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Abstract
We establish the feasibility of imaging the linear and nonlinear elastic properties of soft tissue
using ultrasound. We report results for breast tissue where it is conjectured that these properties
may be used to discern malignant tumors from benign tumors. We consider and compare three
different quantities that describe nonlinear behavior, including the variation of strain distribution
with overall strain, the variation of the secant modulus with overall applied strain and finally the
distribution of the nonlinear parameter in a fully nonlinear hyperelastic model of the breast tissue.

1. Introduction
Elasticity imaging or elastography encompasses a collection of techniques that are used to
image the mechanical properties of tissue in vivo. All these techniques involve imaging the
tissue using a standard modality, such as ultrasound or MRI, while it deforms due to a
prescribed external load or due to internal motion (motion during the cardiac cycle, for
example). The sequence of deformation images thus obtained are used to determine the
displacement field in the interior of the tissue typically using cross-correlation based
techniques. The interior displacements are then utilized to infer the mechanical properties of
tissue.

Broadly speaking the excitation and the accompanying deformation can either be dynamic
or static (see Parker et al (2005) for a nice unified discussion). In dynamic elasticity imaging
shear waves are set up and imaged in the tissue, and the local wave speed is used to estimate
the elastic modulus (see Kruse et al 2000, Sinkus et al 2000, Oliphant et al 2001, Bercoff et
al 2003, McLaughlin and Renzi 2006, Greenleaf et al 2003 for a review). The excitation is
either applied to the surface or as in the case of radiation force elastography in the interior of
tissue (Nightingale et al 2002). Recently, dynamic excitation has also been used to
determine the viscous properties (Sinkus et al 2005) of tissue.

In static, or more appropriately quasi-static elasticity imaging, the excitation is on a slower
time scale such that the inertia of the tissue does not play a role in its motion. In this case the
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tissue is typically slowly compressed and imaged using ultrasound, and successive
ultrasound images are registered to determine the displacement field. The displacement field
is then used to calculate the component of strain along the axis of the transducer (axial
strain) and imaged. This strain image is then interpreted as an image of the reciprocal of the
shear or Young’s modulus for the tissue (Ophir et al 1991, Garra et al 1997, Kallel and
Ophir 1998) (see Ophir et al (2002) for a review). In some instances the displacement field
is used to solve an inverse elasticity problem to explicitly determine the spatial distribution
of the elastic modulus of interest. This involves selecting an appropriate mathematical
description of tissue deformation and then determining the spatial distribution of material
parameters in this description (Kallel and Bertrand 1996, Doyley et al 2000, Oberai et al
2003). While several techniques have been proposed for solving this inverse problem, most
applications to date have been limited to synthetic displacement data or displacement data
obtained from tissue-mimicking phantoms.

One of the motivations for imaging the elastic properties of tissue is that diseased tissue
tends to be stiffer than its surroundings. This is certainly true of tumors found in the breast
and the prostate. Motivated by this observation several clinical trials have been conducted
(some are on-going) with the aim of assessing the utility of elasticity imaging in the
detection and diagnosis of breast and prostate cancer (Garra et al 1997, Hiltawsky et al
2001, Hall et al 2003, Itoh et al 2006, Regner et al 2006, Burnside et al 2007). Most of
these, as indeed most elasticity imaging studies to date, have focused on the linear elastic
properties of tissue. However, recent data from ex vivo measurements of breast and prostate
tissue indicate that in addition to the linear properties, nonlinear elastic properties may be
useful in differentiating benign and malignant tumors (Krouskop et al 1998, Wellman et al
1999). For example, in Wellman et al (1999) it is reported that while fibroadenoma (a
benign tumor in the breast) and invasive ductal carcinoma (IDC) have similar elastic moduli
at small strain, their moduli at large strain differ by a factor of about 2.5, with IDC being
stiffer. Thus while it might not be possible to distinguish a fibroadenoma from an IDC at
small strain alone, it may be possible to do this by considering data at larger strain (about
10% strain as shown in this paper). Similarly, it has been reported that at small strains the
shear modulus of ductal carcinoma in situ (DCIS) is close to that of glandular tissue, while
at large strains DCIS is stiffer by a factor of about 8. Once again this points to the possibility
of directly imaging DCIS by mapping the variation of the elastic properties of tissue as a
function of strain. In other words these applications require imaging the nonlinear elastic
properties of tissue.

