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ABSTRACT

A coiled-coil microtubule-bundling protein, p180,
was originally identified as one of the ribosome
receptor candidates on the rough endoplasmic re-
ticulum (ER) and is highly expressed in secretory
tissues. Recently, we reported that p180 plays
crucial roles in upregulating collagen biosynthesis,
mainly by facilitating ribosome association on the
ER. Here, we provide evidence that p180 is
required to form translationally active polysome/
translocon complexes on the ER. Assembly of
highly-developed polysomes on the ER was
severely perturbed upon loss of p180. p180 associ-
ates with polysome/translocon complexes through
multiple contact sites: it was coimmunoprecipitated
with the translocon complex independently of
ribosomes, while it can also bind to ribosomal
large subunit specifically. The responsible domain
of p180 for membrane polysome assembly was
identified in the C-terminal coiled-coil region. The
degree of ribosome occupation of collagen and
fibronectin mRNAs was regulated in response to
increased traffic demands. This effect appears to
be exerted in a manner specific for a specified set
of mRNAs. Collectively, our data suggest that p180
is required to form translationally active polysome/
translocon complexes on the ER membrane, and
plays a pivotal role in highly efficient biosynthesis
on the ER membrane through facilitating polysome
formation in professional secretory cells.

INTRODUCTION
Recently, broad functions for endoplasmic reticulum
(ER)-bound ribosomes have been demonstrated.

Genome-wide studies examining mRNA populations on
cytosolic and ER-bound polysomes have revealed an
unexpected overlap between the two mRNA pools in
eukaryotic cells (1,2), and a significant fraction of
cytosolic proteins undergo synthesis on ER-bound ribo-
somes (3).

While translation of mRNAs is potentially regulated
at multiple levels, regulation at initiation has been
most intensely studied as a key step (4,5). The 5- and
3’-untranslated regions of mRNAs play crucial roles in
various stages of translational regulation, including
mRNA translational efficiency, stability and localization
(6). The degree of polysome assembly can be postulated
to be important aspect of translational control, possibly
through a direct impact on translational efficiency linking
with translational initiation. While recent advances in
cryoelectron tomography have provided important
insights into the organization of translating polysomes in
cell lysates and intact cells (7,8), it still remains obscure
whether ribosome occupation of mRNAs is solely depend-
ent on the lengths of the mRNAs or is regulated by an
unknown mechanism (9-11). For membrane and secretory
proteins in particular, the situation is more complicated
because of subsequent translocation across the membrane.
Limited information has been available for how the
ribosome and translocon machineries are structurally
and functionally coupled (12). ER-associated ribosomes
have been shown to mediate more efficient biosynthesis
than free ribosomes (3), although it remains unknown
whether membrane-associated ribosomes are structurally
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distinguishable from free cytosolic ribosomes. Moreover,
on a single polysome, higher-order coordination should be
essential between each unit of a ribosome/translocon
complex to accomplish synchronized translation and sub-
sequent translocation across the membrane. However,
fundamentally nothing is known about the molecular
basis for such coordination.

Collagens are one of the major components of the extra-
cellular matrix in connective tissues such as skin, tendon
and bone. They are synthesized on the ER membrane as
precursor forms, i.e. procollagens, and secreted by profes-
sional secretory cells, including fibroblasts, chondroblasts
and osteoblasts. These specialized cells for secretion have
a highly developed network of rough ER to accommodate
the high-rate synthesis, similar to other secretory cells such
as pancreatic cells and plasma cells. Nevertheless, little is
known about the mechanisms underlying the highly effi-
cient activity of protein biosynthesis in professional secre-
tory cells. Ascorbate is a popular and long-used stimulator
of procollagen secretion during in vitro culture. It acts as a
cofactor of prolylhydroxylase and promotes procollagen
folding in the ER, thereby initiating its subsequent trans-
port from the ER to the Golgi complex (13). If cells lack
ascorbate, procollagens stay in the ER due to the
immature folding. Therefore ascorbate treatment can
activate de novo biosynthesis in response to resumption
of ER-to-Golgi transport and subsequent increased
traffic demands (14). However, it has remained unknown
how the de novo biosynthesis is activated in the profession-
al secretory cells (14,15).

p180 is an integral ER membrane protein and is highly
expressed in secretory tissues (16). It was initially
identified as one of the candidate ribosome receptors on
the rough ER membrane (17). Its unique repeat domain
was reported to have binding capacity for ribosomes and
is composed of 54 tandem repeats of a dodecapeptide with
a highly basic pl (18). However, it remains elusive whether
p180 directly binds to ribosomes in animal cells. Recently,
we reported that p180 plays a crucial role in upregulating
collagen biosynthesis following ascorbate stimulation (19).
Collagen biosynthesis appeared to be enhanced at the
translational level by a novel activity of pl80 that
facilitated ribosome association with the ER (19).
Recently, a crucial role for p180 in general protein bio-
genesis at the rough ER was also suggested (20,21).
Therefore, we sought to examine the molecular mechan-
isms by which p180 facilitates the enhanced protein bio-
synthesis on the ER membrane. We investigated whether
the enhancement of biosynthesis occurred by modulated
organization of ribosome-translocon complexes or by
more efficient polysome assembly. Here, we provide
evidence that pl80 is required to form translationally
active polysome/translocon complexes on the ER.
Furthermore, we show that the degree of ribosome occu-
pation of collagen and fibronectin mRNAs is regulated in
response to increased traffic demand. This effect appears
to be exerted in a manner specific for certain mRNAs. In
addition, the responsible domain for polysome assembly
in the p180 sequence is identified.
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MATERIALS AND METHODS

