular permeation but
cannot accurately predict paracellular or active drug
transport.

In Vivo Methods

Although certain animal species may be used to predict
human oral absorption, it is challenging to predict oral
bioavailability using animal models when incorporating first-
pass metabolism. For instance, Cao et al. observed a
correlation (r2 = 0.8) between human and rat drug
permeability in the small intestine, whereas no correlation
(r2=0.29) was found in oral bioavailability between rat and
human due to the interspecies differences in the expression of
metabolic enzymes in the intestine (84). In addition, Akabane
et al. demonstrated that monkeys had significantly lower
bioavailability than humans for 8 of 13 tested compounds due
to higher intestinal metabolism in monkeys (85). Therefore,
in general, animal models might not be a reliable way to
predict human bioavailability due to the highly varied first-
pass metabolism between species.

In Silico Computational Models

Compared to in vitro and in vivo models, in silico
computational models are faster, simpler, more cost-effective,
and more suitable for high-throughput screening. During the last
two decades, a variety of in silico models have been developed

with different levels of complexity for the evaluation of
human intestinal absorption and oral bioavailability, selec-
tion of lead drug candidates, and guidance of formulation
optimization. Generally, in silico models can be divided
into two classes: QSAR models and PBPK models.

QSAR Models

Lipinski’s rule of five is the first in silico model to predict
oral absorption and permeability qualitatively (86). It sets
boundaries for acceptable absorption or permeability based
on drug properties such as molecular weight, number of
hydrogen bond donors, number of hydrogen bond acceptors,
and ClogP. Andrews et al. developed a quantitative structure–
bioavailability relationship (QSBR) which employed a step-
wise regression procedure to link human oral bioavailability
with the 82 substructural descriptors of 591 drug molecules
(87). The QSBR model demonstrated greater accuracy than
Lipinski’s rule of five in predicting human oral bioavailability,
and the identified substructural fragments crucial for bio-
availability could serve to guide drug design and synthesis.
Yoshida and colleagues used the ordered multicategorical
classification method using the simplex technique method to
determine physicochemical and structural factors that con-
tribute to oral bioavailability (88). By using those identified
physicochemical parameters relating to absorption and 15
structural descriptors relating to metabolism, they established
QSAR for the oral bioavailability of 232 drugs, with a correct
classification rate of 71%. In addition, the model predicted
the oral bioavailability of a separate test set of 40 compounds
with 60% accuracy.

PBPK Models

A variety of PBPK models have been developed and
validated, including the dispersion model, the compartmental
absorption and transit model, the advanced compartmental
absorption and transit (ACAT) model, the advanced
dissolution, absorption, and metabolism model, the GI
transit absorption model, and the Grass model. Huang et
al. have recently published a review of such models and
several commercially available software programs such as
GastroPlus™, PKSim®, IDEA™, and Simcyp®.

PREDICTION OF HUMAN PLASMA
CONCENTRATION–TIME PROFILES

When predicting the first-in-human dosing, special
attention is paid to the AUC after oral dosing, elimination
half-life, and peak-to-trough plasma concentration ratio.
This is because an estimate of exposure (AUC) is required
to ensure efficacy and safety. Accurate assessment of the
drug’s maximum concentration (Cmax) and trough concentra-
tion (Cmin) is useful to avoid unwanted toxicity and maintain
efficacious concentrations. Hence, early prediction of the
concentration–time profiles for humans is of great importance.
Currently, several methods have already been used to predict
concentration–time profiles in humans based on preclinical
data, such as the species-invariant time method (Dedrick plots),
the Css–mean residence time (MRT) method, and the PBPK
model.
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Species-Invariant Time Method (Dedrick Plots)

