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Lichens are symbiotic associations between fungi and photosyn-
thetic algae or cyanobacteria. Microcystins are potent toxins that
are responsible for the poisoning of both humans and animals.
These toxins are mainly associated with aquatic cyanobacterial
blooms, but here we show that the cyanobacterial symbionts of
terrestrial lichens from all over the world commonly produce
microcystins. We screened 803 lichen specimens from five different
continents for cyanobacterial toxins by amplifying a part of the
gene cluster encoding the enzyme complex responsible for micro-
cystin production and detecting toxins directly from lichen thalli.We
found either the biosynthetic genes for making microcystins or the
toxin itself in 12% of all analyzed lichen specimens. A plethora of
different microcystins was found with over 50 chemical variants,
and many of the variants detected have only rarely been reported
from free-living cyanobacteria. In addition, high amounts of nod-
ularin, up to 60 μg g−1, were detected from some lichen thalli. This
microcystin analog and potent hepatotoxin has previously been
known only from the aquatic bloom-forming genus Nodularia.
Our results demonstrate that the production of cyanobacterial hep-
atotoxins in lichen symbiosis is a global phenomenon and occurs in
manydifferent lichen lineages. The very highgenetic diversity of the
mcyE gene and the chemical diversity of microcystins suggest that
lichen symbioses may have been an important environment for di-
versification of these cyanobacteria.
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Lichens are symbiotic associations between a lichen-forming
fungus and a photosynthetic partner that may be a green alga

or cyanobacterium. Many extant lichen species have cyanobac-
teria as primary or accessory photosynthetic partners and are
therefore collectively referred to as “cyanolichens.” Cyanolichens
are found in most terrestrial habitats, from humid tropical and
boreal forests to hot and cold deserts. They are important in the
nitrogen cycle of many ecosystems through their ability to fix
atmospheric nitrogen (1).
Nostoc is by far the most common genus of cyanobacterial

symbionts in lichens (1). These filamentous cyanobacteria are able
to photosynthesize and provide sugars but also to fix atmospheric
nitrogen into ammonia, nitrates, or nitrites that can be absorbed by
the fungal partner. Nostoc can be found growing on rocks and soil
independent of lichen symbiosis. However, the known diversity of
symbiotic Nostoc in lichen symbiosis far exceeds that of free-living
Nostoc (2, 3). Extensive sampling of lichen communities has shown
that most lichenized fungi tend to associate with restricted groups
of Nostoc genotypes (4, 5). Nevertheless, the identity of the cya-
nobacterial symbiont has been found for just a small percentage of
all cyanolichen species, and tropical cyanolichens, in particular,
have received very little attention.
Microcystins and nodularins are small cyclic peptides that have

caused animal poisonings around the world (6). They are potent
inhibitors of eukaryotic protein phosphatases and are highly toxic
(7, 8).Microcystins are suspected to act as tumor promoters (9), and
the use of water contaminated with the toxin in renal dialysis is held
responsible for the deaths of 60 patients in Brazil (10). Nodularins
and microcystins are produced by bloom-forming cyanobacteria in

freshwater ecosystems. We have previously shown that theNostoc
symbionts of the tripartite cyanolichen species Peltigera leuco-
phlebia can produce hepatotoxic microcystins in lichen symbiosis
(11). However, it was unclear whether the production of these
potent hepatotoxins in lichen symbiosis is a frequent phenome-
non. Here we report that microcystins and nodularins are pro-
duced in many different cyanolichen lineages and climatic regions
all over the world.

Results
A total of 803 lichen thalli representing 23 different cyanolichen
genera from different parts of the world were analyzed (Fig. 1
and Table 1). The mcyE gene was detected from 98 cyanolichen
specimens (Table S1), and LC-MS/MS analysis confirmed the
presence of microcystins in 42 of these lichens (Table 2). In
addition, nodularin was detected from three specimens (Table
2). Although the quantity and taxonomic diversity of the lichens
varied, toxin-containing lichen thalli were found from all geo-
graphical regions where more than 10 cyanolichen specimens
were analyzed (Fig. 2). The highest percentages of cyanolichen
thalli containing toxins and/or the mcyE gene were recorded for
Scotland (58%), Norway (30%), and Oregon (USA; 21%).
A total of 52 different microcystin (MC) variants was identified,