While there is a large collection of work in linear elasticity imaging, there have been few
attempts at imaging the nonlinear properties of tissue. Skovoroda and coworkers recognized
the potential of nonlinear elasticity imaging (Erkamp et al 2004a, 2004b) and in Skovoroda
et al (1999) account for the effect large strains in their inversions, however they assume
linear stress–strain behavior. In Erkamp et al (2004a) they evaluate nonlinear elastic
parameters of tissue using force-displacement data, however they assume homogeneous
material properties of the tissue. Sinkus and coworkers (Sinkus et al 2006) have employed
dynamic ultrasound elastography to determine the nonlinear parameters of tissue by imaging
the second harmonics of a time-dependent shear displacement. However these estimates of
nonlinear properties are determined at small values of applied strain (less than 1%) where
differences among tissue types might be difficult to discern.

In order to image nonlinear elastic properties using quasi-static, ultrasound based
elastography it is likely that overall compressive strains that are greater than 10% are
required. This estimate is based on ex vivo tests conducted by Krouskop et al that indicate
that at smaller strains the departure from linearity for most tissue types is minimal
(Krouskop et al 1998). Once the displacements at these large strains have been measured, an
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inverse problem must be solved in order to determine the nonlinear elastic parameters of
tissue. Both these problems, that is displacement estimation at large strain, and the inverse
nonlinear elasticity problem, are challenging problems in their own right. In Hall et al
(2002) we reported the initial observation of deformation-dependent strain image contrast
using our first motion tracking algorithm for real-time elasticity imaging (Zhu and Hall
2002). A more recent motion tracking algorithm significantly improves the displacement
estimate accuracy for large deformations (Jiang and Hall 2007). The key to accumulating
relatively small deformations (i.e., 1–2% axial strain) over large total deformations (<10%
axial strain) is the need to limit tissue motion out of the image plane. Accurately tracking
motion for large deformations is assisted with real-time feedback of strain images that help
to demonstrate (nearly) uniaxial motion from frame to frame. With real-time feedback it is
common to accurately track motion for at least 10% accumulated axial strain. In Gokhale et
al (2008) we have developed a new, efficient algorithm for solving the inverse nonlinear
elasticity problem. This involves posing the inverse problem as a minimization problem and
then utilizing the adjoint elasticity equations and a novel continuation strategy in material
parameters to solve this problem in reasonable time. In this manuscript we combine these
developments to reconstruct the nonlinear elastic images of tissue. We report the first set of
clinical images displaying the linear and nonlinear elastic properties of tissue derived from
ultrasound measurements of quasi-static deformation. We also describe how these images
may play an important role in the diagnosis of breast cancer.

For completeness, we consider three descriptors of nonlinear behavior of tissue. First, we
create an incremental axial strain image about an overall strain state and observe how this
image changes with increasing overall strain. We note that if the ratio of strain in a region A
versus another region B is reducing with increasing strain then A is stiffening faster relative
to B. Second, for a given value of overall strain we evaluate the shear modulus assuming
linear elasticity and infinitesimal strains and observe how this modulus image varies with
overall strain. We term this image the secant modulus image. By this measure if the ratio of
the modulus in a region A relative to B is increasing with strain, then A is stiffening with
respect to B. Finally, we reconstruct the linear and nonlinear elastic parameters for the tissue
in a fully nonlinear tissue constitutive model, while fully accounting for finite strains. This
gives us the most direct measure of nonlinear behavior in tissue.

The organization of the remainder of the manuscript is as follows. In section 2 we describe
the methods for acquiring ultrasound images, estimating tissue displacement, and linear and
nonlinear properties of tissue. Thereafter in section 3 we present results on two sets of breast
data. For each set these include a B-mode ultrasound image, incremental strain images,
secant modulus images and images of the linear and nonlinear elastic parameters. In section
4, we discuss these results and explain the relative merits of incremental strain, secant
modulus and nonlinear elasticity images. We end with conclusions in section 5.

