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SUMMARY
The continuous monolayer of intestinal epithelial cells (IECs) lining the gut lumen functions as the
site of nutrient absorption and as a physical barrier to prevent the translocation of microbes and
associated toxic compounds into the peripheral vasculature [1]. IECs also express host defense
proteins such as intestinal alkaline phosphatase (IAP), which detoxify bacterial products and
prevent intestinal inflammation [2-5]. Our laboratory recently showed that IAP is enriched on
vesicles that are released from the tips of IEC microvilli and accumulate in the intestinal lumen [6,
7]. Here, we show that these native ‘lumenal vesicles’ (LVs): (i) contain catalytically active IAP
that can dephosphorylate lipopolysaccharide (LPS), (ii) cluster on the surface of native lumenal
bacteria, (iii) prevent the adherence of enteropathogenic E. coli (EPEC) to epithelial monolayers,
and (iv) limit bacterial population growth. We also find that IECs upregulate LV production in
response to EPEC and other Gram-negative pathogens. Together, these results suggest that
microvillar vesicle shedding represents a novel mechanism for distributing host defense machinery
into the intestinal lumen, and that microvillus-derived LVs modulate epithelial-microbial
interactions.
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RESULTS AND DISCUSSION
A defining feature of the IEC apical domain is the array of microvilli known as the brush
border, which extends into the intestinal lumen [1]. Within the microvillus, the apical
membrane and underlying core actin bundle are linked by myosin-1a (Myo1a), a membrane-
binding actin-based motor [8, 9]. Our previous studies suggest that Myo1a applies force to
the apical membrane, leading to the accumulation of membrane at microvillar tips and
‘shedding’ of vesicles into the lumen [6, 7]. In mice lacking Myo1a, LVs are reduced in
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number and exhibit perturbations in morphology and composition [7]. Proteomic studies
revealed that native LVs are enriched in IAP [7], a host defense factor that reduces the
toxicity of LPS and other bacterial compounds, limits toll-like receptor-4 (TLR4) signaling,
and prevents mucosal inflammation [2-5, 10]. The absence of IAP also leads to alterations in
gut microbiota [11]. Thus, IAP plays a critical role in preventing mucosal inflammation and
maintaining gut homeostasis.

LV-associated IAP dephosphorylates LPS
Given the evidence implicating IAP in gut host defense and homeostasis [2-5, 10, 11], we
hypothesized that IAP-enriched LVs produced by microvilli regulate epithelial-microbial
interactions. To test this proposal, we first sought to determine if LVs could dephosphorylate
the pro-inflammatory bacterial product, LPS. Dephosphorylation of LPS reduces the ability
of this compound to activate TLR4 on host cell membranes [2, 10]. Our laboratory
previously developed methods for isolating native microvillus-derived LVs from rodent
small intestine [7]. Native vesicles isolated with these methods are able to dephosphorylate
LPS from Escherichia coli serotype O55:B5 in a concentration dependent manner, which
was sensitive to the IAP inhibitor, L-phenylalanine (L-phe) (Fig. 1A) [12]. This activity was
not specific to E. coli O55:B5 LPS as assays with other LPS variants also gave rise to robust
phosphate release (Fig. 1B, black bars). Purified IAP added at equivalent units of activity
(0.1 U IAP = 10 μg LV, data not shown) demonstrated a comparable response (Fig. 1B, gray
bars). Kinetic analysis of phosphate release from P. aeruginosa and E. coli LPS (substrates
that supported the highest and lowest activities, respectively) revealed that P. aeruginosa
LPS gives rise to higher rates of phosphate release at lower substrate concentrations (i.e.
exhibits a lower KM; Fig. S1). Thus, LV-associated IAP is catalytically active and can
dephosphorylate LPS from a variety of Gram-negative species.

LVs physically interact with lumenal microbes
Because LVs are able to chemically modify bacterial compounds (Figs. 1A, B; S1), we next
sought to determine if these vesicles could interact directly with lumenal microbes. To
address this question, we examined resuspended pellets produced during native LV
preparations from rat intestinal lumen wash using negative stain transmission electron
microscopy (TEM). The resulting images revealed rod-shaped bacteria coated or in contact
with clusters of material that resembled small vesicles (Fig. 1C). We labeled the same
fraction with an anti-IAP antibody, a membrane dye (DiD), and DAPI (to label bacteria) and
imaged samples using confocal microscopy (CM). Consistent with the presence of
microvillus-derived LVs, we found that microbe-associated material was highly enriched in
IAP and DiD (Fig. 1D).

