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Abstract. Efficient power calculation methods have previously been suggested for Wald test-based
inference in mixed-effects models but the only available alternative for Likelihood ratio test-based
hypothesis testing has been to perform computer-intensive multiple simulations and re-estimations. The
proposed Monte Carlo Mapped Power (MCMP) method is based on the use of the difference in
individual objective function values (ΔiOFV) derived from a large dataset simulated from a full model
and subsequently re-estimated with the full and reduced models. The ΔiOFV is sampled and summed
(∑ΔiOFVs) for each study at each sample size of interest to study, and the percentage of ∑ΔiOFVs
greater than the significance criterion is taken as the power. The power versus sample size relationship
established via the MCMP method was compared to traditional assessment of model-based power for six
different pharmacokinetic and pharmacodynamic models and designs. In each case, 1,000 simulated
datasets were analysed with the full and reduced models. There was concordance in power between the
traditional and MCMP methods such that for 90% power, the difference in required sample size was in
most investigated cases less than 10%. The MCMP method was able to provide relevant power
information for a representative pharmacometric model at less than 1% of the run-time of an SSE. The
suggested MCMP method provides a fast and accurate prediction of the power and sample size
relationship.
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INTRODUCTION

Clinical drug development contains both learning and
confirming activities as outlined by Sheiner (1). Confirming
phases are most predominant in the proof-of-concept stage,
to inform decisions regarding the possible start of full
development, and at the end of the Phase III trials. Most
often, the confirmatory evidence is generated through testing
an alternative hypothesis against a null hypothesis by
traditional statistical methods (2). Pharmacometric models
(3–5) are increasingly expanding in drug development and
can provide advantages over traditional methods (e.g. T-test,
ANOVA) for example with respect to power (6). In
traditional analysis, the information content is often truncated
with pairwise comparison of a single dose group (often at the
highest dose) against the placebo group and a drug effect
evaluated at a specific time point (i.e. end of study), hence
leading to a loss of power. In a pharmacometric approach, a
higher power is achieved primarily by the possibility to
perform a longitudinal analysis, incorporating each subject’s
measurement on several occasions and e.g. integrating a drug
effect across time and/or dose levels.

A critical element to be addressed in the planning phase of
a confirmatory trial is to estimate the required size of the study
for answering the primary research question.While such sample
size calculations are relatively straightforward and fast for
traditional methods (7,8), a multitude of methods have been
suggested for linear models (9–12) and nonlinear mixed-effects
models, each of which comes with some drawbacks. The binary
covariate approach using the Wald’s hypothesis-testing method
(13–17) has been proposed for sample size calculation. This
approach assumes a symmetrical uncertainty distribution
around the parameter estimate and an accurate prediction of
the parameter precision. Other analytical solutions (18–20) have
also been suggested on the use of confidence intervals. The
standard for making inference based on nonlinear mixed-effects
models are however not Wald test but the likelihood ratio test
(LRT). Power calculation for the LRT has been described based
on multiple simulations and re-estimations (21–23). Sample size
calculations by repeated stochastic simulations and estimations
(SSE) remain however time-consuming and computer-intensive
(many replicated datasets for one tested sample size) and embed
drawbacks such as the assumption of both the correct degrees of
freedom for the hypothesis variable in consideration (e.g. the
degree of freedom for a random effect) and the distribution
shape around the null hypothesis (i.e. if the chi-squared
distribution is achieved). A need for correction for type I error
inflation has been demonstrated by Wählby et al. (24,25) to be
necessary for small sample sizes.
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This paper intends to propose a new power calculation
method—the Monte Carlo Mapped Power (MCMP)—using a
nonlinear mixed-effects approach that allows a complete
mapping of the power curve without the main impediments
of run-time intensity and need for Type I error correction, as
mentioned for the SSE methods. The approach adopted here
attempts to extend the same simulation and hypothesis-
testing settings as proposed previously but to only one single
step of simulation and estimation from a large simulated data
set. This reduction of computation workload and time is
based on the use of the objective function value of each
included subjects in the study.