2. Methods
2.1. Acquisition of ultrasound images

Radiofrequency (RF) echo data were recorded during in vivo breast imaging at three
institutions: the University of Kansas Medical Center in Kansas City, KS (approved by the
KUMC Human Subjects Committee), Mayo Clinic in Rochester, MN (approved by the
Mayo Foundation institutional review board), and the Charing Cross Hospital, London, UK
(approved by the Riverside research ethics committee, Chelsea & Westminster Hospital
(NHS Trust)). Informed consent was obtained from all enrolled patients. Our study was also
compliant with the Health Insurance Portability and Accountability Act (data acquired at
KUMC and Mayo Clinic). The protocol was approved by the appropriate Institutional
Review Boards. All sites used equivalent Siemens SONOLINE Elegra (Siemens Medical
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Solutions, Ultrasound Division, Issaquah WA) with VFX13-5multi-rowlinear array
operating at 10 MHz. The Elegra samples the RF echo data at 40 MHz and we used a 200
µm spacing between adjacent acoustic beams. A free-hand compression technique (Hall et
al 2002) was used by clinicians who were trained to begin with the transducer ‘just barely in
contact’ with the skin surface and then apply increasing pressure in a cyclic manner over an
approximately 10–20% strain range. A real-time strain imaging algorithm (Zhu and Hall
2002) was implemented on the Elegra and used during RF echo signal acquisition (Hall et al
2002) to provide visual feedback of strain image quality during scanning to assist in the
acquisition of high quality data.

2.2. Estimates of tissue displacement and incremental strain images
The motion tracking method for displacement and strain estimation is reported in Jiang and
Hall (2007). Basically the motion tracking method uses a guided search block-matching
algorithm that employs a relatively large motion tracking kernel (approximately 0.5 mm × 1
mm) and 2D search region to establish a good estimate of displacement in the center of the
region of interest. That set of displacement estimates is used to guide the location of the
search region in laterally adjacent RF echo segments while reducing the size of the required
search region to 3 × 3 RF samples. A smaller (0.2 mm × 1 mm) kernel is used for this
guided search. Displacement estimates are made on a 200 µm × 200 µm sample grid with
RF-sample precision. Sub-sample displacement estimates (necessary for strain imaging) are
obtained with quadratic interpolation of the block-matching results (Ignacio et al 1995). The
linear regression with a 1.6 mm window is used on the axial component of the displacement
field to obtain axial strain fields and strain images.

An automated algorithm (Jiang et al 2006) was used to select the ‘best’ sequence of
displacement data for further processing. The algorithm computes a ‘displacement quality
measure’ (DQM) for the entire displacement and strain field as a single quantity that is
based on the product of the cross-correlation coefficient of the reference and motion-
compensated RF echo fields and the cross-correlation coefficient of the consecutive strain
fields. This measure correlates highly with the subjective ranking of strain images (Jiang et
al 2006). Sequences with at least 10% accumulated strain also having individual DQM
values exceeding 0.8 were selected for further analysis. One example of the most common
benign solid breast tumor (fibroadenoma) and malignant tumor (invasive ductal carcinoma)
were selected from the accumulated data set for this proof of concept modulus
reconstruction study.

2.3. Modulus reconstruction
The core of our modulus reconstruction approach is built around an iterative optimization
strategy. This involves iteratively improving estimates of material property distributions so
that they yield predicted displacements that best match the measured displacements.

Secant modulus images—For the linear elasticity case (reconstruction of secant shear
modulus) the quantity to be minimized is (Oberai et al 2003, 2004)

(1)

In the equation above Umeas is the axial component of the measured displacement field at a
given value of overall applied strain. The field U is the axial component of the
corresponding predicted displacement. We constrain the predicted displacement vector to
satisfy the equations of equilibrium for an incompressible linear elastic solid in a state of
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plane stress. Through these equations the displacement field is related to the shear modulus
of the material, which is denoted by μ. In our objective function (1), the first term is the data
matching term and the second term is a regularization term. In this term ℛ is the total
variation diminishing (TVD) regularization functional that penalizes large changes in μ,
without penalizing their steepness. Finally, αμ is the regularization parameter that determines
the importance of the regularization relative to the data matching term. For details on the
formulation of this problem and the algorithm, the reader is referred to Oberai et al (2003,
2004). Since the measured data contains no force measurements we only recover the relative
value of the shear modulus μ. The actual shear modulus distribution is related to the
reconstructed value through an unknown multiplicative constant, which may be determined
from a single force measurement, but such a measurement is unavailable for the data used
here.