To analyze minimally processed lumen wash material for the presence of LV/microbe
complexes, we also employed a modified form of fluorescence-activated vesicle sorting
(FAVS)[7, 13]. Raw lumen wash from rat small intestine was allowed to settle at 1 × g and
then passed through a 40 μm filter to remove large particulate matter. Samples were then
labeled as in Fig. 1D and applied to the flow cytometer. FAVS analysis revealed that 99% of
all DAPI-labeled particles are associated with some level of IAP signal (P4, Fig. 1E).
Double-positive particles were further analyzed to select for populations with low (P5, Fig.
1F) and high (P6, Fig. 1F) levels of IAP enrichment. Imaging of post-sort ‘P6’ material
revealed numerous examples of rod-shaped bacteria surrounded by IAP-enriched puncta
(Fig. 1G). Thus, the LV/microbe complexes observed in conventional lumen wash
preparations (Fig. 1C, D) are most likely formed in the lumen and not as a result of
centrifugation or other processing.
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LVs prevent EPEC adherence to IECs
Because LVs bind directly to lumenal bacteria, microvillar vesicle shedding could serve as a
host defense mechanism capable of preventing the adherence of pathogenic bacteria that
target the IEC apical surface. To test this idea, we sought to determine if LVs impacted the
ability of enteropathogenic E. coli (EPEC, strain E2348/69) to infect human IECs (HT-29
and CACO-2BBE cells) in culture. EPEC uses a type III secretion system to inject factors
into host cells that lead to microvillar effacement, which in turn enables intimate adhesion to
the apical surface, an event essential for EPEC pathogenesis [14]. We incubated confluent
monolayers of HT-29 cells with ~1×105 colony forming units (CFU) EPEC/ml media in the
presence or absence of 200 μg LVs/ml media (see Supplemental Experimental Procedures).
After a 3 hr incubation, monolayers were stained and then imaged using CM (Fig. 2A, B) or
scanning electron microscopy (SEM, Fig. 2C, D). Consistent with a previous report [15], we
found that IAP was enriched on the surface of bacteria bound to the cell monolayer,
independent of the presence of actin pedestals (arrowheads, Fig. 2A, B). Confocal images
were further analyzed by counting: (i) the number of EPEC organisms bound per unit area,
independent of stage of attachment (Fig. 2E), and (ii) the number of micro-colonies per unit
area (Fig. 2F) [16]. Both indices showed that LVs significantly reduced EPEC attachment to
HT-29 monolayers (Fig. 2E, F). Similar results were observed when experiments were
carried out with CACO-2BBE cells (not shown). SEM on CACO-2BBE cultures confirmed
that EPEC actin pedestal formation was reduced in the presence of LVs (Fig. 2C, D).
Neither fixing LVs nor inhibiting LV-associated IAP activity with L-Phe impacted the
ability of vesicles to limit EPEC attachment to HT-29s (Fig. 2E, F). Finally, purified IAP
had little impact on the number of bacteria bound to the monolayer surface (Fig. 2E, F).
Thus, LVs prevent EPEC from intimately attaching to IECs in culture via a mechanism that
does not depend on IAP catalytic activity.

Bacteria and bacterial products activate pro-inflammatory NF-κB signaling [17]. Thus, we
sought to determine if LVs were capable of preventing activation of NF-κB signaling in
response to EPEC. A hallmark of NF-κB pathway activation is translocation of the
transcription factor RelA into the nucleus [4]. We transfected HT-29 cells with EGFP-
tagged human RelA [18], incubated cells in serum free media for 3 hrs, and then scored the
fraction of transfected cells with nuclear RelA. Under these conditions, 14% of cells
expressing the construct demonstrated RelA in the nucleus (Fig. 2G). In cells treated with
EPEC, nuclear localization of RelA is observed in 31% of expressing cells, compared with
21% in EPEC-exposed cells treated simultaneously with 200 μg LVs/ml (Fig. 2G). The
attenuated response observed here is likely due to the fact that IECs limit expression of cell-
surface receptors such as TLR4, to prevent constitutive pro-inflammatory signaling [19].
Together these data indicate that LVs inhibit interactions between adherent pathogenic
bacteria and IECs, and limit the downstream NF-κB signaling that would otherwise be
triggered by these interactions.