Cell culture and short interfering RNA oligonucleotide
transfection

HEL fibroblasts were maintained in Dulbecco’s modified
Eagle’s medium (DMEM) (Nissui) supplemented with
10% fetal bovine serum (FBS) (Intergen). L-Ascorbic
acid phosphate magnesium salt n-hydrate (Wako) was
added to a final concentration of 0.2 mM unless otherwise
indicated. The protocols for cell culture and short
interfering RNA (siRNA) transfection were carried out
as described previously (22). siRNA duplexes against
human p180 (DDBJ accession number: AB287347) corres-
ponding to nucleotides 153—173 (p180-si) were used unless
otherwise indicated. In some experiments, siRNA
duplexes against human pl180 corresponding to nucleo-
tides 271-291 (p180-si2) were used. For control samples,
control non-silencing siRNAs [either FITC-labeled
siRNA (Qiagen) or scrambled siRNA (Stealth™ RNAi
Negative Control Duplex; Invitrogen)] were transfected.
To estimate the activity of de novo protein biosynthesis
in membrane fractions, we used a non-radioisotope (RI)
labeling system for newly synthesized proteins with
azidohomoalanine (AHA) (23) as described previously
(19). Samples were precipitated with trichloroacetic acid,
and examined by immunoblotting analyses with an anti-
biotin antibody. A stable HeLa cell line overexpressing
p180 (HeLa/p180) was described previously (22).

Plasmids and transfection

Expression plasmids for wild-type and mutant forms of
human pl80 were used as described previously (24).
HEL cells were transfected with 5Spg of the plasmids
using an Amaxa Nucleofector transfection system
(Lonza) according to the manufacturer’s protocols. At 2
days after transfection, cells were subjected to sequential
detergent extractions of cytosolic and membrane
fractions.

Antibodies, reagents and western blot analysis

Western blot analyses of pl180 were performed under
strong blotting conditions as described previously (295).
The following antibodies were used: rabbit antibodies
against GFP (Clontech), protein disulfide isomerase and
calnexin (Stressgen), ribosomal protein L10 (Santa Cruz
Biotechnology), ribosomal protein S6 (Cell Signaling),
biotin (Bethyl Laboratories), Sec61 beta (Upstate), Sec61
alpha and TRAP alpha (generous gifts from C.V.
Nicchitta, Duke University Medical Center), human
pl80 (N1) (24); goat antibody against ribophorin II
(Santa Cruz Biotechnology); and mouse monoclonal
antibody against CLIMP-63 (26) (a generous gift from
H.P. Hauri, University of Basel), (His); tag (Qiagen).
The samples for western blot analyses were normalized
by the DNA amounts and equivalent amounts of
samples were analyzed using a fixed exposure time
unless otherwise indicated. For protease inhibitors, we
used EDTA-free Complete Inhibitor Mixture (Roche
Applied Science). Micrococcal S1 nuclease was purchased
from New England Biolabs.
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Sequential detergent extractions of cytosolic and
membrane fractions

Cytosolic and membrane fractions were obtained by se-
quential detergent extractions using digitonin as described
previously (27) with minor modifications (19). Briefly,
HEL cell monolayers in six-well plates were precultured
with 200 uM cycloheximide for 15min and washed with
PBS. Extraction was performed in the presence of 200 uM
cycloheximide, 80 U/ml RNase inhibitor (Toyobo),
protease inhibitor cocktail and 1mM dithiothreitol
(DTT) throughout the procedure and the following
analyses. The cells were incubated with 0.2 ml of perme-
abilization buffer /110mM KOAc, 25mM HEPES pH
7.5, 2.5mM Mg(OAc),, I mM EGTA, 0.015% digitonin)
for Smin on ice. After collection of the supernatant (cyto-
solic fraction), the cells were carefully washed twice with
wash buffer /110mM KOAc, 25mM HEPES pH 7.5,
2.5mM Mg(OAc),, |mM EGTA, 0.004% digitonin].
The membrane fraction was then extracted with 0.2 ml
of lysis buffer /25mM HEPES pH 7.5, 400mM KOAc,
I5mM Mg(OAc),, 1mM EGTA, 2% digitonin/ for
30min on ice. The solution was carefully collected and
cleared by centrifugation at 7500g for 10 min at 4°C to
remove insoluble debris. The resulting supernatant con-
taining the lysate extracted with digitonin from the intra-
cellular membranes was referred to as the membrane
fraction in this study, and used for subsequent analyses.
Detergent extractions of HeLa cells were performed using
permeabilization buffer containing 0.05% digitonin for
10 min on ice, followed by the same procedure described
above. Isolation of total RNA and quantification of
mRNAs by real-time PCR were performed as described
previously (19).

Preparation of ribosome-stripped membranes

Ribosome-stripping was performed by in situ EDTA treat-
ment followed by membrane preparation. Briefly, after
removal of the cytosolic fraction with permeabilization
buffer as described above, the cells were treated with
50mM EDTA at 4°C for 30min in permeabilization
buffer lacking digitonin. The dissociated ribosome
subunits were removed by careful washing. Subsequently
a ribosome-stripped membrane fraction was prepared
with lysis buffer containing 2% digitonin as described in
the above section. To thoroughly remove residual ribo-
somes in the ribosome-stripped membranes, sedimenta-
tion through a 0.5M sucrose cushion was performed.
rRNA analyses confirmed that about 10% of the total
ribosomes were recovered in the pellet, while the super-
natant (ribosome-free membrane fraction) contained no
rRNA, indicating that 90% of the total ribosomes were
released by EDTA under these conditions.