Nonlinear elasticity images—For the nonlinear elasticity case (reconstruction of shear
modulus at zero strain and the nonlinear parameter) the function to be minimized is given by

(2)

In the nonlinear case we have two measured displacements, one at a small value of overall
strain, denoted by  and another at a large value of overall strain denoted .
Correspondingly we also have two predicted displacement fields whose axial components
are denoted by U1 and U2 in the equation above. The predicted displacement fields are
required to satisfy the equations of equilibrium for an incompressible, hyperelastic solid
undergoing finite deformations in a state of plane stress. The stress–strain relation is
exponential and is determined by the Veronda–Westman strain energy density function
(Veronda and Westman 1970). This function involves two material parameters. These are
the shear modulus of the material at zero strain, denoted by μ0, and the nonlinear parameter
γ, which denotes degree of nonlinearity in the material. The strain energy density function is
given by

(3)

where I1 and I2 are the first and second invariants, respectively, of the Cauchy–Green strain
tensor. The details of this formulation are presented in Gokhale et al (2008).

The other terms that appear in (2) are:

1. The weighting factors w1 and w2. These parameters are used to scale the data
matching term and are selected to ensure that both the large deformation data and
the small deformation contribute to it in (roughly) equal measures. In our examples,
the large deformation displacements are about ten times larger than the small
deformation displacements. Thus to ensure equal contributions we set w1 = 102 and
w2 = 1. If these weighting factors were not used, the contribution from the smaller
deformation would be insignificant compared to the contribution from the large
deformation. Indeed, the contribution from the smaller deformation would be only
slightly larger in magnitude than the contribution of the noise in the larger
deformation. Without the weighting factors, we would essentially be trying to
recover two material parameters from a single deformation field. This problem is
severely underdetermined in that there are an infinite combinations of μ0 and γ that
could match the single measured displacement field.
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2. There are two regularization terms ℛ(μ0) and ℛ(γ) that regularize the shear
modulus at zero strain and the nonlinear parameter, respectively. The parameters αμ
and αγ determine the extent of this regularization.

We remark that similar to the linear case, in the nonlinear case also we reconstruct the
relative distribution of μ0 which is related to the actual distribution through a multiplicative
constant. This constant may in principal be determined through a single overall force
measurement during compression.

Computational Algorithm—For both linear and nonlinear elastic cases we minimize π
using a quasi-Newton method (BFGS). We represent the displacement fields and the
material properties using standard bilinear finite element functions. Thus we seek the values
of the material properties at the nodes of the mesh that will minimize π. In order to converge
to these values, at every iteration the quasi-Newton algorithm requires the gradient vector,
which represents the change in π due to a small change in the material properties at each
node. For the linear elasticity case, we evaluate this vector efficiently by utilizing the adjoint
elasticity equations. The major computational costs associated with using this approach for
solving the inverse problem are ≈2niterC, where C is the cost of solving a single linear
forward elasticity problem and niter is the total number of iterations of the optimization
algorithm. Note that these costs are independent of the number of parameters used to
represent the material properties and since this number can be very large (≈104) this is a
significant advantage.

For the nonlinear case the use of adjoint equations alone does not yield acceptable
computational costs. In order to further lower these costs we utilize a continuation strategy
in material parameters in addition to the adjoint elasticity equations. This approach is
described in detail in Gokhale et al (2008). Within this approach we recognize that the
optimization algorithm converges to the final distribution of material properties in
increments of properties that are typically small. As a result, for solving the forward
problem associated with the current state of material properties, the displacement field
corresponding to the previous iteration provides a very good starting guess. Using this
approach the major computational costs for solving the inverse nonlinear elasticity problem
are ≈2(niter + nload)nNewtonC, where nload is the number of load steps needed to converge to
the final large deformation state starting from an undeformed state and nNewton is the
number of Newton iterations per load step. The cost of solving the forward nonlinear
elasticity problem is ≈2nloadnNewtonC. In our examples we have found nload ≈ niter and as a
result the cost of solving the inverse nonlinear elasticity problem is roughly only two times
that of solving the corresponding forward problem. In order to compare the cost of solving
the inverse nonlinear problem with that of solving the linear problem, we recognize that
nNewton ≈ 6, so the cost of solving the nonlinear inverse problem is about 2nNewton ≈ 12
times that of solving the linear inverse problem.