LVs limit bacterial population growth
Direct association with microbes might also enable LVs to impact bacterial viability. To
investigate this possibility, liquid cultures with ~2.5×104 CFU EPEC/ml were treated with
either 0 or 50 μg LVs/ml and incubated overnight; OD600 was measured at 10 min intervals.
While addition of LVs did not prevent initiation of log growth in EPEC (t = 4 - 8 hr), the
maximum OD600 achieved in the presence of LVs was significantly reduced (Fig. 3A, black
lines). We carried out similar growth assays with bacterial isolates derived from native
lumenal material using MacConkey selection [20]. As with EPEC, native isolates entered
log phase approximately 4 hr into the assay, but inclusion of 50 μg LVs/ml reduced the
maximum OD600 (Fig. 3A, red and blue lines). 16S ribosomal subunit DNA sequence
analysis showed that both commensals used in this assay were members of the genus
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Escherichia, most likely E. coli (not shown). Further experimentation revealed that the
impact of LVs on bacterial population growth is not mediated by IAP or its catalytic activity
(Supplemental Text 1; Fig. S2A). Moreover, LVs were not reducing the concentration of
nutrients available to growing bacteria or otherwise conditioning the culture environment
(Supplemental Text 1; Fig. S2B). Adding LVs to stationary phase EPEC cultures also led to
a striking decline in OD600 over a similar 16 hr time course (Fig. 3B, orange lines).
Comparable results were obtained with stationary EPEC cultures that were first replenished
with fresh growth media (Fig. 3B, dark red lines). Finally, CFU analysis of culture end
points revealed that LVs most likely reduce OD600 values by accelerating bacterial death
(Supplemental Text 2; Fig. 3C). Together, these results indicate that LVs limit the
population density of commensal and pathogenic E. coli in a manner independent of the
catalytic activity of IAP or other enzymes.

EPEC stimulates LV production
All of our assays with native LVs isolated from rodent small intestine (Figs. 1-3) indicate
that LVs likely function as a host defense platform. As many host defense pathways and
processes are regulated by bacterial toxins or intact bacteria [21, 22], we sought to determine
if LV production was controlled in a similar manner. For these experiments, we developed a
culture model of microvillar vesicle shedding using CACO-2BBE cells [23-25]. CACO-2BBE
cells polarize, form a well-ordered brush border, and demonstrate robust microvillar vesicle
shedding similar to native IECs, as indicated by the accumulation of small vesicles (Fig.
S3A) containing LV markers, IAP and annexin A13b [7], in culture media (Fig. 4A). When
CACO-2BBE cells were exposed to ~1×106 CFU EPEC/ml for six hours, total cellular levels
of IAP increased dramatically (Fig. 4B), consistent with previous work in zebrafish [26].
EPEC exposure also significantly increased the amount IAP-enriched LVs released into
culture media (Fig. 4C). Accumulation of IAP in the 100,000 × g pellet likely represents
bona fide vesicle shedding, rather than microvillar fragmentation, as no actin is observed in
these fractions (Fig. 4C). Additionally, CACO-2BBE cells expressing the Myo1a-TH1
domain (TH1 DN), which acts as a dominant negative inhibiting the function of endogenous
Myo1a [27], do not release IAP-enriched vesicles into culture media (Fig. 4C). We also
found that vesicle shedding was stimulated, albeit to a lesser extent, by Shigella, another
Gram-negative enteric pathogen (Fig. S3B) [28]. However, vesicle shedding was not
stimulated by EPEC-conditioned media [29], heat-killed EPEC, or 10 μg/ml E. coli O55:B5
LPS (Fig. 4C). These findings indicate that microvillar vesicle shedding is upregulated in
response to EPEC exposure, and that this response requires live, intact bacteria.

Conclusions
Previous work investigating the physiological function of IAP has focused on the activity of
this enzyme as a soluble or cell-associated host defense factor in the gut lumen [2-5, 30].
The findings reported here suggest that microvillar vesicle shedding is a mechanism for
distributing IAP activity into the mucous layer or gut lumen. Deploying IAP in this manner
would enable chemical modification of bacterial toxins (i.e. dephosphorylation of LPS; Figs.
1A, B; S1) at sites distal to the apical surface of IECs. However, LVs also limit the
attachment of pathogenic bacteria to IECs and inhibit bacterial population growth (Figs. 2,
3; S2). Moreover, IAP expression and LV production are upregulated by pathogenic Gram-
negative bacteria (Figs. 4, S3). Based on these data and the fact that trillions of microvilli
extend from the surface of IECs, we propose that microvillar vesicle shedding represents a
powerful mechanism for limiting the potentially harmful impact of microbes and associated
pro-inflammatory compounds that accumulate in the intestinal lumen. Future studies must
focus on defining mechanisms that regulate LV production in response to microbial signals,
mechanisms responsible for the impact of LVs on bacterial viability, and the role of LV
production in animal models of gut disease.

