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Cerebellar Contributions to Reach Adaptation and Learning
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When we use a novel tool, the motor commands may not produce the expected outcome. In healthy individuals, with practice the brain
learns to alter the motor commands. This change depends critically on the cerebellum as damage to this structure impairs adaptation.
However, it is unclear precisely what the cerebellum contributes to the process of adaptation in human motor learning. Is the cerebellum
crucial for learning to associate motor commands with novel sensory consequences, called forward model, or is the cerebellum important
for learning to associate sensory goals with novel motor commands, called inverse model? Here, we compared performance of cerebellar
patients and healthy controls in a reaching task with a gradual perturbation schedule. This schedule allowed both groups to adapt their
motor commands. Following training, we measured two kinds of behavior: in one case, people were presented with reach targets near the
direction in which they had trained. The resulting generalization patterns of patients and controls were similar, suggesting comparable
inverse models. In the second case, participants reached without a target and reported the location of their hand. In controls, the pattern
of change in reported hand location was consistent with simulation results of a forward model that had learned to associate motor
commands with new sensory consequences. In patients, this change was significantly smaller. Therefore, in our sample of patients, we
observed that while adaptation of motor commands can take place despite cerebellar damage, cerebellar integrity appears critical for
learning to predict visual sensory consequences of motor commands.

Introduction
It is thought that when the brain generates a motor command, it
also predicts the sensory consequences (Körding and Wolpert,
2004; Vaziri et al., 2006; Shadmehr et al., 2010). This association
of motor commands with the sensory consequences is called a
forward model. The neural system that forms this association is
unknown, though there is some evidence that for arm move-
ments the cerebellum may play a critical role: developmental
damage (Nowak et al., 2007) or temporary disruption (Miall et
al., 2007) of the cerebellum produces behavioral deficits that sug-
gest an inability to accurately predict sensory consequences of
motor commands. However, there is also evidence against this
argument. For example, cerebellar patients are generally unim-
paired in adjusting the left hand predictably when they use the
right hand to pick up an object that is resting on the left hand
(Diedrichsen et al., 2005). Does this imply that the forward model
is unaffected by cerebellar damage? Or does it imply that with
cerebellar damage, in certain tasks, there is a latent ability to
produce approximately the correct motor commands, despite
being unable to predict their sensory consequences?

Here we present an experiment in which we attempt to disentan-
gle the process of learning to produce the correct motor commands
(i.e., commands that improve performance) from the process of
learning to predict the sensory consequences of those commands.
The process of learning to produce the correct motor commands is
typically labeled as learning an inverse model. An inverse model
associates a goal with the motor commands that are successful in
achieving the goal (Kawano et al., 1996; Kawato, 1999). Some have
hypothesized that both the inverse and forward models reside in the
cerebellum (Wolpert and Kawato, 1998; Haruno et al., 2001). If this
is true, then cerebellar damage might produce both an inability to
learn the correct motor commands (Maschke et al., 2004; Smith and
Shadmehr, 2005; Rabe et al., 2009) and an inability to learn the
sensory consequences of those commands (Synofzik et al., 2008). In
contrast, suppose that the cerebellum is only associated with learning
of forward models. Furthermore, suppose that forward models are a
sufficient but not a necessary condition for learning to produce the
motor commands that compensate for a perturbation (Izawa and
Shadmehr, 2011). If these two assumptions are valid, then, at least in
some cases, cerebellar damage should only impair the ability to learn
the sensory consequences of motor commands, while sparing the
ability to learn the correct motor commands.

To dissociate these two possibilities, we rely on a recent find-
ing: when a perturbation is applied gradually, people with cere-
bellar damage have the ability to improve their motor commands,
producing approximately the correct motor output (Criscimagna-
Hemminger et al., 2010). Here, we rely on gradual perturbations
to dissociate between the process that learns to improve the mo-
tor commands and the process that learns to predict the sensory
consequences of those commands.
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Materials and Methods
Nine individuals with cerebellar ataxia (Table 1) and 10 neurologically
healthy age-matched control subjects (6 males, 4 females) participated in
this study. The mean age of the patients was 57.8 � 3.9 years and that of
the control subjects was 63.1 � 1.43 years.

Three of our patients were diagnosed with spinocerebellar ataxia
(SCA) type 6, one patient had both SCA6 and SCA8, one had SCA8, one
had autosomal dominant cerebellar disease (in which clinical symptoms
of ataxia tend to manifest in mid-adulthood), and one subject had a
stroke affecting the right posterior inferior cerebellar artery (PICA) and
SCA territories of the cerebellum. The other patients had either sporadic
adult late-onset ataxia or autosomal dominant cerebellar ataxia (i.e.,
pure cerebellar syndrome with unknown genetics).