METHODS

Nonlinear Mixed-Effects Model

The nonlinear mixed-effects modelling approach used in
population PK/PD studies allows recognition of multi-level
random variation present in the data. A nonlinear mixed-effects
model can be described as follows:

yijk ¼ f Xijk;Pij �; �i; kj
� �� �þ "ijk

"ijk � N 0; �2
� �

; �i � N 0;w2� �
and kj � N 0; p2

� � ð1Þ

where yijk denotes the kth (k=1,…,ni) observation at jth
occasion in ith individual (i=1,…,N). yijk is described by a
function of individual PK/PD parameters described by
Pij �; �i; kj

� �
in which θ is the typical value of the parameter

P and ηi and κj are the random effects that quantify the
difference between the typical and the individual-specific and
occasion-specific parameter values. It is also described by Xijk

(i.e. time, dose and exposure, demographic covariates) a
vector of independent variables. The residual error εijk
describes the deviation between the individual prediction
and the observation. In Eq. 1, the residual error is an additive
residual error model. Other residual error models exist where
the deviation is described for example as proportional or as a
combination of additive and proportional. The random effects
ηi, κj and εijk are assumed to be normally distributed with
mean 0 and variance–covariance matrices Ω, Π and ∑.

Principle of the MCMP Method

In NONMEM version 7.1.2 (26), the overall objective
function value (OFV) of a model for a given dataset, which is
approximately proportional to minus twice the natural loga-
rithm of the likelihood of the data, can be easily outputted as
individual objective function values (iOFV), such as:

OFV ¼
Xn

i¼1
iOFVi ð2Þ

where iOFVi denotes the ith individual contribution to the
overall OFV.

The MCMP method as outlined in Fig. 1 tests the
hypothesis of a possible drug/covariate effect using the
substitution of the overall OFV value by the summation of
iOFV values in the LRT. Given a defined study design of n
individuals per study group, a large simulated dataset is first
computed from a model containing the tested drug/covariate

effect. The generated data are then estimated with a single
full and a single reduced model (i.e. including or not the test
drug/covariate effect, respectively), providing a large pool of
iOFV values for the full model, denoted as iOFVFULL and for
the reduced model, denoted as iOFVREDUCED. In the LRT,
the difference in the overall objective function value (ΔOFV)
between two nested models can be redefined in each
individual, such as:

$iOFV ¼ iOFVREDUCED � iOFVFULL ð3Þ

$iOFV ¼
Xn

i¼1
$iOFVi ð4Þ

In the MCMP method, the total summation of n ΔiOFV
values (ΣΔiOFV) is used instead of the overall ΔOFV for
statistical inference in the LRT. This ΣΔiOFV is significant (i.e.
confirming the improvement in data fit caused by the addition of
the covariate or drug effect) when it is higher to the theoretical
value obtained from the χ2 distribution with degrees of freedom
corresponding to the difference in number of parameters
between the two contending models and with an assigned
significance level (i.e. 3.84 in ΔOFV for nominal significance
level of 0.05 with df=1).

To map the whole power versus sample size relationship
up to a predefined sample size, this procedure is repeated
10,000 times for each sample size of the power curve by
randomly sampling the sum of all ΔiOFV (e.g. in increments
of one subject per study group). This value of 10,000 was
selected to provide a low error contribution from sampling
noise. At each current design (i.e. each sample size), the
power is assessed as the percentage of ∑ΔiOFVs out of
10,000 times that is greater than the significance level
criterion defined by the LRT.

