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 Structural Equation Modeling Highlights 
the Potential of Kim-1 as a Biomarker for 
Chronic Kidney Disease 
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ate five CKD models of the Fisher 344 rat and identify rela-
tionships between measured variables and estimates of 
kidney damage and kidney function.  Results:  All models 
identified strong relationships between a biomarker for 
CKD, kidney injury molecule-1 (Kim-1) and kidney damage, 
in the Fischer 344 rat CKD model. Models also indicate a 
strong relationship between age and renal damage and dys-
function.  Conclusion:  SEM can be used to model CKD and 
could be useful to examine biomarkers in CKD patients. 

 Copyright © 2012 S. Karger AG, Basel 

 Introduction 

 Chronic kidney disease (CKD) is a major public health 
problem due to its high prevalence; its association with 
high mortality, high morbidity, and low quality of life 
 [1–5] . Despite much recent effort and research in the field 
of CKD, there remains a need for improvements in ther-
apeutics and identifying and/or predicting patient out-
comes. In addition, there is a great need for earlier iden-
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 Abstract 

  Background:  Chronic kidney disease (CKD) is a major public 
health problem, and despite continued research in the field, 
there is still a need to identify both biomarkers of risk and 
progression, as well as potential therapeutic targets. Struc-
tural equation modeling (SEM) is a family of statistical tech-
niques that has been utilized in the fields of sociology and 
psychology for many years; however, its utilization in the bi-
ological sciences is relatively novel. SEM’s ability to investi-
gate complex relationships in an efficient, single model 
could be utilized to understand the progression of CKD, as 
well as to develop a predictive model to assess kidney status 
in the patient.  Methods:  Fischer 344 rats were fed either an 
ad libitum diet or a calorically restricted diet, and a time-
course study of kidney structure and function was per-
formed. EQS, a SEM software package, was utilized to gener-
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tification and awareness of CKD, as only 3–5% of pa-
tients with stages 1–3 are aware that they have kidney 
disease  [6] . Eddy and Neilson  [7]  indicate two main areas 
to be addressed, the need to identify both at-risk and ear-
ly-stage patients and to develop more effective treatment 
approaches to combat CKD.

  Structural equation modeling (SEM) is a ‘family of 
powerful and flexible statistical techniques for examin-
ing complex research questions’ and analyzing the re-
lationships between multiple variables  [8, 9] . The basic 
concept of SEM is to design a hypothesized model of rela-
tionships between variables and then evaluate if the ex-
perimental data supports that model. SEM has two key 
parts: the measurement model, which defines the rela-
tionships between measurable variables and non-mea-
surable latent factors, and the structural model, which 
delineates the path links and coefficients between and 
among the latent variables  [10] . SEM has some major ad-
vantages as compared to other statistical techniques: (1) 
it allows for the examination of complex, multivariate 
questions beyond simple correlations among single sets 
of variables, and (2) it is not limited by measurable vari-
ables, but it allows for the utilization of latent factors, i.e. 
factors that cannot be measured or observed on their 
own, but that can be expressed by measurable variables 
 [11] . This advantage adds an increased level of sophistica-
tion in examining complex relationships. In addition, 
SEM is able to accurately measure unreliable events be-
cause it is able to define and quantify an error measure-
ment that is indicative of errors, such as biological vari-
ance and errors in data acquisition. While most datasets 
are imperfect, SEM is unique in its ability to compensate 
for this issue; other statistical approaches such as multiple 
regression and observed variable path analyses are un-
able to account for these flaws  [11] .

  A measurement model defining relationships between 
measurable variables and latent factors is created, and 
then a step-by-step process is implemented to assess and 
fine-tune the model through the addition of relationships 
between latent variables. The model is examined using 
the SEM software package to evaluate how well the hy-
pothesized model reflects the data. An iterative proce-
dure is used to estimate model parameters, such as co-
variances, variances, and coefficients of regression that is 
guided by the decrease in the value of the difference be-
tween the observed covariance matrix and the theoretical 
covariance matrix computed from the parameters in the 
model  [9] . The adjustments continue by the iterative pro-
cess until the predictive values converge towards the ob-
served true values of the parameter  [9] . Once convergence 

occurs, the model is evaluated using both statistical and 
theoretical tests.

  Although SEM has been utilized in the fields of sociol-
ogy and psychology for many years, its use in the biolog-
ical sciences is relatively novel, but recognized  [12] . Re-
search in the field of CKD has advanced far beyond ex-
amination among variables of simple correlations. The 
pathophysiology of the disease is complicated, involving 
an interplay of cardiovascular and renal factors. Thus, 
there is a pressing need to be able to examine these com-
plex relationships and interactions. SEM could generate a 
CKD model that identifies novel biomarkers and poten-
tial therapeutic targets. Ultimately, SEM could be utilized 
to create a predictive, bedside model that would allow the 
physician to plug in measurable values and glean infor-
mation about the patient’s current renal status and prog-
nosis. Ultimately this information would be valuable in 
the prevention and management of CKD.