The general idea behind the species-invariant time
method originates from the allometric approach, and the
prediction performance depends on the allometric relation-
ships of the pharmacokinetic parameters across species. The
species-invariant time method is based on the assumption that
by normalizing the concentrations by body weights and
transforming the chronological time to the physiological time,
which is defined by the number of heartbeats or the number
of respirations an animal will have in its lifespan, the plasma
concentration–time curves should be superimposable in all
species. Dedrick first transformed chronological time to the
equivalent time (89) and Boxenbaum (89) later introduced
new units of pharmacokinetic time: kallynochrons, apolysi-
chrons, and dienetichrons. The transformation equations are
listed in Table IV. In the Dedrick plot using equivalent time,
the intravenous plasma concentration–time curve was trans-
formed by dividing the concentrations and time scales of
various species by dose (per kilogram of body weight) or
W0.25, respectively. In the Dedrick plot using kallynochrons,
apolysichrons, and dienetichrons as time units, b, c, and d are
the allometric scaling exponents of CL, Vdss, and CL×MLP,
respectively (90). The transformed concentration–time curves
of various species are superimposed and then back-
transformed to estimate human i.v. plasma concentration–
time profiles. The predicted human i.v. profile, in combination
with the estimated mean absorption rate constants and
bioavailability, was then used to simulate the oral

pharmacokinetic profile in humans. Mahmood and Yuan
(90) compared the accuracies of transformations via
equivalent time, kallynochrons, and apolysichrons for
predicting human CL, Vdss, and T1/2. They observed that
equivalent time was inferior to kallynochrons and
apolysichrons, which might be due to the fixed exponent of
0.25. Since the correction factors for Dedrick plot
transformations were derived from allometric scaling
exponents, it is not surprising that they observed
comparable prediction accuracy between allometric scaling
and Dedrick plots.

Css–MRT Method

Wajima et al. (91) developed a method to predict human
plasma concentration–time profiles based on the assumption
that profiles are similar among species, and therefore, the
curves normalized by Css and MRT from a variety of animal
species can be superimposed. In the first step, they demon-
strated superposition of normalized i.v. pharmacokinetic
profiles of preclinical species (Table IV). As such, they
normalized the time axis with the MRT and the concentration
axis with Css (Css=dose/Vdss). The superimposed curves were
then back-transformed to estimate human i.v. plasma con-
centration–time profiles using human Css and MRT values,
which were estimated from projected human Vdss and CL
values. The human i.v. plasma concentration–time profiles,
the projected mean absorption rate constants, and bioavail-
ability were utilized to simulate human oral plasma

Table IV. Predictive Approaches of Human Plasma Concentration–Time Profile

Method Equation Data required Dataset <twofold

Species-invariant
time method (90)

CL ¼ a�Wb Vss ¼ a0 �Wc

CL�MLP ¼ a00 �Wd

Plasma concentration–time profiles,
dose, CL, and Vdss in at least
two animal species

All categories

Equivalent time: TimeH ¼ TimeA � WH
WA

� �0:25

Conc:H ¼ Conc:A � DoseH
DoseA

� WA
WH

n=2 (99) 100% (AUC)

Kallynochrons: TimeH ¼ TimeA � WH
WA

� �1�b

Conc:H ¼ Conc:A � DoseH
DoseA

� WA
WH

n=3 (90) 67% (CL)

Apolysichrons: TimeH ¼ TimeA � WH
WA

� �c�b

Conc:H ¼ Conc:A � DoseH
DoseA

� WA
WH

� �c

Dienetichrons: TimeH ¼ TimeA � MLPH
MLPA

� WH
WA

� �c�d

Conc:H ¼ Conc:A � DoseH
DoseA

� WA
WH

� �c

Css–MRT method (91,92) Cman ¼ Css; man

Css; animal
�Aanimal � e�a�MRTanimal

MRTman
�t þ Css; man

Css; animal

� Banimal � e�b�MRTanimal
MRTman

�t

Css¼Dose
VdSS

MRT ¼ VdSS
CL

Plasma concentration–time profiles,
dose, CL, and Vdss in at least
two animal species

n=4 (92) 75% (AUC)
75% (Cmax)
50% (Cmin)
100% (t1/2)

n=4 (91) 100% (CL)
50% (CL)
75% (Vdss)

Human PK prediction
using PBPK model
(95,96)

Predict Kp (tissue composition-based method)
or experimentally measure in rats and
assume Kp, u, rat=Kp, u, human.