fromwhich 20 variants had a relative intensity over 10% at least in
one lichen sample (Table S2). The most common microcystin
variant in lichens of the Nephroma guild was [ADMAdda5]MC-
RR (Arg in positions two and four, and ADMAdda in position
five), whereas themost commonmain variant in other cyanolichen
species was [Leu1]MC-LR (Leu in positions one and two, and Arg
in position four). Bothmain variants are infrequently found among
free-living cyanobacteria. The microcystin concentration in lichen
thalli varied from trace amounts to over 0.2 mg g−1 (Table 2). In
culture, the amounts of microcystin produced byNostoc sp. strains
isolated from lichens varied between 0.2 and 5 mg g−1.
Nodularins were unexpectedly detected from two Kenyan and

an Argentinian lichen specimen. Three different nodularin var-
iants were identified, with nodularin-R being the main variant in
all cases (Table S2). The nodularin concentration varied from
trace amounts to 0.06 mg g−1, with the highest concentrations
found in the two lichen specimens from Africa (Table 2).
The 98 mcyE sequences consisted of 30 different and highly

variable genotypes. Fifteen mcyE sequences were ambiguous and
were not included in the phylogenetic analyses. The mcyE genes
from lichens grouped with the mcyE genes of other heterocyst-
forming cyanobacteria, but were not confined to any single lineage
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within this group (Fig. 3). Neither were they limited to certain
cyanolichen hosts or geographical regions. Interestingly, themcyE
tree identifies the monophyletic genera Planktothrix, Microcystis,
Anabaena, and Nodularia, but placed Nodularia well inside the
robust crown group of sequences from lichen-associated Nostoc
(Fig. 3). Furthermore, one cyanobacterial mcyE genotype ampli-
fied from five lichen specimens from Argentina grouped together
with Anabaena and “Nostoc sp.” CENA88 sequences.
Forty-one different cyanobacterial 16S rRNA genotypes were

identified from 94 lichen specimens with an mcyE-containing cy-
anobacterium. Only one 16S rRNA genotype was identified from
each sample from which an mcyE gene sequence had been am-
plified. The phylogenetic trees constructed using mcyE (Fig. 3)
and 16S rRNA (Fig. S1) gene sequences were not congruent, but
display a similar sporadic distribution of toxin-producing Nostoc
symbionts among different lichen groups and geographical origins.
The 16S rRNA tree clearly identifies the monophyletic genera
Planktothrix, Microcystis, Anabaena, and Nodularia, but lichen-as-
sociated Nostoc sequences form a well-supported sister group to
the aquatic Nostoc sp. strain 152. The lichen-symbiotic Nostoc
form several lineages, including those associated with host fungi of
the Nephroma guild (A–F) and the Peltigera guild (G–L) (4, 12).
This shows that the geographical origin of a lichen specimen does
not predict the identity of the Nostoc symbiont, and that the
production of detectable amounts of toxins is not restricted to
well-defined groups within Nostoc.

Discussion
Microcystins are best-known from blooms in aquatic water
bodies, formed by a variety of different cyanobacterial genera
(6). Nodularin has previously been reported only from the genus
Nodularia, most commonly from brackish water ecosystems (6).
Microcystins and nodularins have caused animal poisonings (6).
Previously, a small amount of microcystin was detected from one
lichen specimen (11), and some cultured cyanobacterial strains
isolated from terrestrial environments have been shown to be
toxic (13, 14). Our results demonstrate that large amounts of
microcystin and nodularin are produced in numerous lichen
species in many terrestrial environments all over the world. Thus,
hepatotoxic lichens are a potential health risk for a variety of
lichen-consuming herbivores and humans.
Our results provide several interesting insights into the bio-

chemistry and molecular biology of microcystins and related pep-
tides. The common structure ofmicrocystins is cyclo(D-Ala–L-X–D-
MeAsp–L-Z-Adda–D-Glu–Mdha), abbreviated as MC-XZ, where
X and Z are variable amino acids, Adda is 3-amino-9-methoxy-10-
phenyl-2,6,8-trimethyl-deca-4(E),6(E)-dienoic acid, and Mdha is
N-methyl-dehydroalanine. There are over 100 previously published

microcystin structures varying in the type of amino acids in-
corporated into the peptide, demethylation of MeAsp and Mdha,
and modification to the Adda side chain (15). We detected over 50
chemical variants of microcystins, and 20 of these variants had
a relative intensity of over 10% in at least one of the analyzed
samples (Table S2). However, the most interesting aspect is how
the structure varied in lichens: D-Ala in position 1 is usually highly
conserved, but in lichens it is often replaced by D-Leu. [Leu1]MC-
LRwas reported only on a few occasions (16, 17). Furthermore, the
amino acid Adda, unique to microcystin and nodularin, is often
replaced by ADMAdda (O-acetyl-O-demethylAdda) in micro-
cystins detected from lichens. In fact, only two lichen specimens
had microcystins lacking both of these modifications.
Nodularin was detected from three lichen specimens collected