Polysome analysis by velocity sedimentation

The membrane fractions were loaded onto a linear 15—
50% sucrose gradient in buffer containing 25mM
K-HEPES (pH 7.5), 400mM KOAc, 15mM Mg(OAc),,
I mM EGTA. The following analyses were performed in
the presence of 200 uM cycloheximide, 80 U/ml RNase

inhibitor (Toyobo), protease inhibitor cocktail and
ImM dithiothreitol (DTT) throughout the procedure
unless otherwise indicated. The gradients were centrifuged
at 150000g for 70 min in a TLS-55 rotor (Beckman) at
4°C. Fractions were collected manually. The rRNAs,
mRNAs and proteins in the gradient fractions were
analyzed. The positions of the 40S and 60S subunits and
80S monosome were defined by analyzing EDTA-treated
and nuclease-treated samples. In some experiments,
polysome-containing fractions (tube no. 19-29) were col-
lected, and precipitated at 100 000g for 40 min. The result-
ing pellets were resuspended in lysis buffer lacking DTT
and cycloheximide, and subjected to immunoprecipitation
(IP) assays.

Isolation of 80S monosome, 60S and 40S subunits

The membrane fractions were treated with 1 mM puro-
mycin in membrane buffer [25mM HEPES pH 7.5,
400mM KOAc, 15mM Mg(OAc),, 1mM EGTA,
0.015% digitonin, I mM DTT]. Released ribosomes were
sedimented by centrifugation at 100000g for 40min
through a 0.5 M sucrose cushion, and washed five times.
The ribosome pellets were subjected to 15-50% sucrose
gradient to isolate monosomes. Collected monosome frac-
tions were sedimented through a 0.5 M sucrose cushion at
100 000g for 40 min, and resuspended in membrane buffer
lacking digitonin. For purification of 40S and 60S
subunits, the 80S monosome was treated with 50 mM
EDTA in membrane buffer lacking digitonin and DTT.
After 15-25% sucrose density gradient centrifugation, 40S
and 60S subunits were collected respectively, and washed
five times with membrane buffer lacking Mg(OAc),. The
resulting 40S or 60S pellets were resuspended in
membrane buffer lacking digitonin and DTT. Abs 260/
280 of these ribosome preparations ranged between 1.65
and 1.77.

Immunoprecipitation assays

An anti-p180 antibody or control rabbit IgG was
incubated with sheep anti-rabbit IgG-conjugated
magnetic beads (Dynabeads-M280; Veritas), followed by
washing according to the manufacture’s instruction.
Samples were then incubated with these beads at 4°C for
1 h in lysis buffer lacking DTT and cycloheximide. After
extensive washing, the captured samples were analyzed by
western blotting or agarose electrophoresis.

In vitro binding assay with ribosomes and p180-beads

Ribosome-stripping by EDTA was carried out as
described above and the membrane fractions were
prepared with lysis buffer containing 1% NP-40 instead
of digitonin, and were further treated with 0.5%
deoxycholate and 0.1% SDS at 4°C for 1h. After centri-
fugation at 100 000g for 40 min through a 0.5 M sucrose
cushion, the resulting supernatant was subjected to the IP
assay with anti-p180 antibody to prepare p180-beads. The
pl180- or control-beads were incubated at 4°C for 1h in
membrane buffer with monosome, isolated 60S or 40S
subunits, respectively.



Electron microscopy

For transmission Electron microscopy (EM) analysis, cells
cultured in 2% FBS/DMEM were treated with medium
containing 10 uM taxol for 3min at 37°C, followed by a
conventional fixation procedure for transmission EM as
described previously (25). Ultrathin sections were cut
parallel or perpendicular to the substrate and viewed
under a Model 7650 EM (Hitachi) at 80kV. Surface
views of the rough ER membranes were frequently
observed when ultrathin sections were cut parallel to the
substrate.

RESULTS

p180-dependent formation of highly developed polysomes
on the ER membranes in collagen-secreting fibroblasts

Recently, we reported that ascorbate treatment increases
membrane-associated ribosomes without altering the
levels of mRNAs (19). These findings suggest that ascor-
bate upregulates biosynthesis via a novel translational
control mechanism in response to high traffic loads,
either by altered ribosome-translocon complexes or
enhanced polysome organization. To determine whether
pl80 affects polysome organization, we reexamined the
ultrastructure of control and p180-depleted cells. Further
inspection of the EM images revealed the presence of a
large number of extremely long polysomes on the ER
surface of horizontally cut sections from ascorbate-
stimulated HEL fibroblasts (Figure 1A). A higher magni-
fication image showed spiral arrays or double-row shaped
polysomes consisting of more than 28 ribosomes
(Figure 1A, inset), closely resembling those reported in
rat dermal fibroblasts (28). In contrast, pl180 depletion
caused a drastic reduction in membrane polysomes
despite ascorbate stimulation (Figure 1B).

To examine the specific roles for p180 in polysome for-
mation on the ER, we performed polysome gradient
analyses under stringent conditions using a high-salt
buffer. The membrane fractions of ascorbate-treated
and/or pl180-depleted cells were fractionated on linear
15-50% sucrose gradients in a buffer containing 0.4 M
potassium acetate. To maintain the formation of
ribosome-translocon complexes, a lysis buffer containing
digitonin was used for membrane extraction (29). Western
blot analyses confirmed a large increase in the endogenous
p180 level by >2-fold upon ascorbate stimulation (19),
which was decreased by pl80 siRNA treatment to
<16% of the control (Supplementary Figures S1A and
S1B). Analyses of rRNAs showed that ascorbate stimula-
tion greatly enhanced polysome formation in the
membrane fractions (Figure 2A, middle) compared with
those in non-stimulated cells (upper). Consistent with the
TEM images mentioned above, heavy fractions were pro-
foundly assembled in the ascorbate-treated cells.
Densitometric scanning revealed that ascorbate-treated
cells contained ~2.8-fold higher levels of polysomal
RNAs than non-stimulated cells (Figure 2B). Loss of
pl80 caused a drastic reduction of the membrane-
associated polysomes (Figure 2A, bottom), and their
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Figure 1. Transmission EM images of the rough ER surface in
collagen-secreting HEL fibroblasts. Control (A) and pl80 siRNA-
transfected (B) HEL cells were grown in FI2/DMEM containing 2%
FBS in the presence of ascorbate. A large number of highly developed
polysomes are clearly seen on the membrane surface in ascorbate-
stimulated HEL fibroblasts, while p180 depletion results in dramatically
reduced numbers of polysomes on the ER. Polysomes are frequently
seen in the membrane surface view when the sections were cut parallel
to the substrate. A higher magnification image of control cells (inset
in A) shows spiral arrays of polysomes consisting of about 25-30 ribo-
somes. Bars: A and B, 500 nm: inset in A, 200 nm.