The Veronda–Westman Constitutive Law (Veronda and Westman 1970)—The
Veronda–Westman model provides an exponential dependence of stress on the strain. It was
originally developed to model skin, which exhibits such behavior. Similar behavior has been
reported in ex vivo experimental data for breast tissue (Krouskop et al 1998), and so
motivates our choice of the Veronda–Westman model in this study. We illustrate the
important aspects of the Veronda–Westman material model by considering a simple
example. For an incompressible Veronda–Westman material in uniaxial tension the axial
component of the Cauchy stress is given by
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(4)

where λ = 1 + ε, is the stretch and ε is the strain. In figure 1 we have plotted σ as a function
of λ for different values of μ0 and γ. In these figures we observe an exponential stress–strain
response. We also observe that the parameter μ0 determines the slope of the stress–strain
curve at zero strain (λ = 1), while γ determines the rate at which the curve departs from
linear behavior.

The roles of μ0 and γ become clearer if we evaluate the slope of the stress–strain curve
which is equal to the (tangent) Young’s modulus at a given value of strain. That is

(5)

At zero strain (λ = 1) from the above expression we have E(1) = 3μ0 implying that the
Young’s modulus at zero strain is completely determined by the parameter μ0 which is
equivalent to the shear modulus at zero strain. Also using this expression we conclude that
the ratio of the Young’s modulus at finite strain to the Young’s modulus at zero strain, that
is E(λ)/E(1), is entirely determined by the parameter γ. Thus any change in the modulus as a
function of strain is solely determined by γ, which is appropriately labeled as the nonlinear
parameter for the material. In figure 2 we have plotted the ratio E(λ)/E(1) as a function of
the stretch for different values of γ. We observe that the Young’s modulus increases
exponentially with strain, and the rate of increase is determined by γ.

3. Results
3.1. Secant modulus images

Using the displacement estimates at two distinct levels of overall strain in the linear elastic
modulus reconstruction algorithms described in section 2, the shear modulus for each tumor
type was reconstructed. The assumption of linear elasticity was invoked even for the large-
strain data set. As a result the recovered modulus was interpreted as a secant modulus for the
tissue. Further since no force measurements were made, it was recognized that the resulting
modulus distribution was recovered up to a multiplicative factor. The axial component of the
displacement was down sampled by a factor of 4 from the displacement estimates on to a
grid (hx = 0.682 mm, hy = 0.599 mm for fibroadenoma and hx = 0.750 mm, hy = 0.599 mm
for IDC) and represented using standard bilinear finite element shape functions. Here the x-
and y- axes are coincident with lateral and axial directions, respectively. The shear modulus
was reconstructed on the same grid and was also represented using bilinear finite element
shape functions. On every edge of the sample the axial (y) displacement was imposed, while
it was assumed that there was no traction in the lateral (x) direction. This meant that shear
traction on the top and bottom edges and normal traction on the left and right edges were
assumed to be zero. It is reasonable to expect that the shear traction on the top edge would
be small due to the lubrication between the transducer and skin. Further, since the
predominant stress state is compressive, it may be assumed that shear stress on the bottom
edge is also small. For the left and right edges normal tractions were assumed to be small
because during the examination the breast was allowed to strain freely in the lateral
direction. The value of the regularization parameter was set to 10−4 and the solution was
considered converged after 100 iterations of the BFGS algorithm. At this iterate, the
cumulative drop in the objective function over the final five iterations was smaller than 0.1%
of its starting value for all reconstructions. The initial guess for the shear modulus was set to
2 and was constrained to lie in the interval (1, 100).
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In figure 3 we have displayed relative shear modulus images for the fibroadenoma at
minimal strain and at about 12% axial strain beyond minimal strain. (In this and all images
that follow, the images have all been mapped back to the reference (minimal strain)
configuration for easy comparison; this includes B-mode, strain and reconstructed modulus
images.) We have also included B-mode ultrasound and axial strain images for comparison.
We observe that the tumor is clearly seen in the shear modulus images at both levels of
overall strain. In the large-strain shear modulus image the modulus contrast in the tumor has
reduced from 10:1 to 7:1.