from Argentina and Kenya. This was surprising, as nodularin has
only been reported from the cyanobacterial genus Nodularia
(18). An analogous compound motuporin has been isolated from
the marine sponge Theonella swinhoei (19), but Nodularia or
nodularin has never been reported to occur in lichens or in other
terrestrial symbioses. The phylogenetic trees show that cyano-
bacterial 16S rRNA or mcyE gene sequences from nodularin-
producing lichens did not group with those from Nodularia but
were scattered among lichen-symbiotic Nostoc sequences.
ThemcyE sequences obtained from lichen specimens were highly

variable, and even if some of the variability detected in the mcyE
gene were to originate from more loosely associated epiphytic cya-
nobacteria and not from the main Nostoc symbiont, the remaining
diversity is considerable. ThemcyE gene was studied partly because
it is involved in the synthesis of the peculiar amino acid Adda and in
the formation of the bond between Adda and D-glutamate (20, 21).
Adda and D-glutamate are essential for the toxicity of microcystins
and vary very little between microcystin variants (22). The mcyE
gene is also thought to be unaffected by horizontal gene transfer (21,
23). Consequently, it varies less than genes coding for other more
variable amino acids in the molecule, and does not reflect the
chemical variability of microcystins the strain produces. This
explains why specimens with identical mcyE genotypes can have
different microcystin compositions, but it makes the variability of
the mcyE gene itself even more intriguing because it is at least
partially independent from the variation of the chemical structures.
From an evolutionary perspective, the present high diversity

of mcyE genes in lichen-symbiotic cyanobacteria may be partly
explained by the effects of their symbiotic way of life and dispersal.
When packaged into the propagules of symbiotically dispersing

Fig. 1. Specimen collection locations shown on a world map. The size of the
white circle reflects the number of specimens collected from that location. A
red center indicates that also lichens containing microcystin or nodularin
have been detected from the region.

Table 1. Number of different lichen genera and specimens
collected from each region

Collection site

No. of

Genera Specimens

Bariloche, Argentina 7 79
Quebec, Canada 1 3
Canary Islands 2 9
Hunan, China 4 88
Lijiang, China 1 3
Tibet, China 1 1
Southern Finland 9 174
Hawaii 1 1
Japan 3 38
Taita Hills, Kenya 8 155
Lapland 5 76
Norway 8 23
Scotland 8 66
Svalbard 3 14
California, United States 10 34
Oregon, United States 7 39
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lichens, the Nostoc symbionts invariably experience a genetic
bottleneck and their population is reduced to only a few trichomes
(24–26). At the same time, the close association with a symbiotic
host may promote the evolution of different traits from in free-
living cyanobacteria (27). The recurrent bottlenecks and other
lichen symbiont populations shaping effects (4, 5, 28) may explain
the surprising genetic and chemical diversity we now observe.
From a physiological perspective, environmental variables such

as temperature and light are known to affect the quantity of
microcystins produced (6, 29), and Hrouzek and coworkers (14)
recently suggested that the cytotoxicity of terrestrial Nostoc strains

could vary between different climate regimes. In our present data,
evidence of toxin production was most commonly found in lichen
specimens from humid, temperate regions such as Argentina,
Norway, Scotland, and Oregon. Fewer specimens with the mcyE
gene and/or toxins were found from regions representing other
climate types. For example, in cool temperate or boreal and arctic
climates, the percentages of mcyE-positive specimens were only
9% and 8%, respectively, and in the tropical montane cloud forests
of Kenya it was only 3%. However, more detailed studies with
well-balanced taxon sampling are needed before any definite links
between toxin production and geography can be proposed.