Method Evaluation

In order to evaluate the newly implemented method, the
power versus sample size relationship established via the
MCMP method was compared to traditional assessment of
model-based power via the SSE method for a selection of
sample sizes and models. For each sample size selected for
power assessment using SSE, 1,000 replicates were simulated
from the full model and both full and reduced models were
fitted to the simulated data. For each replicate, the difference
in the OFV was computed and submitted to the hypothesis
χ2 test. The number of replicates where the difference results
indicated a significant subgroup effect was counted. The ratio
of this number over the total number of replicates provides
the estimated power of the study for the tested sample size N.
The process was carried out repeatedly for a range of sample
sizes to cover different areas of the power curve obtained by
the MCMP method.

Simultaneously, to correct for the difference between the
actual and nominal type I error due to the deviation of the
LRT from its properties at small sample sizes (24), a
systematic type I error calibration was applied to the critical
ΔOFV value obtained from the SSE: 10,000 replicates of the
same design used in the SSEs were simulated from the
reduced model and both the full and reduced models were
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fitted to the simulated data. The ΔOFV for each replicate was
calculated and ranked to determine the nominal cut-off OFV
from the fifth percentile. This new, empirically determined,
OFV cut-off is used to reassess the power for the present
sample size: the percentage of ΔOFV greater than the new
cut-off OFV is taken as the power for the current sample size.
The type I error corrected SSE determined power, further
referred as calibrated SSE, was compared to the power
obtained from the MCMP method.

MCMP Dataset Size

The relation between the MCMP dataset size and impre-
cision in estimated sample size needed to reach 90% power
(N90%) was explored. Several MCMP dataset sizes (n=250, 500,
1,000, 2,000, 4,000, 8,000 and 10,000) were investigated in the
MCMP simulation step by simulating 1,000 replicates each from
a one-compartment infusion model with a binary covariate
effect on the clearance for four samples per individual. Each
replicate was then estimated under the full and reduced models.
For each MCMP dataset size, 1,000 MCMP curves were
obtained and used to compute the relative standard error, the
mean and the standard deviation in N90%.

Number of SSEs for Equivalent Relative Standard Error
in MCMP Power Prediction

For each dataset size described in the previous section, a
relative standard error (RSE) in power predicted by MCMP

is calculated based on the 95% confidence interval derived
from the same 1,000 MCMP curves simulated from the
previous infusion model. The number of SSE (nSSE) repli-
cates for equivalent RSE was computed from the following
relationship for the power of interest of bp� SE :

bp� z1�a
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibp� 1� bpð Þ
nSSE

s
ð5Þ

Simulation Models and Designs

All modelling and both graphical and statistical evalua-
tions were performed using the MCMP tool implemented
both in PsN version 3.2.12 (27) and MATLAB R2009b,
NONMEM version 7.1.2 (26) and run on a Linux cluster with
a Red Hat 9 operating system using OpenMosix and a G77
Fortran compiler. For run-time comparisons, a dedicated
node was used.

To compare the performance of the proposed MCMP
method with traditional SSE evaluations, PK/PD datasets
were simulated from different models and study designs. The
default model parameters and design conditions used for
simulation are summarized in Table I. Two basic pharmaco-
kinetic models were used as proof-of-concept to map the
power versus sample size relationship. The first example
involves a one-compartment intravenous (IV) bolus model
with first order elimination, with typical CL and V values
being 10 L/h and 100 L, respectively. The inter-individual

Fig. 1. A schematic representation of the MCMP method illustrating the three consecutive steps of one simulation and
estimation (SE), multiple Monte Carlo samplings (MC) and power mapping (MP) for each increment of sample size
according to an intended design with a specific effect size
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variability (IIV) in CL and V were assumed to be log-
normally distributed and the residual error was assumed to be
proportional. The second example involves a one-compart-
ment model with first-order elimination and zero-order
absorption where steady state conditions were assumed, with
typical CL and dosing rate values being 10 L/h and 1 mg/h,
respectively. The inter-individual variability was also assumed
to follow a log-normal distribution and the residual error was
assumed to be additive.