  Methods 

 Animals 
 Male Fischer 344 rats were fed an ad libitum (AL) diet; this is 

an established model of chronic renal dysfunction  [13]  that has 
been used by our laboratory  [14, 15] . Importantly, age-dependent 
alterations in renal structure and function can be attenuated by 
lifelong caloric restriction (CR)  [16] ; this adds an additional con-
trol for this model. In this model, renal dysfunction occurs be-
tween 18 and 24 months  [17, 18] . A time-course study was utilized 
to examine age-related structural and functional changes in the 
kidneys of rats between the ages of 4 and 24 months. In addition, 
there was a 24-month-old CR group of Fischer 344 rats that was 
fed a CR diet. CR was initiated with a 10% CR at 10 weeks until 15 
weeks, and then increased to 25–40% restriction. Metabolic cages 
were utilized to collect 24-hour urine for measurements of urine 
volume, albumin (commercially available kit from BioAssay Sys-
tems), and kidney injury molecule-1 (Kim-1)  [19] . Animals were 
anesthetized with 87 mg/kg ketamine and 13 mg/kg xylazine, 
then weighed, and sacrificed. Blood collection was by cardiac 
puncture once the abdominal cavity was opened. Blood was cen-
trifuged 300  g  for 15 min at 4   °   C. BUN was measured with a com-
mercially available kit (BioAssay Systems), which utilizes a chro-
mogenic reagent that forms a colored complex in the presence of 
urea. Serum creatinine was measured with a commercially avail-
able kit (BioAssay Systems) based on picrate forming a red-col-
ored complex with creatinine. Kidneys were removed and renal 
structure was assessed by blind histological evaluation in which 
kidney tissues were examined and scored from 0 to 4 (0 = normal; 
4 = extensive damage) for glomerulosclerosis (GS) and tubular 
damage. For these studies, animals were purchased from the NIA 
at the different ages and sacrificed within 1 week of arrival; all as-
says were performed simultaneously for all samples. All animal 
studies were in compliance with the guidelines for animal welfare 
regulations and conformed to institutional standards.
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  Data Analysis 
 SEM was performed utilizing EQS 6.1 for Windows (Multi-

variate Software, Inc.), to compare the proposed, hypothetical 
model with the set of data from the Fischer 344 rat. Through a 
step-by-step process using EQS, a CKD predictive model of the 
Fischer 344 CKD rat data was generated. Variables that were eval-
uated for use in the model included body weight, kidney weight, 
kidney to body weight ratio, urine volume, BUN, serum creati-
nine, creatinine clearance, urine creatinine, urine albumin, ratio 
of urine albumin to urine creatinine total urine protein, Kim-1, 
ratio of Kim-1 to urine creatinine, GS, and tubular damage ( ta-
ble 1 ). Based on preliminary inspection of the data, several vari-
ables including albumin, Kim-1, albumin/creatinine and Kim-1/
creatinine were found to have a log-normal distribution; accord-
ingly, the logarithm (base 10) of these variables was used in the 
analyses. Prior to modeling, variance inflation factors (VIF) of 
the variables were computed to detect potential multicollinearity, 
which occurs when there is a strong linear correlation among the 
predictor variables. When these are highly correlated, it becomes 
difficult for the model to determine which predictor(s) is (are) af-
fecting the response. Variables having VIF values  1 10 were re-
moved from consideration, except for the albumin/creatinine ra-
tio (ACR) which was included in two models for comparison, de-
spite having marginal to high VIF values ( table  2 ). Covariance 

matrices were constructed from the variables and used as input 
for the analysis  [20] .

  Exploratory factor analysis was performed initially to deter-
mine how many latent variables would be needed to explain the 
variance and covariance among the observed measures. The ob-
served variables were then associated with the latent variables 
based on the factor loading analysis to establish initial models. 
Lagrange multiplier or Wald tests were used as necessary to re-
specify the initial model. The Lagrange multiplier (LM statistic) 
helps to determine the overall effect of adding new relationships 
(variances or covariances) to the model, while the Wald test can 
indicate which parameters should be removed to improve the fit. 
Through the step-by-step process, the model generated was deter-
mined to be a valid, good-fitting model of the rat data based on 
both a statistical evaluation of classical SEM parameters of overall 
fit values and a theoretical evaluation. Model parameters and co-
efficients generated in the EQS package were confirmed identical 
to those obtained with LISREL (version 8.80; Scientific Software 
Int.) and AMOS (version 17.0.0; Amos Development Corp.).