Table 2. Microcystin- or nodularin-containing lichen specimens and isolated Nostoc strains used in this study

No. Species

Genotype ID

MH+(m/z) MC/Nod main variant cMC(μg g−1)16S mcyE

2 Nephroma laevigatum B1 B1, B5, D1, F2, H3, H4, J1, K3, K4 967 [Asp3, DMAdda5]MC-LR NQ
3 Sticta fuliginosa B1 B1, D2, I1, J1 1,024 [Asp3]MC-RR NQ
4 Sticta fuliginosa B1 B1, D2, I1, J1 1,038 MC-RR 170
5 Peltigera dolichorhiza — B1, D2, I1, J1 1,023 [ADMAdda5]MC-LR NQ
9 Nephroma cellulosum B2 B2, B3, E2 1,065 [Leu1, ADMAdda5]MC-LR <10
11 Nephroma cellulosum B2 B2, B3, E2 1,065 [Leu1, ADMAdda5]MC-LR <10
13 Sticta sp. B4 B4 825 Nod-R 60
14 Sticta sp. — B4 825 Nod-R 40
21 Lobaria scrobiculata D2 B1, D2, I1, J1 967 [Asp3, DMAdda5]MC-LR 50
29 Nephroma parile F2 B1, B5, D1, F2, H3, H4, J1, K3, K4 1,066 [ADMAdda5]MC-RR NQ
30 Nephroma parile F2 B1, B5, D1, F2, H3, H4, J1, K3, K4 1,066 [ADMAdda5]MC-RR NQ
31 Nephroma parile F2 B1, B5, D1, F2, H3, H4, J1, K3, K4 1,066 [ADMAdda5]MC-RR 60
32 Nephroma parile F2 B1, B5, D1, F2, H3, H4, J1, K3, K4 1,066 [ADMAdda5]MC-RR 230
33 Nephroma parile F2 B1, B5, D1, F2, H3, H4, J1, K3, K4 1,066 [ADMAdda5]MC-RR NQ
34 Nephroma parile F2 B1, B5, D1, F2, H3, H4, J1, K3, K4 1,066 [ADMAdda5]MC-RR NQ
35 Nephroma parile F2 B1, B5, D1, F2, H3, H4, J1, K3, K4 1,066 [ADMAdda5]MC-RR NQ
36 Nephroma parile F2 B1, B5, D1, F2, H3, H4, J1, K3, K4 1,066 [ADMAdda5]MC-RR 210
38 Peltigera degenii G1 G1 1,023 [Leu1, Asp3]MC-LR NQ
47 Peltigera dolichorhiza I3 I3 825 Nod-R <10
48 Peltigera membranacea I4 I4-a 1,052 [Asp3, ADMAdda5]MC-RR <10
49 Peltigera membranacea I4 I4-a 1,052 [Asp3, ADMAdda5]MC-RR <10
50 Peltigera hymenina I4 I4-b 1,052 [Asp3, ADMAdda5]MC-RR NQ
51 Peltigera collina J1 B1, B5, D1, F2, H3, H4, J1, K3, K4 1,066 [ADMAdda5]MC-RR NQ
61 Peltigera leucophlebia J2 B1, H1, J2, L4, L5 967 [Asp3, DMAdda5]MC-LR NQ
62 Peltigera evansiana J3 J1, J3, K3 1,037 [Leu1]MC-LR <10
75 Peltigera praetextata K3 Ambiguous 1,066 [ADMAdda5]MC-RR NQ
80 Peltigera degenii L4 B1, H1, J2, L4, L5 1,037 [Leu1]MC-LR 170
81 Peltigera degenii L4 B1, H1, J2, L4, L5 1,037 [Leu1]MC-LR 200
82 Peltigera degenii L4 B1, H1, J2, L4, L5 1,037 [Leu1]MC-LR <10

Nostoc sp. strain UK222.Ib 1,037 [Leu1]MC-LR 190
83 Peltigera degenii L4 B1, H1, J2, L4, L5 1,037 [Leu1]MC-LR 40
84 Peltigera neopolydactyla agg. L4 B1, H1, J2, L4, L5 1,037 [Leu1]MC-LR <10
85 Peltigera neopolydactyla agg. L4 B1, H1, J2, L4, L5 1,037 [Leu1]MC-LR NQ
86 Peltigera neopolydactyla agg. L4 L4, L6 1,037 [Leu1]MC-LR <10

Nostoc sp. strain UK89.II 1,037 [Leu1]MC-LR 4,600
87 Peltigera membranacea L4 L4, L6 1,037 [Leu1]MC-LR <10