RNA levels were decreased to <20% of the non-depleted
cells (Figure 2B). The use of another siRNA sequence
(p180-si2) resulted in the same effects (Supplementary
Figure S2A). No significant changes were observed for
the relative amounts of free 60S and 40S subunits per
80S monosome (data not shown).

When p180 was further depleted in ascorbate-untreated
cells that contained small amounts of pl80 and
membrane-associated polysomes, a significant decrease
in polysomes was observed (Supplementary Figure S2A
and S2B), suggesting that the levels of membrane-
associated polysomes were correlated with the pl180
levels. The correlation between pl180 and polysomes in
the membrane fractions was estimated by their relative
amounts obtained in five separate experiments under
various conditions. The plotted data indicated a positive
correlation (R*=0.91) (Figure 2C). These findings
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Figure 2. p180 facilitates polysome assembly on the ER membrane. HEL cells were cultured in the presence or absence of ascorbate (AA) and
treated with a control scrambled (cont-si) or p180-specific (p180-si) siRNA. At post-transfection Day 4, sequential digitonin extractions were carried
out to obtain the membrane fractions, followed by polysome analysis using a 15-50% sucrose gradient. Equal amounts of samples normalized by the
total DNA contents were subjected to the polysome analysis. (A) The ribosomal RNAs in each fraction were analyzed by agarose electrophoresis.
The positions of the polysome (P), monosome (M), free 40S and 60S subunits (F) and light (L) fractions are shown at the top. Top panel:
cont-si-treated cells without ascorbate; middle panel: cont-si-treated cells with ascorbate; bottom panel: pl80-si-treated cells with ascorbate.
(B) The total RNA contents of the polysome fractions were estimated by densitometric scanning of the gels, and the relative ratios of polysomes
to 80S monosome are shown (means + SD, n = 4). (C) The relative amounts of pl80 and polysomes in the membrane fractions were plotted to
evaluate their correlation. The 12 samples used were obtained from five separate experiments under various conditions. The values for cont-si-treated
cells without ascorbate stimulation were set as 1. (D) The distributions of p180 and other translocon-related proteins in the collected fractions were
analyzed by western blotting. Non-stimulated cells with cont-si (left), ascorbate-stimulated cells with cont-si (middle), and ascorbate-stimulated
p180-si treated cells (right) are shown. (E) Quantitative data for the protein markers in the polysome (P), monosome (M), free 40S and 60S subunits
(F) and light (L) fractions are shown. The total amounts of each protein in the membrane fractions were estimated by densitometry using samples
prior to sucrose density centrifugation, and their relative contents were assigned to the P, M, F and L fractions by densitometric scanning of the data
shown in panel D. The total amounts for the membrane fractions from the cont-si-treated cells without ascorbate stimulation were set as 1.
(F) Polysome fractions were collected from the cont-si treated cells after ascorbate stimulation and subjected to IP assays using an anti-p180
antibody or control rabbit IgG bound to magnetic beads conjugated with sheep anti-rabbit IgG. The samples captured by the beads were
immunoblotted with antibodies against marker proteins or analyzed for rRNAs. Lane 1, input samples; lane 2, immunoprecipitates with control
IgG; lane 3, immunoprecipitates with anti-p180 antibody. Sec61a was not visible because of co-existing immunoglobulin chains.



suggest that p180 is required to enhance polysome forma-
tion on the ER in response to high traffic loads upon as-
corbate stimulation, and that its protein levels appear to
have an impact on the levels of membrane-associated
polysomes.

Ternary complex formation of polysome, translocon
and p180

Ascorbate stimulation enhances biosynthetic activity,
especially in the membrane fraction, if a high level of
p180 is expressed on the ER (19), suggesting that the
organization of ribosome-translocon complexes may
change in a pl80-dependent manner. To characterize
organization of the polysomes in more detail, the distri-
butions of pl180 and translocon proteins were analyzed
using collected fractions of the sucrose gradients
(Figure 2D). In non-stimulated cells, the polysome frac-
tions (Fractions 7-10) contained small amounts of p180,
Sec61a, Sec61p and TPAPa together with ribosomal
markers RPL10 and RPS6 (Figure 2D, left). Upon ascor-
bate treatment, the levels of all six proteins were elevated
especially in the polysome fractions, while that of
ribophorin II or calnexin was not (Figure 2D, middle,
Fractions 7-10). Although Sec61a and TRAPa contents
in the total membrane fractions remained unchanged after
ascorbate stimulation (Figure 2E, Supplementary Figure
S1A), their shift into polysomes occurred. Upon p180 de-
pletion, reduced levels of the translocon-related proteins
or ribosomal markers were observed in the polysome frac-
tions as expected (Figure 2D, right), with their reduced
contents in the total membrane fractions (Figure 2E). In
contrast, little change was observed in the distributions
and contents of other rough ER marker proteins,
including ribophorin II and calnexin (Figure 2D and E).
When analyzed on an RNA basis, the distributions of the
translocon-related proteins among Fractions 6-10 did not
vary significantly (data not shown), suggesting that
heavily assembling polysomes have similar components
to light polysomes except for higher loadings. To ensure
that p180/polysome/translocon complexes were formed in
these cells, co-IP assays were performed using magnetic
beads conjugated with an anti-p180 antibody or control
IgG. When the collected polysome fractions (tube nos.
18-29) were subjected to the co-IP assays, the anti-p180
antibody specifically captured Sec61B, TRAPa and ribo-
somes (Figure 2F), indicating that ribosome/translocon
and pl80 complexes were certainly present in these
fractions.