Shifrin et al. Page 4

Curr Biol. Author manuscript; available in PMC 2013 April 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

1. Enterocyte microvillus-derived lumenal vesicles (LVs) detoxify bacterial toxins

2. LVs bind directly to bacteria and prevent pathogenic attachment to epithelial
cells

3. LVs limit population growth of both commensal and pathogenic bacteria

4. LV production is a constitutive process, but is upregulated by bacterial
stimulation
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Figure 1. LVs dephosphorylate LPS and interact with native lumenal bacteria
(A) LVs release phosphate from E. coli O55:B5 LPS in a concentration dependent manner;
phosphate release is reduced by the IAP competitive inhibitor L-phenylalanine (L-Phe). (B)
LVs (200 μg LVs/ml) and purified IAP (2 U/ml) differentially dephosphorylate LPS derived
from various Gram-negative bacterial species. Data represent mean ± SEM. (C) TEM
imaging reveals vesicle-like particles in close association with native lumenal bacteria from
rat LV preparations. Bar, 200 nm. (D) CM imaging reveals IAP enrichment (green) on
membranes (red) associated with DAPI-stained bacteria (blue). Bars, 2 μm. (E) Pre-sort
input material was analyzed for staining with both anti-IAP (LVs) and DAPI (bacteria) using
the P4 gate. (F) P4 material was sorted using gates for IAP (P5, low IAP enrichment) and
dual stained material (P6, high IAP enrichment). (G) CM images of sorted P6 material show
native LV/microbe complexes (green = IAP, blue = DAPI). Bar, 2 μm.
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Figure 2. LVs prevent EPEC attachment to IECs
(A, B) CM images of HT-29 monolayers treated with EPEC ± LVs stained for IAP (green),
F-actin (phalloidin, red) and bacteria (DAPI, blue), show striking enrichment of IAP
surrounding attached bacteria. Most EPEC in non-LV treated samples (A) form micro-
colonies and are associated with actin pedestals (arrows), indicating intimate attachment,
whereas this rarely occurs in the presence of LVs (B). Arrowheads in A, B denote examples
of EPEC superficially attached to the monolayer, indicated by the absence of pedestal
formation. Bars, 5 μm. (C, D) Representative SEM images of CACO-2BBE cells demonstrate
EPEC intimately associated with the cell surface in the absence (C), but not the presence of
LVs (D). Bars, 1.67 μm. (E) The number of EPEC attached to HT-29 cells is significantly
reduced in the presence of LVs, LVs fixed in paraformaldehyde, and LVs with IAP activity
inhibited by L-Phe, but not in the presence of purified IAP (*p < 0.05). (F) LVs also reduce
the number of micro-colonies formed. (G) Nuclear translocation of EGFP-RelA is increased
in HT-29 cells incubated with EPEC, an effect which is partially ameliorated by treatment
with LVs.
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Figure 3. LVs inhibit bacterial population growth
(A) Incubating both EPEC and native intestinal bacterial cultures with 50 μg LVs/ml
reduces OD600 achieved at stationary phase (t = 8 - 16 hr) following log growth (t = 4 - 8
hr). Black lines = EPEC, blue and red lines = native E. coli. (B) Stationary phase EPEC
cultures incubated with LVs show a reduction in OD600 compared to untreated samples over
the course of 16 hrs, both in cultures with nutrient-depleted media (orange lines) or fresh
media (dark red lines). Traces represent averaged recordings from multiple experiments (n =
3 - 8). (C) LVs reduce the number of viable bacteria (CFU), as sampled at the end of
cultures started with 2.5 × 104 CFU/ml and incubated for 16 hrs or stationary cultures
incubated for 16 hrs. *p < 0.05 vs. untreated.
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Figure 4. EPEC stimulates LV release from IECs
(A) LVs accumulate in CACO-2BBE cell culture media over time. Media was subject to
ultra-speed centrifugation and 100,000 × g pellets were processed for western blotting with
probes for IAP and annexin A13b; whole cell homogenates (WCH) from each time point
were processed in parallel and probed for actin. (B) Whole cell IAP expression levels
increase upon exposure to EPEC. (C) EPEC stimulates increased LV production from
CACO-2BBE cells, indicated by the presence of IAP in the LV containing 100,000 × g pellet
fraction. EPEC-stimulated LV production is attenuated by expression of a Myo1a dominant
negative construct (TH1 DN). Shedding requires intact, live bacteria, as EPEC-conditioned
media (CM), heat-killed (HK) EPEC, and purified LPS fail to stimulate LV production.
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