Nostoc sp. strain UK92.II 1,037 [Leu1]MC-LR 2,700
88 Peltigera degenii L4 L4, L6 1,037 [Leu1]MC-LR 50
89 Peltigera degenii L4 L4, L6 1,037 [Leu1]MC-LR 20
90 Peltigera sp. L4 L4, L6 1,037 [Leu1]MC-LR <10
91 Peltigera sp. L4 L4, L6 1,037 [Leu1]MC-LR <10
92 Peltigera degenii L5 B1, H1, J2, L4, L5 1,037 [Leu1]MC-LR 60
93 Peltigera membranacea L6 L4, L6 1,037 [Leu1]MC-LR 70
94 Peltigera membranacea L6 L4, L6 1,037 [Leu1]MC-LR 100
95 Peltigera membranacea L6 L4, L6 1,037 [Leu1]MC-LR 30
96 Peltigera membranacea L6 L6 1,037 [Leu1]MC-LR <10
97 Peltigera neopolydactyla agg. L6 L6 1,037 [Leu1]MC-LR 20
98 Peltigera sp. — X1 1,065 [Leu1, ADMAdda5]MC-LR NQ

The numbering follows the numbers in Table S1. m/z is the mass-to-charge ratio of the protonated microcystin/nodularin ion MH+. The main toxin variant
and the total toxin concentration (c) are shown when analyzed. NQ, not quantified. —, the sequence is missing.
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From an ecological point of view, microcystins and nodularin
are known to have caused deaths of wild and domestic animals
(6). In terrestrial ecosystems, cyanolichens represent a potential
source of hepatotoxins for grazers, which might also introduce
toxins into food chains. Many molluscs and arthropods, but also
mammals such as voles, squirrels, snub-nosed monkeys, and
ruminants, are known to feed on lichens (30–34). Mollusc
grazing has been suggested to be the limiting ecological factor
for some cyanolichens in boreal rain forests in Norway (31).
Lichens are important winter feed for reindeer and caribou,
which graze heavily on Cladonia species with green algal sym-
bionts (35). Even though the relatively high nitrogen content
of cyanolichens suggests a better nutritional value (36, 37), rein-
deer distinctly avoid eating cyanolichens even during starvation.
Many lichen-forming fungi produce toxic secondary substances
that play a role in defense against herbivores. Our results sug-
gest that the cyanobacterial symbionts may also contribute to
this chemical defense.
Even though microcystins should inhibit the protein phos-

phatases of all eukaryotes, no effects on the eukaryotic partners
of cyanolichens have been identified. Possible effects on fungi in
general are not known, and only a few studies have demonstrated
negative effects on green algae at environmentally relevant
concentrations (<50 μg L−1) (7, 38). On the other hand, if
microcystin were to have detrimental effects on fungi, selection
pressures toward host benefit in lichen symbioses might have
played a role in directing evolution toward low toxicity, partic-
ularly if toxicity per se is only a secondary effect of the com-
pounds produced by the cyanobacterial symbionts.
Finally, from a human perspective, cyanolichen species are still

used in traditional medicine and eaten by humans in some parts
of Asia (39). One of the Peltigera specimens analyzed in our study
was obtained directly from a traditional medicine man in Hunan
Province, China. Although we did not detect any microcystins
from that specimen, a morphologically identical specimen from
the same region did contain microcystins. Cyanobacteria are
known to produce a diversity of biologically active peptides such
as microcystins and nodularin (18), and perhaps the traditional

use of cyanolichens is partly based on the effects caused by
cyanobacterial secondary metabolites.
We conclude that lichens containing toxins of cyanobacterial

origin are a global phenomenon. Lichens seem to have provided
an important environment for the diversification of symbiotic
cyanobacteria—presumably by compartmentalizing the sym-
bionts into small vertically transmitted populations that are rel-
atively susceptible to random events, disruptive selection, and
genetic drift. Further studies will, we hope, help us to clarify
reasons why toxin-producing Nostoc symbionts appear to be most
common in lichens from humid, maritime climates, as well as
many other interesting issues that lay hidden behind the vast
genetic and chemical variation of lichen-associated hepatotoxins.

Materials and Methods
Lichen specimens (803) from different parts of the world and representing
many different lineages of lichen-forming fungi were obtained to achieve a
wide coverage of different cyanolichen groups, ecosystems, and geographical
areas; 552 lichen specimens were collected in the field by the authors and 251
specimens were acquired from the personal herbaria of colleagues.

DNA Extraction, PCR, and Sequencing. Lichen fragments were selected under
a microscope to avoid contamination with epiphytic cyanobacteria. Lichen
DNAwas extracted from aminute thallus fragment or in the case of tripartite
species from cephalodia. Cyanobacterial symbionts were cultured and the
cyanobacterial and lichen DNA was extracted as previously described (26).