  Results of the final models were used to generate a set of factor 
score weights that are the regression coefficients estimated for 
predicting a latent variable from a set of observed variables. These 
coefficients were then used to calculate an index for each latent 
variable (i.e. kidney damage and kidney function) as a weighted 

Table 1. T he impact of age on renal structural and functional indices in male Fischer 344 rats

A ge, months

4 8 12 18 24 24-CR

Body weight, g 34587 379816 40987 427814 42189 31586
BUN, mg/dl 26.682.3 21.882.3 22.783.5 28.984.4 50.083.8 31.384.5
Creatinine clearance, ml/min/g kidney 2.6180.05 2.2980.41 2.6880.73 2.4880.84 0.97080.228 1.9880.34
GS 0.0080.00 0.5080.29 1.0080.00 1.2580.25 3.580.29 0.580.29
Kidney weight, g 2.2980.05 2.4280.19 2.5880.08 2.8480.05 3.4380.31 2.2480.08
Kidney/body weight, !103 6.6380.06 6.3580.29 6.3180.16 6.7080.35 8.1680.80 7.0980.19
Kim-1, pg/ml 12483 11482 146819 234827 9628632 147833
Kim-1/creatinine, �g/g 5.3380.54 5.3380.40 5.4980.87 12.581.7 1738239 27.685.3
Serum creatinine, mg/dl 0.69380.021 0.84780.123 0.82980.258 0.93480.286 2.2380.61 0.98780.175
Total protein, mg/dl 2.0080.12 1.6580.09 2.4280.35 2.2480.29 5.9481.18 0.93880.262
Tubular damage 0.5080.29 1.2580.25 1.0080.00 1.2580.25 3.2580.48 0.2580.25
Urine albumin, mg/dl 7.3680.16 5.9780.22 21.583.5 16.683.6 125829 9.1881.42
Albumin/creatinine, g/g 3.1780.30 2.8080.18 8.0881.28 8.8782.00 2258132 17.382.4
Urine creatinine, �mol/kg/days 6.0080.40 5.5580.34 5.9680.17 5.2680.41 3.3180.55 2.9980.37
Urine volume, ml/day 10.181.0 11.381.3 10.480.2 13.580.9 28.886.2 19.681.2

Mal e Fisher 344 rats were fed an AL diet or a CR diet. Time-
course study was performed to assess functional and structural 
damage. Rats fed the AL diet were evaluated at 4, 8, 12, 18, and 24 
months (4-, 8-, 12-, 18-, and 24-AL); rats fed the CR diet were eval-
uated at 24 months (24-CR). Each value represents the mean 8 SE 
from 4 animals. To more accurately represent the center and 
spread of values for Kim-1, Kim-1/creatinine, urine albumin and 
albumin/creatinine, means were calculated from the log10 trans-
forms; the antilog of the mean is shown in the table. Standard er-
rors for these variables were approximated as the antilog of the 

margin of error for 95% confidence intervals around the log-trans-
formed means. Functional parameters of the kidney were mea-
sured, including blood urea nitrogen (BUN), serum creatinine, 
urinary albumin, and creatinine clearance. The 24-AL group had 
the greatest impairment of function, which was corrected in the 
24-CR group. Structural damage was assessed by blind histologi-
cal evaluation, in which a score between 0 and 4 was given for glo-
merulosclerosis (GS) and tubular damage (0 = normal and 4 = 
extensive damage). GS and tubular damage were high in the 24-AL 
group, but were back to baseline in the 24-CR group.
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sum of the corresponding observed variables. Latent variable in-
dices were computed for each rat and then averaged for each age 
group. The ratio of the average latent score for damage to the av-
erage latent variable score for function was also calculated.

  Results 

 The aged AL rats (24-month AL) showed characteris-
tics analogous to those seen in the CKD. A dramatic in-
crease in urine volume was seen in the 24-month AL rats 
as compared to 4- to 18-month AL rats; this finding is 
supported by presence of polyuria in CKD  [21]  ( table 1 ). 
Kidney function was assessed by BUN, serum creatinine, 
urine albumin, and creatinine clearance ( table 1 ). BUN, 
serum creatinine, and urine albumin were all significant-
ly higher in 24-month AL rats, while creatinine clearance 
was significantly decreased. Changes in BUN, serum cre-
atinine, urine albumin, and creatinine clearance were 
prevented in the 24-month CR rats (24-month CR). The 
average blinded histology scores of the 24-month AL for 
GS and tubular damage were higher than those of the 4- 
to 18-month AL rats, and inflammation and tubulointer-
stitial fibrosis were noted in the 24-month AL as com-
pared to the other groups ( fig. 1 ). Interestingly, the func-