The implemented new method was also tested on
four distinctly different PK/PD models of varying com-
plexity: a linear disease model with a drug effect on the
slope and log-normal distributed IIVs on baseline, slope
and effect parameters, a nonlinear mixed-effects model in
Type 2 Diabetes Mellitus (28) describing the mechanistic
relationship between tesaglitazar exposure, fasting plasma
glucose (FPG), glycosylated hemoglobin (HbA1c) and
aging red blood cell (RBC) with drug effect added on
the rate of elimination (Kout) of FPG, a nonlinear mixed-
effects model describing the decrease of viral load in
HIV-infected patients after initiation of antiretroviral
treatment (29) and a nonlinear mixed-effects base model
with no original covariate inclusion, describing the

relationship between the plasma concentration of digoxin,
the estimated concentration at the effect site and the
reduction in heart rate during atrial fibrillation with a
drug effect linearly added on the heart rate baseline
value (30,31).

The hypothesis of a possible covariate/drug effect in all
performed models was tested by introducing in the simulated
model, a covariate/drug effect relationship to a parameter P
described as follows:

eP ¼ �1 � 1þ �2 � COVð Þ ð6Þ

where θ1 represents the population mean value of the
parameter and θ2 the fraction deviated from the mean
parameter value θ1 altered by the inclusion of the
categorical covariate COV (i.e. value of 0 or 1 according
to a predefined allocation design). In each example cited
above, two nested models (i.e. the full and the reduced
models) were used to fit the simulated dataset from the
full model containing this covariate or drug effect
relationship. The estimation method used in all examples
was the First-Order Conditional Estimation method with
Interaction (FOCEI).
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Fig. 2. Outcome of predicted power study in six nonlinear mixed-effects models at varying sample size per
study arm from stochastic simulation and estimation method (grey squares), stochastic simulation and
estimation method (black triangles) calibrated with type I error rate (dark red diamond) and MCMP
method (grey circle)
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Impact of η-Shrinkage on MCMP Power Prediction

To evaluate the impact of η-shrinkage, the one-compartment
IV bolus model was re-run using the MCMP method with a
reduced number of samples per subject (i.e. 2 versus 4 samples per
subject) and a residual error increased up to 30%. The total
sample size resulting in 90% power from theMCMPmethod was
selected for power assessment using a calibrated SSE. Power
predictions from both methods were then compared.

RESULTS

In all explored examples, the MCMP power and the
calibrated simulation and estimation based power resulted in
an overall good agreement between the two methods as
shown in Figs. 2 and 3. For power higher than 40%, the
power estimate obtained with the MCMP method was never
off by more than 15% compared to the calibrated SSE. As
expected for SSE, actual type I error rates for small sample
sizes were found to be above the nominal 5% cut-off value as
reported in Table II, resulting in up to ~30% power
difference between SSEs and calibrated SSEs.

In the estimation of the relations between MCMP dataset
size and precision of sample size estimates, a “true” number of
patients to be included for 90% power was estimated to be 62
patients with a precision in this number related to the MCMP
dataset size as illustrated in Fig. 4. Dataset sizes above 2000 and
at 10,000 individuals were found necessary to obtain a variation

of this number of patients less than 10% and 5%, respectively, as
shown in Fig. 5.

In Table III, 95% confidence intervals for increasing
MCMP dataset sizes show decreasing relative standard errors
in 90% power prediction. Dataset sizes of 250, 500, 1,000,
2,000, 4,000, 8,000 and 10,000 individuals show a relative
standard error in 90% power prediction of 6.3%, 4.2%, 2.7%,
2.1%, 1.4%, 1.1% and 1.0%, respectively.

Reduction of samples per subject and increase in residual
error for the IV bolus model resulted in shrinkage of 52% for
the CL parameter. From the MCMP method, at a sample size
of 210 individuals, power prediction from a calibrated SSE
was found to be 90.5% versus the power prediction of 90.1%
from the MCMP method.