Amplification of the cyanobacterial mcyE gene from lichen samples was
performed with the primers mcyEF dgn and mcyER dgn (40). Initial screening
was performed in a 30-μL volume containing 1 μL genomic DNA, 200 μM
deoxynucleoside triphosphate (Finnzymes), 0.5 μM each primer, 0.5 U of
Phusion high-fidelity DNA polymerase (Finnzymes), and 3% (vol/vol) DMSO
(Finnzymes). The thermocycling parameters were as follows: An initial de-
naturation of 1 min at 98 °C was followed by 35 cycles of 10 s at 98 °C, 30 s at
59 °C, and 1 min 45 s at 72 °C, with a final extension of 10 min at 72 °C. The
PCR was repeated in a 60-μL volume containing 2 μL genomic DNA and 1.0 U
of enzyme for those samples judged to contain an mcyE gene after the
initial PCR screening. The cyanobacterial 16S rRNA gene was amplified, all
PCR products were purified and sequenced, and the chromatograms were
edited as previously described (11, 26).

A total of 174 sequences was submitted to GenBank. This included all
obtained 16S rRNA andmcyE sequences, with the exception of 15 ambiguous
mcyE sequences. The accession numbers with other specimen information
are presented in Table S1.

Microcystin Extraction and Analysis with LC-MS. Dry lichen thallus (10–120 mg)
or freeze-dried, cultured cyanobacteria (∼10 mg) was used for microcystin
extraction. All specimens with the mcyE gene were analyzed by LC-MS, with
the exception of five lichen specimens that were too small for analysis (three
specimens collected from Japan, one from Scotland, and one from Oregon).
In addition, some especially interesting and/or old specimens without the
mcyE gene were analyzed, so that altogether 140 specimens were analyzed
by LC-MS. The protocols for microcystin extraction and LC-MS analyses were
done as previously described (11). The total microcystin concentration of the
selected samples and strains was approximated with MC-RR (Alexis), MC-LR,
and Nodularin-R standards (gifts from Z. Grzonka, University of Gdansk,
Gdansk, Poland).

Phylogenetic Analyses. Alignment of the sequence data was performed
manually in PhyDE version 0.995 (41). In addition to the sequences generated
during the course of this study, 27 additional pairs of 16S rRNA and mcyE
gene sequences were obtained from GenBank (Table S3). Bayesian analyses
were performed with MRBAYES version 3.1.2 (42) for themcyE gene and 16S
rRNA gene separately. For the mcyE and 16S genes the GTR+Γ and GTR+I+Γ
model was applied, respectively. The best-fitting nucleotide substitution
models were selected, analyses were performed, and figures were drawn
and edited as previously described (43).

ACKNOWLEDGMENTS. We thank Katja Fedrowitz for providing lichen
specimens from Argentina, Scotland, and Sweden; Andreas Frisch and Göran
Thor for lichens from Japan; Per Larsson for some specimens from Norway;
and Heather Coffey for specimens from Canada. Lichen specimens from East
Africa were obtained during field work at the Taita Research Station of the
University of Helsinki in Wundanyi, Kenya. Dr. Geoffrey Mwachala from the
National Museums of Kenya helped with permit issues and the transport of
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Fig. 2. Presence of the mcyE gene and microcystins or nodularins in dif-
ferent regions. The number of specimens is presented on the x axis. Speci-
mens with the mcyE gene and microcystins or nodularins detected are in
red, samples with only the mcyE gene are in orange, and without the gene
or toxins are in gray. Percentages at the end of the bars are the proportions
of specimens having the mcyE gene and/or toxins. Only regions with a
specimen number over 10 are included in the chart. S Finland refers to
southern Finland, and Lapland contains areas in Finland and Sweden north
of latitude 65°.
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lichen specimens. Many lichen specimens from Hunan Province and western
North America were collected during the course of the previous Academy of

Finland Projects 153706, 10134229, and 168332. The study was funded by
Academy of Finland Grants 122288 and 118637.
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Fig. 3. Bayesian trees compiled from mcyE gene sequences. Thick branches have a posterior probability value of 0.95 or higher. The genotype codes (e.g., F1)
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example,mcyE genotype “J4, L2 (2) Argentina” has been obtained from two individual lichen specimens both collected from Argentina, from which one gave
16S genotype J4 and the other L2. Red boxes and stars show genotypes acquired from samples that contained microcystins or nodularins.
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