To determine whether pl80 can associate with
the translocon in the absence of ribosomes, the mem-
branes of permeabilized cells were either left untreated
or stripped of ribosomes by in situ EDTA treatment fol-
lowed by membrane fraction preparation. The ribosome-
stripped membrane fractions or control (non-stripped)
membrane fractions were analyzed on a 5-20% sucrose
gradient. It was found that pl80 comigrated with
translocon complexes in the vicinity of the bottom in
both samples regardless of ribosome stripping
(Figure 3A). The possible association of pl80 with
translocon complexes in the absence of ribosomes was
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further assessed by IP experiments (Figure 3B). The
residual ribosomes in the stripped membranes were thor-
oughly removed by sedimentation, and the resulting
ribosome-free membrane fractions were used for IP ex-
periments. An anti-pl80 antibody efficiently captured
Sec61f and TRAPo, but not ribophorin II, from the
ribosome-free membranes (lane 3), while control IgG did
not (lane 2). These findings were further confirmed by a
reciprocal test using an anti-Sec61p antibody (lane 4).
These data indicate that p180 has the ability to associate
with translocon complexes independently of ribosomes.

Since p180 has been reported to have ribosome-binding
domain (18,30), we have addressed whether p180 associ-
ates with ribosomes independently of translocon. When
the ribosome-stripped membranes were further treated
with deoxycholate and SDS, neither Sec61p nor TRAPa
was no-longer co-precipitated by the pl80 antibody
(Figure 3C). In vitro binding experiments using the result-
ing p180 beads were performed to determine if p180 is able
to bind isolated monosomes or the subunits. It is shown
that p180 can associate with ribosomes through the 60S
subunit, but not with 40S subunit in high salt buffer
(Figure 3D). Based on these data, it is likely that 180 as-
sociates with polysomes/translocon complexes through
multiple sites.

Overexpression of p180 leads to enhanced formation of
membrane-associated polysomes

To further address the specific roles of p180 in the forma-
tion of membrane-associated polysomes, we examined the
polysome organization in HeLa transfectants over-
expressing p180 (HeLa/p180 cells). pl80 overexpression
led to a considerable increase in membrane-associated
polysomes in a pl80-dependent manner (Figure 4A).
The relative RNA levels compared with HelLa/puro cells
were increased by ~2.5-fold (Figure 4B). On the contrary,
the polysome patterns in the cytosolic fractions were
not significantly affected by the pl80 manipulation
(Figure 4D). Similar to the data in Figure 2D,
co-migration of pl80 with polysomes/translocon was
observed (Figure 4C), while levels of Sec61 comigration
with polysomes appeared to be somewhat low.

Enhancement of biosynthetic activity in the ER-associated
polysomes

Membrane fractions with abundant pl180 exhibit high
biosynthetic activity in a pl80-dependent manner (19).
To determine whether the activated biosynthesis is
accompanied by changes in the polysome organization,
we estimated the activity of de novo biosynthesis using a
non-RI labeling system with AHA, which is specifically
incorporated into newly synthesized proteins as a surro-
gate for methionine (23). Cells were treated with ascorbate
and/or depleted with a p180 siRNA, followed by labeling
with AHA. Density gradient analysis of the membrane
fractions revealed extremely high levels of activation of
protein biosynthesis in the polysome fractions after ascor-
bate stimulation (Figure 5, top and middle). Again, loss of
p180 led to almost complete blockade of biosynthesis in
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Figure 3. Independent association capacity of p180 with the translocon
and ribosomes. (A) After removal of the cytosolic fractions with the
permeabilization and wash buffers, the membrane fractions of
ascorbate-treated cells were either left untreated or stripped of ribo-
somes by in situ EDTA treatment. Subsequently, membrane fractions
were prepared with lysis buffer containing digitonin. The control (un-
treated) or ribosome-stripped membrane fractions were analyzed on a
5-20% sucrose gradient at 0.4 M KOAc. Marker proteins on western
immunoblots and rRNAs in agarose gels analyzed for control mem-
branes (left panel) and ribosome-stripped membranes (right panel)
are shown. Flow schema for preparing the ribosome-stripped and
untreated membranes are shown in Supplementary Figure S4.
(B) Ribosome-stripped membrane fractions were prepared as described
for (A) and subsequently centrifuged through a 0.5M sucrose cushion
to remove residual ribosomes. The resulting ribosome-free membrane
fractions were subjected to IP analysis with control IgG (lane 2), an
anti-p180 antibody (lane 3) and an anti-Sec61p antibody (lane 4) in the
presence of 0.4M KOAc. In the lanes containing the IP samples 10
times higher amounts were loaded compared with the input samples
(lane 1). Flow schema for preparing the ribosome-free membranes are
shown in Supplementary Figure S4. (C) Ribosome-stripped membrane
fractions prepared with 1% NP-40 lysis buffer were further treated with
0.5% deoxycholate and 0.1% SDS at 4°C for 1h to dissociate possible
complexes in the presence of 0.4M KOAc. After sedimentation at
100 000g for 40 min through a 0.5M sucrose cushion, the supernatants
were subjected to the IP assay with an anti-p180 antibody to prepare
p180-beads. Marker proteins were analyzed for the input sample (lane
1), p180-beads (lane 2) and control-beads (lane 3) to confirm the loss of
the translocon-related proteins. (D) The p180-beads or control-beads
were incubated with isolated monosomes or the subunits at 4°C for 1 h
at 0.4 M KOAc. After careful washing, the tested beads were recovered
by a magnet and analyzed for rRNA by agarose electrophoresis and for
pl80 by western blotting. The monosome, 60S and 40S preparations
contained no detectable levels of Sec61p, ribophorin II, TRAPa or
pl80 (data not shown). Lanes 1, 5 and 9: input pl80-beads; lane 2:
input 80S ribosomes; lanes 6 and 10: input ribosome subunits; lanes 3,
4,7, 8, 11 and 12: recovered bead fractions after incubation.