Table 2. V ariance inflation factors (VIFs) for predictor variables 
in models

Variable M odel

1 2 3 4 5

Alb/Cr – – 10.10 13.24 –
UAlb 5.57 4.89 – – –
BUN 2.57 2.97 3.44 3.38 2.86
CreatCl 2.97 2.68 3.22 3.09 3.27
GlomScl 5.1 5.93 7.14 7.05 5.25
Kim-1/Cr – 5.01 – 8.16 –
Kim-1 4.81 – 5.25 – 6.84
SCreat 6.35 6.61 6.17 6.65 6.15
TotProt – – – – 6.37
TubDamage 4.11 4.89 5.41 4.96 7.04
UCreat – – – – 3.00

VIF s are measures of multicollinearity in model predictor 
variables. Although there are no mutually agreed upon limits to 
VIF, values >10 indicate high multicollinearity. There was an ac-
ceptable degree of multicollinearity in models 1, 2 and 5. The VIF 
value for the albumin/creatinine ratio (Alb/Cr) was marginal in 
model 3 and high in model 4.

4 24

CR18

  Fig. 1.  Structural indices of male Fisher 
344 rats. Sections shown here are from the 
4-month AL group (4), from the 18-month 
AL group (18), from the 24-month AL 
group (24), and from the 24-month CR 
group (CR). Tubulointerstitial fibrosis and 
inflammation were evident in the 24-AL 
group, but not present in the CR group. 
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tional and structural changes seen in the 24-month AL 
group were not observed in the 24-month CR group ( ta-
ble 1 ).

  Using SEM, five latent variable path models of CKD in 
the Fischer 344 rats were created. All models were deter-
mined to be valid and fit the data well, both statistically 
and theoretically. Statistically, the classical SEM param-
eters of the model are consistent with those of a good-
fitting SEM model ( table  3 ). The  �  2  (normal theory 
weighted) and p value test the null hypothesis that the 
covariance matrix for the observed parameters estimated 
from the model is equal to the covariance matrix for the 
observed parameters computed from the data. A non-sig-
nificant p value indicates a good model. The root mean 
square error of approximation (RMSEA)  [22]  is now con-
sidered one of the most informative criteria in evaluating 
a covariance structure model  [23] . The RMSEA measures 
the discrepancy between a model with optimal parame-
ters and the current model. RMSEA is sensitive to the 
complexity of the model as well as the goodness of fit. 
Values  ! 0.05 indicate a good fit  [4, 5] . The expected cross 
validation index (ECVI) was created as a means for as-
sessing the likelihood that a model would cross-validate 
across similar samples from the population  [24] . ECVI 
can take on any value, but models having smaller ECVI 
values are considered to have the greater potential for rep-
lication. The rank order of ECVI values is generally sim-
ilar to that of AIC or CAIC. The standardized root mean 
square residual (Std. RMR) is another metric for evaluat-
ing the difference between the covariance matrix of the 
model and the covariance matrix of the data. The stan-
dardized RMR ranges from 0 to 1, and is small ( ! 0.05) in 

well-fitting models. The goodness of fit index (GFI) is 
commonly reported in the SEM literature, although the 
comparative fit index (CFI) is considered one of the best 
indices of fit. Values  1 0.90 for GFI and  1 0.95 for the CFI 
indicate acceptable fits to the data  [9] . Aikaike’s informa-
tion criterion  [25]  and the consistent AIC (CAIC)  [26]  
seek to balance goodness of fit against excessive model 
complexity. Models with the lowest AIC or CAIC are pre-
ferred.

  Based on the indices in  table 2 , models 1 through 5 all 
provide acceptable fits to variance-covariance relation-
ships of the observed data. The numbering of the models 
is based on their CAIC rank, with model 1 being consid-
ered most acceptable and model 5 least acceptable. Mea-
sures such as the CAIC evaluate both fit and parsimony. 
Although model 5 technically provides the best fit to the 
data (based on estimates of the  �  2 , standardized RMR, 
and GFI), it does so at the expense of model complexity. 
Model 5 includes 36 parameters (10 variances, 8 covari-
ances, and 18 factor weights), whereas model 1 requires 
only 24 parameters (9 variances, 1 covariance, and 14 fac-
tor weights) to provide a satisfactory fit to the data.

  Theoretically, the models were evaluated to determine 
if they appeared appropriate and logical based on current 
knowledge of some of the known relationships of CKD. 
Importantly, previously known relationships in CKD, i.e. 
serum creatinine and albuminuria, were also identified 
by our SEM models.