Figure 2 shows comparisons between 3 different methods;
MCMP, SSE and calibrated SSE. The computer run-time for
generation of the results shown in the panel for the Type 2
Diabetes Mellitus model, an example where the estimation step
dominated overall run-time, was shortest for the MCMP. The
run-times for the SSE and calibrated SSE results in the same
figure were 168 and 1,773 times longer.

DISCUSSION

The MCMP method presented here is a simple and
efficient model-based method for power/sample size calcula-
tion. Tested on several types of data and for several simple
and real-life pharmacokinetic–pharmacodynamic models
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Fig. 3. Concordance plot for all models-pooled calibrated stochastic simulation and
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such as the diabetic and the HIV viral load model, the
methodology has demonstrated a good agreement in power
prediction compared to the one obtained from the traditional
simulation-based power calculations. This new methodology
also offers an alternative to the SSE which is time-consuming
and often subject to numerical computation issues frommultiple
simulations and estimations. The MCMP requires only one
simulation and estimation step, hence leading to an important

reduction in time and computation load (for example ca. 167
times compared to an SSE without calibration). This substitu-
tion is explained mainly by the fact that the overall objective
function value specific to a given model, design and dataset can
be described by the sum of individual objective values, allowing
iOFV values to be sampled instead of OFV values from
simulated studies.

One design aspect consists in allowing enough number of
random samples in order to have acceptable precision in the
study size estimates for a given power of interest. In all
explored examples, a number of 10,000 stochastic samples
results in less than 1% of relative standard error in the
number of subjects’ value to reach 90% power. Increasing this
number further did not reduce significantly the relative
standard error for reasonable MCMP dataset sizes (results
not presented). The size of the MCMP dataset must also be
considered in order to provide enough samples for the
stochastic sampling process, but also include enough individ-
uals at the estimation step to avoid an over fitted model to be
developed with biased values of the parameters estimated
(i.e. different from simulation parameter values). We found
that including 33 and 160 times the number of subjects
needed to reach the desired power is sufficient if relative
standard errors of 10% and 5% are acceptable for the study
size prediction’s precision. Naturally this size is not known
before the first MCMP dataset size is chosen, so if a too small
study size was chosen, a repeat evaluation with a higher
MCMP study size may be necessary to reach desired
precision. We also expect this ratio to be effect size- and
model-dependent, but from all explored examples, we found
a 50-fold of the number of subjects needed in the study for a
90% power assessment to provide acceptable relative standard
error values.

In terms of statistical inference, the newly developed
method is based on the likelihood ratio test, available in all
nonlinear mixed-effects software and recognized as standard
for test hypothesis analysis in pharmacokinetic–pharmacody-
namic modelling and simulation. This feature allows making
stronger inference based on the log-likelihood change in each
parameter of the model and in their respective correlations,
unlike power calculation methods derived from optimal
design coupled to the Wald test. The latter method is usually
based on power computation derived from the expected log-
likelihood change from a change in one parameter (i.e. the
hypothesis-testing parameter), assumes symmetric confidence
intervals and that the parameters estimates are unbiased. The
MCMP method, unlike the Wald test, allows the use of
estimation models that are different from the simulation
model. In addition, because changes in several design
parameters range and distribution are reflected in the final
iOFV values used to make inference in the likelihood ratio
test, the prediction in power derived from the MCMP method
is dependent on the assigned design and on the different
levels of randomness of the parameters (i.e. variability in
population, uncertainty on parameters), hence providing a
flexible tool for rapid sensitivity analysis. More importantly,
the possibility to include different possible sources of bias in
the model jointly with a random sampling implemented in the
MCMP method could result in a more tempered and realistic
prediction in power calculation, often correcting the “opti-
mistic” power calculation derived from an optimal design

Table II. Actual Significance Levels of False Covariate Inclusion or
Drug Effect Detection Corresponding to a Nominal Level of 0.05,
versus the Number of Patients Per Arm

Models
Number of
patients per arm

Type I
error rate (%)