In figure 4 we have shown the B-mode ultrasound, axial strain and relative shear modulus
images for the IDC at minimal strain and at about 12% axial strain beyond minimal strain.
We observe that the tumor is clearly seen in bothmodulus images. In the large-strain shear
modulus image the tumor appears to have retained its stiffness in comparison with the
background. In fact it has stiffened slightly toward the right edge. However, this stiffening is
too small to be discerned in the image.

3.2. Linear modulus and nonlinear parameter images
The two axial displacement estimates at minimal and large values of overall strain for each
tumor were used in the nonlinear inverse elasticity algorithm in order to estimate the shear
modulus at zero strain and the degree of nonlinearity. The boundary conditions, the shape
functions and the grid size were the same as those for the secant modulus reconstructions
and are described above. The regularization parameters for the shear modulus and the
nonlinear parameter were set to 2 × 10−3. The weighting parameter for the small strain was
set to w1 = 100 and that for the large strain was set to w2 = 1. The initial value of the
infinitesimal strain shear modulus, μ, was set to 2 and it was constrained to lie in the interval
(1, 20), while the initial value of the nonlinear parameter was set at γ = 1 and it too was
confined to the interval (1, 20). The optimization iterations were stopped when the
cumulative drop in the objective function over the final five iterations became smaller than
0.5% of its starting value. This took about 20 iterations for each case.

In figure 5 we have displayed the B-mode ultrasound, the infinitesimal strain relative shear
modulus and the nonlinear parameter images for the fibroadenoma. We observe that tumor
is clearly seen in the shear modulus image whereas it is absent from the nonlinear image. In
order to locate the tumor in the nonlinear image we have plotted the iso-contour of μ = 10 in
this image with a dark curve.

In figure 6 we have displayed the B-mode ultrasound, the infinitesimal strain relative shear
modulus and the nonlinear parameter images for the IDC. We observe that tumor is clearly
seen in the shear modulus image and a portion of the tumor and surrounding tissue also
stand out in the nonlinear parameter image. This indicates that some tissue within the tumor
and adjacent to it is stiffening in comparison with the background. The dark curve in the
nonlinear image corresponds to the iso-contour of μ = 13.

4. Discussion
4.1. Fibroadenoma

By comparing the incremental strain image at minimal preloading with the strain image at
12% overall strain (figure 3) we observe that the region within the tumor is lighter in the
latter. This indicates that in relation with the background the strain within the tumor has
increased pointing to a relative softening of the tumor with respect to the surrounding tissue.
This is seen more clearly in the relative secant modulus images at the two strain levels
(figure 3). The ratio of the shear modulus of the tumor to the background is seen to decrease
from about 10:1 to 7:1. In theory, we should expect the secant modulus at small strains to be
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a good approximation to the zero-strain shear modulus. Indeed, in figure 5 we see the image
for the shear modulus at zero strain, is very similar (both quantitatively and qualitatively) to
the secant modulus image at low strain (figure 3). This agreement between the two results
provides a stringent test of the procedures used here, and of both reconstruction codes.

We observe in the nonlinear parameter image that the region within the tumor has about the
same value as the background. On the other hand, the incremental strain images and the
secant modulus images appear to indicate otherwise; that is, they imply the ratio of the
tumor to background stiffness is slightly decreasing with increasing overall strain. These two
observations may appear contradictory at first, however they may be reconciled once it is
recognized that the strain and secant modulus images represent the nonlinear behavior of
tissue about a local strain state and that the strain state within the tissue is inhomogeneous.
In particular, the average strain within the tumor is less than the strain in the background,
and therefore in these regions these images describe changes in modulus about two different
strain states. The nonlinear parameter image, on the other hand, represents the nonlinear
behavior of tissue that is unbiased by the local value of strain. This effect is explained in
detail below with the help of a hypothetical tissue phantom.