  The SEM models for CKD are depicted diagrammat-
ically in  figures 2–6 . Parameter values depicted in each 
diagram correspond to the completely standardized so-
lution of the models. In these diagrams, unobserved or 
latent factors are represented by large circles while the 
observed or measurable variables are represented by 
rectangles. Small circles (labeled err) represent residual 
errors. Single-headed straight arrows symbolize direct 
relationships between variables, whereas curved dou-
ble-headed arrows represent covariances. Values shown 
to the left of each observed variable represent the (stan-
dardized) level of influence of the latent factor upon 
that variable; values to the upper right of each observed 
variable depict the standardized value of the error vari-
ance.

  Values depicted on each diagram correspond to the 
values in the three matrices used to approximate the co-
variance matrix of the observed values. The observed 
data are placed in an array  X , such that each row corre-
sponds to one of a total of  n  experimental subjects and 
each column corresponds to a measured variable. This 
array is then centered by subtracting the mean of each 

Table 3. I ndices for evaluating goodness of fit of models

Fit index Model

1 2 3 4 5

DF 12 11 10 10 10
�2 8.44 9.76 6.33 7.99 0.79
p value 0.750 0.552 0.787 0.630 >0.999
RMSEA <0.001 <0.001 <0.001 <0.001 <0.001
ECVI 1.91 1.96 2.00 2.00 2.70
Std. RMR 0.030 0.040 0.046 0.047 0.014
GFI 0.91 0.89 0.93 0.91 0.99
CFI 1.00 1.00 1.00 1.00 1.00
AIC 40.4 43.8 42.3 44.0 52.8
CAIC 75.3 80.8 81.5 83.2 109.4
Mean VIF 4.50 4.71 5.82 6.65 5.10
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column (variable) from the individual values in the cor-
responding column. Let the centered data array be la-
beled  X  c . The covariance matrix  �  of the centered data 
may be calculated as: 

/c cX X n��

   where  X �   represents the transpose of  X . This actual co-
variance matrix is estimated by the SEM process as: 

x x
ˆ

��� �� ��

   where  � ̂  is the covariance matrix predicted from the mod-
el,  �  x  is a matrix of path coefficients related to the
latent variables,  �  is a symmetrical variance-covari-
ance matrix among the latent factors and  �   �   is a symmet-
rical variance-covariance matrix among the errors of mea-
surement for the observed variables. It is the degree of sim-
ilarity between  �  and  � ̂  that forms the basis of the various 
goodness of fit indices shown in  table 2 . For covariance 
prediction, these matrices would use unstandardized coef-
ficients. However, we can illustrate the correspondence be-
tween the model equation and the SEM diagram by insert-
ing standardized values from the diagram. Taking model 
5 as an example, if the columns of the data array  X  were 
arranged in the same order as the observed variables in 
 figure 6 , the following three matrices would be obtained: 

Kidney
Damage

0.24
Albumin err_A

0.8
7

0.21

GlomScl err_G0.89

0.22

KCR err_K

0.88

0.19

TubDamage err_T

0.90

Kidney
Function

0.34

BUN err_B

0.52

CreatCl err_C
0.70

-0.16

SCreat err_S

-1.08
-0
.7
9

0.81

-0.17

Model 2

  Fig. 3.  Model 2. This model differs from model 1 in the substitu-
tion of the Kim-1/creatinine ratio (KCR) in place of Kim-1, and in 
the inclusion of an error covariance between the Kim-1/creatinine 
ratio and tubular damage (TubDamage). 

Kidney
Damage

0.16
Albumin err_A

0.9
1

0.18
GlomScl err_G0.90

0.22
Kim-1 err_K

0.89

0.21

TubDamage err_T

0.89

Kidney
Function

0.37

BUN err_B

0.53

CreatCl err_C
0.69

-0.19

SCreat err_S

-1.09

-0
.7
5

0.80

Model 1

  Fig. 2.  Model 1. The Fischer 344 CKD model generated from SEM 
studies. Large circles represent latent factors, which are unob-
served variables and include the factors, function and damage. 
Rectangles represent variables that can be observed or directly 
measured. Single arrows represent a one-directional effect from 
one variable to another, while dual-head arrows represent factor 
covariances. Standardized path coefficients are indicated by the 
numbers above the arrows and represent the correlation or 
strength of the relationship between factors. A negative coeffi-
cient represents an inverse relationship between the variables, 
while a positive coefficient represents a direct relationship. Small 
circles (labeled err) represent variance in each observed variable 
that cannot be accounted for by the model, such as biological vari-
ability and measurement error. The magnitude of the error vari-
ance is indicated to the upper right of each observed variable. This 
model was ranked first based on the CAIC, indicating the most 
favorable balance between fit and complexity. Unlike models 2 
through 5, the model includes only a single covariance – that be-
tween the latent variables. 
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   The first column in the  �  x  and  �  matrices corresponds 
to the kidney damage latent variable, while the second 
column in  �  x  and  �  corresponds to the kidney function 
latent variable. Values on the main diagonal of the  �   �   
matrix are the error variances (values to the upper left of 
the rectangles in  fig. 6 ); off diagonal elements are the co-
variances among error terms (values next to the curved 
arrows in  fig. 6 ). The value –0.65 in the  �  matrix corre-
sponds to the covariance between the damage and func-
tion latent variables. 