One-compartment,
IV bolus model

5 8.8
7.5 7
12.5 6.8
25 7.2
37.5 5.9
50 6.2
125 4.6

One-compartment,
zero-order input model

2 8.87
6 6.54
10 6.23
20 6.03
24 6.16
30 5.46
36 5.72
40 5.36
46 5.66
52 5.71
60 4.86
66 5.24
80 5

Linear disease,
slope effect model

10 8.53
20 5.42
30 5.76
44 5.44
60 5.16
80 5.02
120 4.8

Indirect transit compartment
model (FPG-HbA1c)

2 6.5
5 5.4
10 4.9
15 4.3
20 6.01
25 6.1
30 5.7
35 5.8
40 5.3

HIV viral load,
bi-exponential model

25 5.2
45 4.9
65 5
82 4.9
100 4.9
115 4.9

Digoxin two-compartment,
linear effect model

4 20.44
8 15.58
14 13.34
20 13.09
30 13.67
50 12.66
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approach. Another advantage with the MCMP method is that
it is straightforward to change estimation method (as long as
the estimation method includes evaluations of the individual
contribution to the log-likelihood). This is not trivial for the
methods based on the Fisher information matrix (FIM) (32–
35) because an analytic solution, i.e. FIM calculated without
simulations, is only available for the FIM based on the first
order approximation (36). It is possible to derive an
asymptotic FIM with other estimation methods (37,38) as
well but these methods include simulations and the advantage
in speed with the FIM-based methods over the MCMP
method will be lost.

From the investigations on several models, the MCMP
method was found to be a good approximation of the
outcome of a calibrated SSE for power in the main region
of interest (i.e. 80–90%). Also as illustrated in the result
section, it may be less precise in other regions, in particular
for powers lower than 20%. A possible explanation of
discrepancies at these low powers is suggested by the
omission of the estimation step for each sample size of the
MCMP power curve. A nonlinear mixed-effects maximum
likelihood estimator, like NONMEM, is asymptotically nor-
mal in its estimates with respect to the number of individuals.
However, the MCMP method does not acknowledge the
asymptotic differences between different sample sizes since
the parameter estimates, hence the iOFV values, are not re-
estimated, but used such as from a big dataset down to a
smaller dataset. This is nothing that is unique for the MCMP
method; indeed every method that uses this type of scaling

without estimation, e.g. Fisher Information methods, will
suffer from this unwanted property.

Furthermore, scaling sample size without estimation will
assume the same bias (size and direction) as the bias from
estimation with the big data set (which will be asymptotic,
when n→∞, towards the pure bias from the estimation
method used, given the model, parameter values and the
design). The effect on the power due to this assumption is
much harder to predict because the bias might change sign
and/or size differently between sample sizes and parameters.
However, a reasonable rule of thumb could be that the size of
the bias, especially for small n, will be under predicted and
the major power effect from this assumption will be at small
n, which will not be as likely to occur for most studies and
their target power. However, as it can be seen from Fig. 2, the
agreement between the MCMP and a calibrated SSE is good
even when the samples sizes for 80–90% power are ca. 10–50
subjects per arm. Even smaller sample sizes are often fast to
estimate and therefore more applicable for a full LRT
inspection of the power. Finally, the reduction of number of
samples per individual and the increase of residual error,
hence the impact of higher shrinkage, did not result in a
different power prediction from a calibrated SSE-based one
for power assessment in the 80–90% range.

Regarding the need for type I error assessment, the
dataset sizes at which the MCMP is run in estimation are in
the region where the calibration indicates a close to nominal
type I error magnitude. This is the reason why no type I error
calibration was necessary with the MCMP. However, the
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Fig. 4. Box-plots of number of patients distributions required for 90% power from 1000
power curves simulated from seven dataset sizes using the one-compartment infusion
model with an effect size set to 35%. The solid bold line corresponds to the median, the top
and bottom of the box the 25th and 75th percentiles and the whiskers to the maximum and
minimum of the number of patients to be included. The dashed line corresponds to the
"true" number of patients needed to reach the power level in this example
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MCMP method only claims to remove the dependence on
sample size of the type I error and does not acknowledge
other reasons for why a type I error rate can deviate from the
nominal such as model misspecification. This was however
not the case for most examples investigated in this manuscript
since the simulation and the full estimation model were
identical.