the corresponding fractions (Figure 5, bottom). These
findings directly indicate that the translational activity is
correlated with the occupation levels of polysomes, and
that this upregulation seems to be mainly driven by aug-
mented p180/translocon complexes on the ER membrane.

Ribosome occupation of mRINAs for specific proteins
is accelerated upon ascorbate stimulation in a
p180-dependent manner

In our previous study pl80 knockdown resulted in
preferential blockade of the secretion of large extracellu-
lar matrix proteins including procollagens and fibronectin
(19). To further characterize the molecular basis for these
observations, the patterns of procollagen and fibronectin
mRNAs in the sucrose gradient were compared with those
of non-responding proteins (Figure 6). Prior to ascorbate
addition in control cells, the procollagen and fibronectin
mRNAs peaked at tubes 26-27 (Figure 6A and B, top).
Ascorbate stimulation caused profound shifts of these
mRNAs into extremely-heavy polysomes (tubes 28 and
29, middle). On the contrary, loss of p180 caused their
dramatic shifts into lighter fractions that peaked at tubes
19 and 20 (bottom), although they were located in
polysome fractions. In contrast, the mRNA patterns for
MMP-2 and TIMP-1 remained unchanged at around
tubes 23 and 24 regardless of pl80 manipulation
(Figure 6C and D), which is consistent with their
constant secretion levels (19).

Expression of the coiled-coil domain of p180 in the cytosol
perturbs the membrane association of polysomes

Based on its deduced primary sequence, human pl80 is
predicted to have a highly basic N-terminal region that
includes a reported ribosome-binding repeat domain, an
MTB-1 microtubule-bundling domain and an acidic
C-terminal region consisting of a predicted coiled-coil
domain (18,24). To determine the responsible region for
the membrane-associated polysome formation, a series of
GFP-tagged polypeptides containing different regions of
human p180 were expressed in HEL cells (Figure 7A), and
their effects on ribosome/polysomes in the membrane
fractions were examined. Western blotting analyses of
the chimeras confirmed that the tested proteins were ex-
pressed at the correct sizes in the cytosolic fraction
(Supplementary Figure S3A). Of the six chimeric
proteins analyzed, three C-terminal polypeptides in the
coiled-coil domain (amino acids 945-1133, 1134-1293
and 1300-1540) unexpectedly led to dramatic decreases
in membrane-bound ribosomes, while cytosolic ribosomes
remained unaffected (Figure 7B). Their inhibitory effects
were >75% (Figure 7C) and elicited by preventing
polysome assembly on the membrane (Figure 7D and
E), indicating that these coiled-coil polypeptides expressed
in the cytosol exhibit dominant-negative effects. Other
chimeras including the repeat domain and MTB-1 had
no significant effects (Figure 7B and C). Similar results
were found in analyses of HeLa/p180 transfectants (data
not shown).

Next, the role of the coiled-coil polypeptide was further
examined in parental HelLa cells, which contained very
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Figure 4. Manipulation of the p180 level affects membrane-associated
polysomes. The amounts of ER-associated polysomes were analyzed
using stable HeLa transfectants overexpressing p180 (HeLa/p180) and
a control cell line (HeLa/puro). (A) The membrane fractions were
obtained by sequential digitonin extractions from cont-si-treated
HeLa/puro cells, cont-si-treated HeLa/p180 cells and pl80-si-treated
HeLa/p180 cells, and subjected to polysome analyses using a 15-50%
sucrose gradient. (B) The RNA contents of the polysome fractions were
estimated by densitometric scanning of the gels, and the relative ratios
of polysome:80S are shown. (C) The distributions of pl180 and other
translocon-related proteins in the collected fractions were analyzed by
western blotting. Data for cont-si-treated HeLa/puro cells (left),
cont-si-treated HeLa/p180 cells (middle) and pl80-si-treated HeLa/
p180 cells (right) are presented. (D) The cytosolic fractions were sub-
jected to polysome analyses on a 15-50% sucrose gradient, and the
rRNAs were analyzed.

low levels of endogenous p180. Similar to the stable trans-
fectants (Figure 4), transient overexpression of wild-type
p180 resulted in increased ribosomes and polysomes on
the membrane while truncation mutants lacking
C-terminal domains (A956, A1136 and A1291) failed to
enhance the assembly (Figure 7F-J, Supplementary
Figure S3B). Therefore, exogenously expressed pl80 is
competent for the assembly of ER-associated polysomes
in a manner dependent on the C-terminal domain.
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Figure 5. p180 depletion perturbs ascorbate-stimulated de novo biosyn-
thesis in polysome fractions on the ER membrane. The de novo bio-
synthesis activity was estimated using a non-RI labeling system with
AHA in HEL cells. The cells were cultured in the presence or absence
of ascorbate and treated with a control or p180-specific siIRNA. After
incubation with AHA, the membrane fractions were fractionated on a
15-50% sucrose gradient. The AHA-incorporating proteins were
labeled with biotin-alkyne by click chemistry and immunoblotted
with an anti-biotin antibody. Top panel: non-stimulated cells with
cont-si; middle panel: ascorbate-stimulated cells with cont-si; bottom
panel: ascorbate-stimulated cells with p180-si.