We consider a simple phantom material comprised of three horizontal layers of
incompressible materials that follow the Veronda–Westman constitutive law. The top and
bottom layers, which we refer to as the background layers, are thick and made of the same
material while the center layer is thin. All layers have the same nonlinear parameter γinclusion
= γbackground = 3, while the shear modulus of the center layer is five times that of the
background (μ0 inclusion = 5, μ0 background = 1). This specimen is a simplified model of the
fibroadenoma we have studied above, in that the nonlinear parameter of the inclusion is the
same as the background while its shear modulus is higher. This specimen is subjected to a
uniaxial test with loading in the vertical direction. First we load to a small level of overall
strain, say 1%. Since the center layer is thin, the overall strain of the entire specimen is
approximately equal to the strain in the background, so the background strains by about 1%.
Given this strain we evaluate the stress in the background using (4) and recognizing that the
same stress must be transmitted to the inclusion, we once again use (4) to evaluate the strain
in the inclusion to be 0.202%. Once we know the stress and strain in the background and the
inclusion we can evaluate the secant modulus for these layers. The ratio of the secant
modulus of the inclusion to the background turns out to be 4.95, which is very close to the
ratio of their shear moduli at zero strain as might be expected. Next we load the specimen to
15% overall strain and once again assume that this is the strain in the background. Using the
same approach as for the 1% case we then evaluate the stress in both layers and
consequently the strain in the inclusion which is 4.32%. Note that this is much smaller than
the strain in the background which is 15%. With this in hand we evaluate that the contrast in
the secant modulus is equal to 3.47. Thus in going from 1% strain to 15% strain the contrast
in the secant modulus has dropped from 4.95 to 3.47. A naive interpretation of this result
might be that the inclusion has hardened less than the background and is therefore ‘less’
nonlinear, which we know to be incorrect. What has happened can be attributed to the fact
that in both strain states the inclusion strains less than the background. In the small strain
state the strain everywhere is too small to elicit a nonlinear response and in evaluating the
secant modulus we end up measuring the unstrained tangent modulus in both the inclusion
and the background. However for the large-strain state, the strain in the background is large
enough so that it hardens with strain, while the strain in the inclusion is not large enough for
this effect to be prominent. As a result, it appears that the background has become more stiff
in the large-strain case.
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4.2. Invasive ductal carcinoma
In the incremental strain images for the IDC the variation of strain contrast between the
tumor and its surroundings from minimal preloading to 11% overall strain is not clearly seen
(see figure 4). Even in the secant modulus images (figure 4) we observe that the modulus
contrast does not change very much. Actually it appears to drop somewhat everywhere in
the tumor except near the right edge where it increases very slightly. As for the nonlinear
reconstructions, once again we observe that the shear modulus at zero strain (figure 6) is
similar to the shear modulus at minimal preloading. In the nonlinear parameter image we
observe that the parameter is elevated near the right edge of the tumor, indicating that it has
a greater tendency to harden with strain.

As was the case with the fibroadenoma, the incremental strain images and the secant
modulus images for the IDC initially appear to contradict the nonlinear parameter result. For
the IDC the strain and secant images indicate that the stiffness contrast within the tumor
does not change with increasing strain, whereas the nonlinear parameter image indicates that
with increasing strain it stiffens at greater rate than the background. Once again this
discrepancy can be attributed to smaller strain within the tumor and is explained below using
a simple model for the IDC.

Like the fibroadenoma we model the IDC as a three-layer phantom. However in this case the
inclusion (center layer) is more stiff (μ0 inclusion = 5) and more nonlinear (γinclusion = 3) than
the background (μ0 background = 1, γbackground = 1). When we strain this sample to 1% strain
in the background, the strain in the inclusion is 0.202%, which yields a contrast in the secant
modulus of 4.96. When we strain the background to 15%, the strain in the inclusion is 3.6%.
Thus the contrast in the secant modulus is 4.2. Based on the secant modulus results it would
appear as though the inclusion is not hardening with strain (in fact it is softening slightly),
while we know that its nonlinear parameter is much larger than the background. Once again
the reason for this erroneous interpretation is that strain within the inclusion is smaller
compared to the background. In the large overall strain state this causes the inclusion to
harden less than it would have if it were strained to the same level as the background.

4.3. Measures of nonlinear behavior
In this study we have considered three measures of elastic tissue behavior: incremental strain
images, secant modulus images and nonlinear elasticity images. It is useful to point out their
relative merits.

1. Incremental strain images: strain images provide best resolution and require least
computational effort. However they suffer from artifacts in that they can only be
considered the reciprocal of stiffness images if the stress state is one dimensional.
This is clearly not the case for the examples considered in this study. In addition
these images reveal the nonlinear response of tissue at a given location about the
local value of strain and since different regions may be subject to differing levels
of strain, care must be exercised in interpreting them as images of nonlinear
behavior.