A limitation to the usefulness of MCMP as a substitute
for SSE is for studies where the test is not based on a
stratified covariate. The power of a test for differences
between groups, where the relative group sizes are not
known beforehand, cannot be reliably calculated by MCMP.
Further, the MCMP method does not inform on any design
flaw that will make a model numerically unidentifiable.
Performing a few simulations and re-estimations with the

decided sample size from the MCMP method could be used
as a confirmation of numerical identifiability.

In terms of clinical application, recent comparisons made
between the pharmacometric model-based power assessment
approach versus traditional statistical tests (6,39–41) show
that the power computation using pharmacometric models
results in a significant reduction in sample sizes compared to
the traditional trial approach. One of the primary reasons is
that model-based power calculation methods relate closely to
the longitudinal data upon which the model has been
developed. Consequently, integration of all available meas-
ures collected successively during the clinical trial increases
the information content upon which the inference is made.
This approach, contrary to traditional statistical methods
which discard all information between the starting and final
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Fig. 5. Relationship between relative standard error (RSE) of the estimate for number of
patients needed to achieve 90% power (N90%) versus the ratio of dataset size (N=250, 500,
1,000, 2,000, 4000, 8000 and 10,000 total patients) and N90%

Table III. Number of SSEs for Equivalent Precision in 90% Power Prediction with the MCMP Method

MCMP
dataset size

Ratio MCMP
dataset size
over N90% Median

95th confidence
Interval (CI)

Relative standard
error (RSE%)

Number of SSE for
equivalent RSE

250 4 90.5 [73–97.5] 6.3 22
500 8.1 90.6 [80.0–96.3] 4.2 49.2
1000 16.1 90.3 [83.3–93.7] 2.7 124.6
2000 32.3 90.4 [85.2–93.3] 2.1 203.3
4000 64.5 90.4 [87.3–92.8] 1.4 440.8
8000 129 90.5 [88.2–92.3] 1.1 785
10,000 161.3 90.4 [88.5–92.3] 1 922.3
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measurement times, hence making difficult to interpolate,
does not restrictively treat the inference as a punctual but
rather as a continuous outcome. As a result, power consid-
erations with model-based approach present the possibility to
detect a specific predictor (i.e. covariate or a drug effect) and
to provide valuable insights of the predictor behaviours (e.g.
estimation with all dose levels of a dose–response relation-
ship). These two advantages along with the possibility to
simultaneously analyse multiple endpoints interpreted as
mechanistically connected (e.g. simultaneous analysis of
FPG and HbA1c in the diabetic example) substantiate the
learning and confirming properties of model-based approach
as suggested by Sheiner (1) in his drug development
paradigm. The immediate consequences of such an approach
are a reduction in costs and a reduction in risks to expose
patients unnecessarily to experimental procedures. Finally,
faster time computation of the MCMP method can be used to
highlight more often the prognostic value of these power
calculation methods in future clinical trials planning and is
believed to increase the opportunity for rapid evaluation of
alternative study designs and to facilitate more sensitivity
analysis in clinical drug development. The development of
more effective methodology for power calculations applied to
nonlinear mixed-effects models are hence believed to lead to
more informative and efficient clinical trials.

CONCLUSION

A new rapid and easily implemented method for power
calculations with respect to the likelihood ratio test in
nonlinear mixed-effects models was outlined and tested. The
proposed MCMP method allowed to obtain a complete
power curve with no further calibration of Type I error and
was found to considerably shorten the time for sample size
calculations compared to the traditional approach based on
multiple simulations and re-estimations.
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