For hepatically eliminated compounds:
CLH is scaled from microsome or hepatocyte
data. For renally eliminated compounds:
CLR;u;human ¼ CLR;u;rat�GFRhuman

GFRrat .

Oral absorption: GastroPlusTM

Blood flow, in vitro intrinsic clearance,
tissue-to-plasma ratios, B/P ratio,
fraction unbound in plasma, solubility
and permeability information

n=19 (96) 83% (CL)
50% (Vdss)
75% (t1/2)
92% (AUC)
67% (Cmax)
100% (tmax)
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concentration–time profiles (92). Wajima et al. (91) assessed
the Css–MRT and Dedrick plot methods on four drugs.
Although the curves transformed by the Dedrick plot were
not superimposed among species, the plasma concentration–
time curves normalized by Css and MRT agreed well among
species. This confirmed the assumption that concentration–
time profiles are similar between human and animal species.
Fura et al. (92) applied the Css–MRT method to four
proprietary compounds. They observed that the predicted
values of AUC, Cmax, Cmin, and T1/2 of each compound were
within twofold error when using CL projected from the FCIM
method.

PBPK Model

Wide use of the PBPK model in drug discovery and
development has been limited by its mathematical complexity
and the labor intensive input parameters required. However,
recent advances in the prediction of hepatic CL and tissue–
plasma partition coefficient (Kp) and the availability of
simulation software have greatly improved the application
of the PBPK model in human pharmacokinetics prediction. A
PBPK model is usually composed of multiple tissue compart-
ments (e.g., lung, spleen, liver, gut, adipose tissue, muscle,
heart, brain, kidney, skin, testes, red marrow, yellow marrow,
and the rest of the body), which are linked together by blood
circulation. For most PBPK models, it is assumed that the
drug distributes instantaneously and homogenously within
each compartment, and drug uptake within each tissue
compartment is limited by blood flow. But some exploration
of diffusion-limited tissue models was also reported (24,25).
The physiological parameters required for the human PBPK
model are obtained from literature. The required drug-
specific input parameters include CLH, CLR, and Kp for each
tissue and absorption rate. For drugs eliminated by hepatic
metabolism, CLH is predicted by IVIVE or allometric scaling
as discussed above. For renally eliminated drugs, CLR is
obtained by using either allometric scaling or the GFR ratio
approach as described by Lin (93). The Kp for each tissue is
predicted by using the tissue composition-based models
(Poulin–Theil's equations, Berezhkovskiy's equations, Rodgers'
equations, or Arundel's method). For compounds that are
poorly predicted by the tissue composition models, the
experimentally determined animal in vivo Kp is used to
calculate animal unbound tissue–plasma partition coefficient
(Ku, p). Humans and animals are assumed to share equal
Ku, p. Usually, commercial software such as GastroPlus™
(Simulations Plus Inc., Lancaster, CA), PKSim™ (Bayer
Technologies, Leverkusen, Germany), or SimCyp™ (Sheffield,
UK) are used to predict the rate and extent of oral drug
absorption. The mechanism of GastroPlus™ is known as the
ACAT model (30,94), which is a physiologically based model
consisting of nine compartments corresponding to different
segments of the gastrointestinal tract. The ACAT model can
describe the release, dissolution, degradation, metabolism,
uptake, and absorption of a compound as it transits through
the different segments of the digestive tract. It is also used to
predict the human plasma concentration profiles after oral
dosing. Then, noncompartmental analysis is performed using
WinNonLin (Pharsight, Mountain View, CA) to calculate the
pharmacokinetic parameters (95). Jones et al. (96) compared

the prediction performance of the PBPK model and the
kallynochrons Dedrick plot by analyzing 19 compounds.
The prediction accuracy of the PBPK model was much higher
than that of the Dedrick plot. In addition, the PBPK approach
accurately predicted the multiphasic shape of the pharmacoki-
netic profiles for many compounds. Furthermore, De Buck et al.
(95) developed a PBPK model to predict human pharmacoki-
netics using 26 compounds. The prediction accuracies of AUC,
apparent volume of distribution after oral dosing (Vd/F), and
Cmax after oral dosing were 74%, 70%, and 65%within twofold
error, respectively.