 All five models identified two unobserved or latent 
factors as the basis for the variations observed in the mea-
sured variables ( fig. 2–6 ). These factors can be considered 
to correspond to the level of kidney function or kidney 
damage based on the direction (positive or negative) of 
their association with or influence upon the measurable 
variables. For example, in model 1 ( fig.  2 ), an increase 
of 1 standard deviation (SD) in kidney damage would 
directly increase the measured levels of log 10  [urine al-
bumin] (Albumin), glomerulosclerosis (GlomScl), log 10  
[Kim-1] (Kim-1), tubular damage (TubDamage) and 
BUN by 0.8–0.91 SD, depending on the value of the coef-
ficient. A 1-SD increase in kidney function would direct-

Kidney
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0.04
ACR err_A

0.9
8

0.24

GlomScl err_G0.87

0.31

Kim-1 err_K

0.83
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TubDamage err_T

0.91

Kidney
Function

0.37

BUN err_B

0.41

CreatCl err_C
0.77

-0.01

SCreat err_S

-1.00

-0
.8
1

0.1 4

-0.2

0.74

-0
.07

Model 3

  Fig. 4.  Model 3. This model differs from 
model 1 mainly in the substitution of the 
albumin/creatinine ratio (ACR) for urine 
al bumin. It also includes two additional 
error term covariances: between ACR and 
TubDamage and between Kim-1 and se-
rum creatinine (SCreat). 
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ly increase creatinine clearance (CreatCl) and decrease 
serum creatinine (SCreat) by 0.69 and 1.09 SD, respec-
tively. In each model, there was a reasonably large nega-
tive correlation (–0.65 to –0.81) between the kidney func-
tion and kidney damage latent variables, which seems 
reasonable in light of the expected inverse relationship 
between kidney damage and kidney function. This also 
means that changes in either latent variable would indi-
rectly affect the measured indicators of the other latent 
variable. In model 1, for example, a 1-SD increase in kid-
ney damage would decrease CreatCl by about 0.52 SD 
(–0.75  !  0.69), but elevate SCreat by about 0.82 SD (–0.75 
 !  –1.09).

  Model 1 depicted in  figure 2  provides the best balance 
between complexity and closeness of fit to the experi-
mental data. Notably, the standardized weights between 
both urine albumin and Kim-1 and the damage latent 
variable are essentially the same as the weights for the two 
direct measures of pathological renal damage, GS and tu-
bular damage. BUN was also positively correlated with 
kidney damage, although somewhat less than the other 
four measures. Creatinine clearance and serum creati-
nine were positively and negatively correlated with the 

kidney function latent variable, respectively. Residual er-
ror variances were similar in magnitude for all measured 
variables.

  Model 2 ( fig. 3 ) was ranked second based on the CAIC 
and differs from model 1 in the inclusion of normalized 
Kim-1 (KCR) for Kim-1. Overall, values of the regression 
weights, variances and covariances are similar to those 
in model 1, but there is an additional error covariance 
(–0.19) between normalized Kim-1 and tubular damage. 
This indicates that estimated levels of KCR may be nega-
tively influenced by increases in tubular damage.

  Substitution of the ACR for urine albumin in model 1 
provided the basis for model 3 ( fig. 4 ). Of the five variables 
positively associated with kidney damage, ACR had the 
highest regression weight (0.98). Unfortunately, ACR was 
also associated with a borderline VIF score. Model 3 is 
more complex than models 1 and 2 in the addition of a 
(slightly negative) link between BUN and kidney func-
tion and two error covariances: one (–0.20) between ACR 
and tubular damage and another between Kim-1 and se-
rum creatinine. As in model 2, tubular damage may be 
negatively affecting ACR values. The positive link be-
tween Kim-1 and serum creatinine seems reasonable, 
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  Fig. 5.  Model 4. In this model, both urine 
albumin and Kim-1 are normalized to 
urine creatinine (ACR = albumin/creati-
nine ratio; KCR = Kim-1/creatinine ratio). 
Positive covariances exist between the er-
ror terms for glomerulosclerosis (Glom-
Scl) and tubular damage (TubDamage) as 
well as between KCR and serum creatinine 
(SCreat). 
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given that as kidney damage increases, Kim-1 increases 
(0.83), kidney function decreases (–0.81) and serum cre-
atinine increases (as it is negatively related to function). 
The slight decrease in the correlation between kidney 
damage and BUN (0.74 vs. 0.80–0.81 in models 1 and 2, 
respectively) appears balanced by the indirect influence 
of BUN on kidney damage via its negative relation to 
function, and the negative correlation between function 
and damage.