2. Secant modulus images: secant modulus images require more computational effort
than strain images because they involve the solution of a linear inverse elasticity
problem. In order to keep these costs under check they are solved on a grid that is
four times coarser than the strain images. As a result these images are at a lower
resolution. However, the tumors clearly stand out in these images and their
interpretation does not depend on the validity of the uniaxial stress assumption. For
nonlinear elastic behavior these images suffer from the same drawback as strain

Oberai et al. Page 10

Phys Med Biol. Author manuscript; available in PMC 2012 April 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



images, as they too reveal the nonlinear behavior about the local strain state, which
varies within the tissue.

3. Nonlinear elasticity images: nonlinear elasticity images (images of the shear
modulus at zero strain and the nonlinear parameter) are computationally
challenging and are evaluated at the same coarse resolution as the secant modulus
images. Like the secant modulus images, they do not assume a one-dimensional
stress state. In addition the nonlinear parameter image describes the nonlinear
behavior of tissue independent of the local strain state. Hence it is independent of
the type and magnitude of the load, and to that extent it provides the most objective
assessment of nonlinear behavior of tissue. These images are, however, based on a
specific form of the nonlinear stress–strain relation. As such, they incur errors if the
tissue behavior is significantly different from this relation.

Finally, we close the discussion by noting that for the examples considered in this study, the
nonlinear images are consistent with ex vivo results that indicate that with increasing strain,
IDCs harden to a greater extent than fibroadenomas (Krouskop et al 1998, Wellman et al
1999). This points to the possibility of using nonlinear elasticity images in diagnosing
malignant breast tumors. We also note that in the present study the strain within the tumor is
modest even when the overall strain is close to 12%. A conservative estimate of this strain is
the product of the overall strain and the ratio of shear modulus of the background to the

tumor, that is . At this level of strain, the nonlinear behavior of the tumor
may still be small and could be overwhelmed by measurement noise. Thus, for future studies
we recommend that even higher values of overall strain, perhaps closer to 25% be
employed.

5. Conclusions
The feasibility of imaging the linear and nonlinear elastic properties of breast tissue in vivo
was established. The nonlinear behavior of tissue was measured in terms of three different
metrics, namely, the variation of strain distribution with overall strain, the variation of the
secant modulus distribution with overall strain and the distribution of linear and nonlinear
elastic parameters. It was argued that of the three the last, that is distribution of nonlinear
elastic parameters, most accurately represents the mechanical properties of the tissue. It was
also demonstrated that it has the potential of improving the differential diagnosis of
cancerous tumors.
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Figure 1.
Stress (σ) versus stretch (λ) curves for Veronda–Westman constitutive model. Top: effect of
varying μ0 with γ = 3, constant. Bottom: effect of varying γ with μ0 = 1, constant.
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Figure 2.
Young’s modulus (E) versus stretch (λ) curves for the Veronda–Westman constitutive
model: effect of varying the nonlinear parameter γ.
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Figure 3.
Images for fibroadenoma. Left column: images at small strain; right column: images at large
strain. Top row: B-mode ultrasound images; middle row: axial strain image; bottom row:
relative shear modulus (secant) images.
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Figure 4.
Images for infiltrating ductal carcinoma (IDC). Left column: images at small strain; right
column: images at large strain. Top row: B-mode ultrasound images; middle row: axial
strain image; bottom row: relative shear modulus (secant) images.
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Figure 5.
Images for fibroadenoma. Top: B-mode ultrasound image at small strain; middle: relative
shear modulus at zero strain (μ0); bottom: nonlinear parameter (γ). The dark curve represents
the iso-contour of μ = 10 and is plotted to locate the tumor in the nonlinear parameter image.
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Figure 6.
Images for infiltrating ductal carcinoma. Top: B-mode ultrasound image at small strain;
middle: relative shear modulus at zero strain (μ0); bottom: nonlinear parameter (γ). The dark
curve represents the iso-contour of μ = 13 and is plotted to locate the tumor in the nonlinear
parameter image.

Oberai et al. Page 19

Phys Med Biol. Author manuscript; available in PMC 2012 April 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