DISCUSSION

A recent genome-wide study of mRNA translation profiles
revealed the unexpected correlation that ribosome density
decreases with increasing ORF length (9). However, little
is known about the molecular mechanism of polysome
assembly, especially on membranes. Here, we have
demonstrated that p180 plays a pivotal role in the for-
mation of actively translating heavy polysomes on the
ER membrane. Tightly regulated cooperation of the
ribosome and translocon on the mRNA seems to occur
in a pl80-dependent manner in collagen-secreting fibro-
blasts. In response to resumption of ER-to-Golgi trans-
port and subsequent increased traffic demands, rough ER
with high levels of p180 may provide an efficient platform
for active protein biosynthesis through facilitation of
heavy polysome formation.

The unique repeat domain in p180 was reported to have
proliferating activity for the rough ER membrane itself
(18,30). However, it remains elusive whether pl80
directly binds to ribosomes in animal cells. Based on our
data, p180 most likely accelerates the membrane associ-
ation of polysomes and thereby leads to densely studded
ribosomes/polysomes on the ER. This novel feature of
p180 may account for its reported proliferative activity
toward rough ER membranes (18,30), although the
effect was minimal in our study as well as in previous
studies (20,22). The polysome assembly activity of p180
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Figure 6. Ribosome occupation of mRNAs for specific proteins is
accelerated upon ascorbate treatment in a pl80-dependent manner.
HEL cells were cultured in the presence or absence of ascorbate and
treated with a control siRNA or pl80-specific siRNA. The membrane
fractions obtained by sequential digitonin extractions were subjected to
polysome analyses using a 15-50% sucrose gradient. cDNAs were
synthesized from RNA samples extracted from individual tubes. The
distributions of mRNAs from non-stimulated cells with cont-si,
ascorbate-treated cells with cont-si and ascorbate-treated cells with
p180-si are plotted. Relative signal intensity of mRNAs for procollagen
type 1 alpha chain (A), fibronectin (B), MMP-2 (C) and TIMP-1 (D)
are shown. M, monosome fraction; P, polysome fraction.

is consistent with its enrichment in professional secretory
cells undergoing highly active protein biosynthesis, such as
pancreas and plasma B cells (16,31), and also fits well with
a recent report showing polysome-dependent localization
of p180 in rough ER sheets (20).

The formation of a ribosome/translocon/p180 ternary
complex was demonstrated in a recent protecome study
(21) and by the biochemical analyses of membrane-
associated polysomes presented here. The importance of

the complex formation for active protein biosynthesis
is fully consistent with our previous finding of disturbed
protein biosynthesis upon p180 depletion (19). Moreover,
we unexpectedly found that the C-terminal coiled-coil
domain, but not the tandem repeat domain, plays a key
role in the enhanced polysome assembly on the ER by
both dominant-negative expression and gain-of-function
assays. These findings strongly suggest the involvement
of other factor(s) in the interaction between pl180 and
the polysome/translocon complex. In addition, p180 asso-
ciates with translocon complexes in the absence of ribo-
somes. On the other hand, the in vitro binding assay
revealed that p180 can bind the 60S subunit, but not the
40S subunit, under high salt conditions independently of
the translocon, similar to reported findings of the close
disposition of p180 with ribosomes (17,32). Although the
binding of p180 to the 60S subunit in preference to the 40S
subunit indicates that it is not based on a charge-
dependent nonnon-specific interaction, further studies
with recombinant proteins are needed to define whether
it is a direct interaction. Thus pl80 is likely to have
multiple  contact sites with  translocon/polysome
complexes and thereby play a role in the complicated
translational machinery. Based on these findings, the
ability of p180 to enhance the polysome assembly may
be exerted primarily by the coiled-coil domain via
indirect interactions with the translocon complex
through unknown factor(s). The molecular basis for the
polysome enhancing mechanism remains to be elucidated.

Thus far, several molecules have been reported to bind
to the C-terminal coiled-coil domain of p180 using in vitro
assays. One of the candidates is a kinesin motor (33),
although little is known about the involvement of micro-
tubule motor proteins in the translation step on the ER.
Interestingly the C-terminal domain of pl80 shares
conserved motifs with kinectin, a potent kinesin-binding
partner on the ER (34) which binds to an elongation
factor (35). In addition, a key regulator of polysome
assembly for the fibronectin gene was identified as a
subunit of microtubule-associated protein 1 (36), which
is reminiscent of the microtubule-bundling domain in
p180. Consistent with previous in vitro data showing
polysome targeting to microtubules (37), a role for
microtubule-binding protein and/or kinesin motor might
be suggested in assembling polysomes for secretory
proteins. Alternatively, pl180 may drive more efficient
docking of polysomes onto the translocon in a manner
dependent on conformational change upon translocon/
ribosome interaction (12). A further study is now being
undertaken to explore the novel mechanism underlying
the formation of the polysome/translocon/p180 complex.