  In model 4 ( fig. 5 ), both albumin and Kim-1 are nor-
malized to urine creatinine. Although model 4 has the 
same overall level of complexity as model 3, its CAIC is 
higher due to a slightly less optimal fit. There is a covari-
ance between KCR and serum creatinine similar to that 
observed in model 3 for Kim-1 and serum creatinine as 
well as a positive covariance between glomerular sclerosis 
and tubular damage. Interestingly, in this model, weights 
for tubular damage are nearly equally and oppositely di-

vided between damage and function. Although the VIF 
for ACR in this model is unacceptably high, it was in-
cluded for comparison with related models. 

 Model 5 ( fig. 6 ) differed from models 1 through 4 in 
the addition of urine creatinine as an observed variable 
and substitution of total urine protein for urine albumin. 
It provided a remarkably close fit to the observed data as 
indicated by a  �  2  value nearly 10-fold lower than seen for 
the other models, but did so at a high price in complexity. 
Compared with model 1, model 5 adds one more ob-
served variable, four additional regression weights, and 
seven additional covariances.

  These five SEM models all highlight the potential of 
Kim-1 (or normalized Kim-1) as a biomarker for CKD. 
Kim-1 levels are directly influenced by kidney damage in 
all models with path coefficients ranging from 0.83 in 
model 3 to 0.98 in model 5. Comparison of the coeffi-
cients relating kidney damage to Kim-1 (or KCR), albu-
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  Fig. 6.  Model 5. This differs from models 1 
through 4 in the incorporation of total 
protein (TotProt) and urine creatinine 
(UCreat) and absence of albumin or albu-
min/creatinine. While best fitting, it is the 
most complex, incorporating not only sev-
eral additional observed variables but also 
a total of 8 covariance links. 
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min (or ACR), GlomScl, TubDamage and SCreat over all 
five models by one-factor ANOVA reveals no significant 
difference between average values for Kim-1 or KCR and 
those the other measures (p  1  0.55). This suggests that 
changes in Kim-1 levels are as sensitive an indicator of 
renal damage in the rat as any of the other measures, in-
cluding direct measures of renal pathology, such as GS 
and tubular damage.

  The model also permits the use of observed variables 
to predict the unobserved or latent variables. By multi-
plying the value of each observed variable by its corre-
sponding weight, or factor score weight, we can calculate 
the indices of kidney function and kidney damage for the 
various age groups. Because latent variables are unmea-
sured and have no definite metric scale, their indices 
vary depending on scales of the observed variables. Since 
the number and type of observed measures varied with 
each model, an arbitrary common scale was applied to 
the computed indices to facilitate comparison. The kid-
neys of the aged rats (24-month AL) had severe damage 
and impairment of function as compared to those of the 

younger rats; changes in damage and function were at-
tenuated by CR. The latent variable indices for kidney 
function ( fig. 7 ) remained fairly stable in AL-fed rats at 
an average value of 0.71 across ages 4–18 months but 
dropped drastically to an average of 0.24 (66% decline) 
at 24 months in all models. CR rats showed a much 
smaller decline in function at 24 months; kidney func-
tion remained at an average of 0.61 in the 24-month CR 
rats, which was 86% of the level found in younger ( ! 24 
months) AL rats. In all models, the index for kidney 
damage ( fig. 8 ) rose very slightly from 4 to 18 months in 
AL rats but rose sharply 3.8-fold above average in the 
24-month AL group, representing the high level of dam-
age to the kidneys of these aged rats. Interestingly, the 
index for kidney damage remained low in the 24-month 
CR group of rats and was only about 2% higher than the 
baseline observed in younger rats (0.22 vs. 0.18). The ra-
tio of damage to function indices ( fig. 9 ) may provide an 
even more sensitive indicator of renal status. The dam-
age/function ratio remains rather stable with age in AL 
rats, until it jumps from an average of 0.26 to 2.93 at 24 
months ( fig. 9 ). Note, however, that it measured an aver-
age of 0.36 in the 24-month CR rats, a value not much 
different from that found in 12-month (0.32) or 18-month 
(0.38) AL groups. The latent variable indices computed 
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  Fig. 7.  The average kidney function (latent variable) score for 
each group of animals in the various models. The age groups in-
clude the 4-month AL group of rats, 8-month AL group of rats, 
12-month AL group of rats, 18-month AL group of rats, 24-month 
AL group of rats, and the 24-month CR group of rats (24-CR). 
Kidney function score did not change much with age in the AL 
group until 24 months when it decreased to less than 50% of pre-
vious values. With the exception of model 5, the function score 
in the 24-month-old CR rats (24+CR) was similar to that ob-
served in younger AL rats. 
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as represented in the five SEM models. There was a gradual rise 
in damage in the AL group with age until 24 months, when the 
damage score increased sharply 3- to 4-fold. Caloric restriction 
(24-CR) prevented most of the rise in damage. 