PERSPECTIVES

Physiologically based approaches have been widely
utilized to predict human hepatic clearance based on in vitro
metabolism data. However, physiologically based prediction
of nonhepatic elimination such as renal, biliary, and intestinal
clearance is still limited. In most PBPK models, renal
clearance is determined by using either allometric scaling or
GFR ratio approach. Tubular secretion and reabsorption as
well as tubular metabolism of drugs are very difficult to
predict. More effort is required to establish the in vitro/in vivo
relationship for active secretion and to scale in vitro kidney
microsomal data to in vivo metabolic clearance. Similarly,
challenges posed by active transport, enterohepatic circula-
tion, and metabolism have resulted in very few attempts to
use physiologically based approaches to predict biliary and
intestinal clearance, and the predictability is poor (19). One
step to improve the prediction of biliary and intestinal
clearance is to identify the interspecies differences in
expression and activity of hepatic/bile and intestinal trans-
porters and metabolizing enzymes.

Currently, most PK/PD models assume only the parent
drug is responsible for the pharmacological activity and/or
adverse effects and the metabolites are inactive. However,
this is not true in most cases. To project more accurate
human dose–exposure–response–time profiles, the pharma-
cological activity and toxicity of the drug metabolites
should be determined and integrated into the PK/PD
modeling. Software such as Simcyp™ and GastroPlus™
have facilitated PK/PD modeling and FIH dose estimation.
Further software refinement, such as integration of popu-
lation PK/PD covariates, will make individual projection
and dosing possible. For example, preclinical PK/PD data
can be used to identify important covariates such as
biochemical measurements (e.g., GFR, albumin, urea, and
creatinine), organ functionality, genotype/phenotype, and
drug–drug interactions. Incorporation of these significant
covariates into the PK/PD models will facilitate the
accurate prediction of individual FIH doses.

It is well known that drug transporters play important
roles in the processes of absorption, distribution, and
excretion. However, active drug transport has been neglected
in most predictive approaches for human CL, Vdss, F, and
plasma concentration–time profiles and is one of the factors
responsible for prediction bias. For example, in addition to
elimination by metabolic degradation, transporter-mediated
hepatic uptake and canalicular excretion have been increas-
ingly recognized as potential rate-determining steps in hepatic
clearance. The in vitro assessment should account for

278 Zou et al.



clearance from both transporter-mediated uptake/excretion
and metabolic degradation (23). With knowledge of the
location and function of drug transporters and the substrates
for these transporters becoming more available, active drug
transport is expected to be increasingly incorporated into
prediction models.

CONCLUSION

In summary, accurate prediction of human CL and
bioavailability of drug candidates and estimation of FIH
doses are critical for a successful phase I clinical trial. We
have summarized and compared 5 approaches for FIH dose
estimation, 17 approaches to estimate human clearance, 6
approaches to predict bioavailability, and 3 tools to predict
PK profiles. The advantages, limitations, assumptions, and
predictability of these approaches were discussed. For CL
prediction, although allometric scaling is simple and practical,
it should be used with caution due to its empirical nature. On
the other hand, physiologically based prediction methods are
increasingly utilized because of their mechanistic rationale.
Although PK- and PK/PD-guided approaches are gaining
popularity, both mechanistic and empirical techniques should
be integrated to support the FIH dose selection. Dose
estimation always requires careful consideration of all of the
available information. There is no universal approach that
will work in every case.
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