In the present study, we found that the degree of
polysome occupation on ER-associated mRNAs was
regulated, rather than formed at random, in intact cells.
Several proteins have been reported to be specifically
associated with polysomes, although none of them are
expected to function preferentially on the ER (38-40).
Recently, a shift of certain mRNAs into polysome frac-
tions from non-polysomal ones was reported in response
to specific stimuli (41,42). In these studies, the type of
regulatory mode was considered to be ‘turning on/off’
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Figure 7. Cytoplasmic expression of the coiled-coil domain perturbs polysome assembly on the membranes. (A) Schematic representations of
full-length and truncated constructs of various regions of pl180. Human pl80 has a predicted transmembrane domain (TM) close to the
N-terminus, a highly basic tandem repeat domain (dark gray box), a microtubule binding and bundling domain (MTB-1) and a C-terminal
acidic coiled-coil domain (gray boxes). The numbers on the left of each truncated mutant denote the amino acid residues of human p180 (DDBJ
accession number: AB287347). (B) A series of GFP-tagged polypeptides containing different regions of human p180 were expressed in HEL cells, and
the rRNAs (indicated by 28S and 18S, respectively) in the cytosolic and membrane fractions are shown. (C) The RNA contents in the cytosolic and
membrane-bound fractions were estimated by densitometric scanning, and the relative amounts are shown. Data represent means £ SD (n = 3).
(D) Polysome analyses were performed using the membrane fractions of cells overexpressing peptides containing amino acid residues 945-1133,
1134-1293 and 1300-1540 compared with those of control cells or cells overexpressing control peptides. Arrowheads indicate 28S (upper) and 18S
(lower) rRNAs. (E) The relative ratios of polysomal RNA to 80S RNA are shown. (F) Schematic representations of wild-type and various C-terminal
deletion mutants of p180. (G) Expression plasmids encoding wild-type p180 and p180 mutants were transfected into HeLa cells. The rRNAs in the
cytosolic and membrane fractions were analyzed. (H) The relative RNA contents in the cytosolic and membrane-bound fractions are shown. Data
represent means = SD (n = 3). (I) Polysome analyses were performed using the membrane fractions of these cells. Arrowheads indicate 28S (upper)
and 18S (lower) rRNAs. (J) The relative ratios of polysomal RNA to 80S RNA are shown.

and was different from that observed in the present study.
In polysome analyses of ascorbate-untreated cells, the
procollagen and fibronectin mRNAs were mainly located
in light polysome fractions, which probably correspond to
biosynthesis at a basal level (19). Without altered levels of
these mRNAs on the ER, greater loading of ribosomes
and their shift into very heavy polysome fractions were
accelerated in a pl180-dependent manner upon ascorbate
treatment, conditions in which biosynthetic activity was
pronouncedly enhanced. As expected from the preferential
secretion loss (19), this shift was seen for the mRNAs of
procollagens and fibronectin, but not for the mRNAs of
TIMP-1 and MMP-2. pl80 may facilitate augmented
ribosome occupation of certain mRNAs probably by

coordination with other factors. Regarding the site of ac-
tivation by ascorbate, it remains to be clarified what kinds
of signal transducers drive the upregulation of p180 and
translocon components after resumption of procollagen
transport out of the ER.

During the preferential control of ribosome loading,
factors that bind to a specific sequence on a subset of
mRNAs may be involved. One of the candidate factors
is an hnRNP, a class of RNA-binding proteins that
function in both transcription and translation steps
(43,44). Previously, important roles of hnRNP El in the
stabilization of procollagen mRNAs and in translational
control were reported (45,46). To explore a role for
hnRNP El in our system, we examined its expression
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levels following p180 knockdown. However hnRNP El
was not affected by depletion of p180 (unpublished obser-
vations). This observation implies that the mRNAs for
procollagens may be mainly stabilized by hnRNP E1 re-
gardless of p180, while the efficiency of their translation
can be modulated by p180 through pronounced assembly
of polysomes. A key molecule that functions in such a
specific regulation remains to be identified.

Based on the present biochemical data, extremely heavy
polysomes are one of the hallmarks of collagen-secreting
fibroblasts, in which the majority of the mRNAs for
procollagens and fibronectin are located. They probably
correspond to the highly assembled double-row or
spiral-shaped polysomes (10) in our EM images, which
bear a close resemblance to previously reported ones in
active collagen-secreting cells (28). To accomplish efficient
translation coupled with translocation, higher-order co-
ordination is necessary between each single unit of the
ribosome/translocon complex. To this end, the degree of
ribosome occupation should be tightly controlled in ac-
cordance with the translocation process, which is espe-
cially true for extremely high-rate translation of heavy
polysomes for the huge molecules. One possible hypoth-
esis is that synchronized translation/translocation on a
single mRNA molecule is controlled by a factor that is
associated with the polysome/translocon and in turn
prevents interference between the individual units of the
complex. p180 might be involved in such a regulation
process through the association of its C-terminal domain
with other factors. For the sake of high-rate translation of
secretory proteins, continuous supply of aminoacyl-tRNA
and other factors is another important aspect. To achieve
sufficient supply of these factors engaged in translation,
the aminoacyl-tRNA channeling hypothesis is an attract-
ive model which states that aminoacyl-tRNA is funneled
through the translational machinery without intermittent
diffusion (47). Indeed aminoacyl-tRNA synthetases and
initiation and elongation factors were localized with the
ER (48,49), consistent with the kinetic advantage of
protein biosynthesis on the ER (3). Given that kinectin
associates with elongation factor eEF1Bd and thereby
anchor the eEF1B complex on the ER (50), the highly
conserved C-terminal domain among pl80 and kinectin
may play a role in providing a suitable platform for
high-rate protein biosynthesis. Further studies on the
complex formation of the ribosome/translocon machinery
with p180 will provide important insights into the basic
mechanism for orchestrating the high-rate biosynthesis
achieved by professional secretory cells.
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