 Gardiner et al.    Am J Nephrol 2012;35:152–163 162

from the SEM model indicate a strong relationship be-
tween increased age and kidney damage and impairment 
of function.

  Discussion 

 The functional and structural changes seen in the 
24-month AL rats are characteristic of renal damage and 
dysfunction. The 24-month AL group’s structural and 
functional characteristics are analogous to those seen in 
the CKD state. The aged Fischer 344 rat is an established 
model of CKD  [13, 17, 18] . In addition, since no exogenous 
insults were utilized to initiate CKD, this model may be 
considered an improved model that is more representa-
tive of the CKD state seen in humans, which is caused by 
more subtle insults. Despite the small sample size used in 
the current study, SEM is able to generate valid, good-
fitting CKD models for the Fischer 344 rat. In the future, 
models such as this could be generated for human data 
and serve as predictive models to assess the current status 
and progression of a patient. This information would be 
valuable in the management of patients in treating CKD 

and preventing progression of the disease. SEM could 
generate a model to identify novel biomarkers and poten-
tial therapeutic targets. It could ultimately be utilized to 
create a predictive model for the patient that would allow 
physicians to enter measurable values and glean informa-
tion about the patient’s current renal status and progno-
sis. This information would be valuable in the prevention 
and management of severe CKD.

  All five SEM models identify Kim-1 as a sensitive indi-
cator of CKD in the rat. Kim-1 is a type 1 transmembrane 
protein that has previously been shown to be a urinary 
biomarker for acute tubular injury in patients as it is shed 
and can be measured in the urine  [27] . Further studies 
should be done to assess whether this holds true clinically. 
However, our finding is supported by some emerging data 
suggesting that Kim-1 may be elevated in CKD. Kim-1 has 
been found by two independent laboratories to not only 
be increased in patients with immunoglobulin A ne-
phropathy (IgAN) as compared to controls but also to be 
higher with proteinuria and with more severe tubuloint-
erstitial injury, supporting our finding of Kim-1 as a 
strong indicator of chronic kidney damage  [28, 29] . Inter-
estingly, Kim-1 and serum creatinine were determined 
through multivariate analysis to be significant, indepen-
dent predictors of ESRD  [28] . Another study investigating 
congenital obstructive nephropathy, the main cause of 
chronic renal failure in children, determined that Kim-1 
levels were associated with worsening obstruction in chil-
dren with hydronephrosis due to unilateral, critical de-
gree of ureteral stenosis  [30] . Urinary Kim-1 levels were 
increased in patients with non-diabetic CKD with pro-
teinuria  [31] , and Ko et al.  [32]  suggest Kim-1 as a bio-
marker of the AKI to CKD transition receptor 1.

  Although serum creatinine is currently utilized in the 
field to assess kidney disease, it may not be an optimal bio-
marker as it is affected by many other factors not related 
to kidney status  [33, 34] . It is important to note, however, 
that we were unable to use a standardized assay for serum 
creatinine. The SEM models suggest that Kim-1 is a sensi-
tive marker of damage in rats. Kim-1 could potentially be 
used as a urinary biomarker of CKD in man, allowing for 
early identification of CKD with a non-invasive test.

  The latent variable scores of kidney damage and kid-
ney function and the damage/function ratio generated 
from all five SEM models demonstrate that age is a sig-
nificant determinant in the progression of CKD in Fi-
scher 344 rat. Interestingly, the negative changes in the 
kidney structure and function are ameliorated in the 
aged rats (24-month) that were fed a CR diet. This sug-
gests a relationship between diet and kidney disease. 
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More studies are needed to further investigate this rela-
tionship; however, it might identify an interesting aspect 
of CKD that could potentially offer insight into the patho-
physiology of this disease. SEM has the potential to iden-
tify novel biomarkers as well as the potential for investi-
gating therapeutics. SEM could also be utilized to create 
and examine the complex interplay of cardio and renal 
variables that affect CKD.
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