The severity of ataxia was rated using the International Cooperative
Ataxia Rating Scale (ICARS) (Trouillas et al., 1997). This scale is from 0
to 100, with the larger values indicating greater disability. Clinical exam-
ination showed no evidence of hypertonia, sensory loss (proprioception
and fine touch via monofilament), or extrapyramidal features in the arms
of these individuals. Experimental procedures were approved by the
Johns Hopkins University School of Medicine Institutional Review
Board and all subjects signed a consent form.

Task. In a darkened room, subjects sat in front of a robotic arm and held its
handle with their right arm. The robotic arm was built in 1994 and is con-
trolled with hardware and software that were designed and built by scientists
in the Shadmehr Lab. The subjects were asked to reach toward a target that
was projected onto a screen directly above the plane of motion (Fig. 1A)
(Izawa and Shadmehr, 2008). The white screen covered the arm, preventing
direct view of the hand. The experimental session was composed of three
consecutive phases: baseline, adaptation, and postadaptation (Fig. 1B). Dur-
ing a reaching movement, position data were recorded at sampling fre-
quency of 100 Hz. For analysis of hand trajectories, we used Savitzky–Golay
smoothing filter for the measured hand position and velocity.

In the baseline phase, the robot positioned the hand in a start box, at
which point a target of 6° width appeared at a radius of 10 cm and angle
of 45°. Subjects were instructed to perform a shooting motion so that
their hand crossed within the target area and punched a virtual pillow
placed beyond the target (the pillow was simulated by the robot). Thus,
the robot assisted with stopping of the movement. We have found this
design is useful in increasing the comfort of cerebellar patients (Tseng et
al., 2007; Criscimagna-Hemminger et al., 2010), as it eliminates the
tremor that they typically exhibit when they are attempting to stop at the
target. In the first block of the shooting task (50 trials), the cursor was
projected on top of the handle. There was no disturbance between the
cursor and the actual hand position. This was followed by 25 trials with-
out the cursor projection, i.e., subjects reached towards the visual target
without seeing the cursor representing their hand.

Subsequently, subjects performed a localization task, modeled after Syn-
ofzik et al. (2008). In the localization task, no targets or cursors were dis-
played. Rather, a circle with a 10 cm radius positioned at the center hand
location was displayed and the subject made a movement with their right
hand to anywhere within the first quadrant (0–90°) without visual feedback.
Once the robot brought the hand back to the center, the subject pointed with
their left hand to where they believed their right hand crossed the circle (the
view of their left hand was unobstructed). That is, the subjects were asked to

estimate the location of their right hand at the end of the previous move-
ment. To record the motion of the left hand, we used a Mimio stylus pen.

This combination of shooting with the right hand and localization
with the left hand was repeated 25 times in the localization task. Our
design of the localization task aimed to minimize the influence of pro-
prioception from the right arm (by holding it at center, rather than
holding it at end of the movement). In this way, we hoped to assay the
subjects’ estimate of where their hand had been as a consequence of the
motor commands during the shooting movement, rather than the pro-
prioceptive feedback if the hand were to be held there.

Finally, subjects participated in a set of generalization trials (50 trials).
In these trials, a target was presented and subjects made a shooting move-
ment towards that target. The position of the target was selected ran-
domly from [15°, 25°, 35°, 45°, 55°, 65°, 75°]. The frequency of the 45°
target was 20/50 trials and that of each peripheral target was 5/50. Cursor
feedback was provided for the 45° target but not to the other targets. The
objective of the peripheral targets was to test generalization.

The localization task required subjects to remember the location of their
right hand in the previous movement and to point to that location with their
left hand. To check that the controls could maintain location of a sensory
stimulus in working memory, in the baseline phase we included a task in
which subjects were presented a target, waited for 1 s after the target disap-
peared, and then pointed with their left hand to the remembered target
location.

The baseline phase was followed by a gradual adaptation phase in
which subjects experienced zero rotation in the first 20 trials and then the
perturbation increased by 5° every 20 trials until it reached 15° (Fig. 1 B).
After a short break, the adaptation task was started with 15° rotation and
increased again by 5° every 20 trials until it reached 30°. After a second
short break, subjects experienced 60 additional trials with the 30° pertur-
bation and then were tested in the postadaptation phase. During this
phase, the target was always at 45°.

In the postadaptation phase, the subjects were tested for the general-
ization of the adaptation. The target position was selected randomly from
[15°, 25°, 35°, 45°, 55°, 65°, 75°]. The frequency of the trained target (45°)
was 107/137 and that of each peripheral target was 5/137. After a short
break, subjects experienced 60 additional trials with the 30° perturbation
and then were tested in the localization task.

Analysis. In the shooting and the localization tasks, our performance mea-
sure was the endpoint angle of the reach. In the localization task, our perfor-
mance measure was the angular distance between the actual endpoint angle
of the hand and the angle indicated by the subject. We expected that after
adaptation to the visuomotor perturbation, the healthy subjects would alter
their belief regarding the sensory consequences of their motor commands.
This change was assessed as the within-subject difference in localization from
the baseline condition to the postadaptation condition.

Estimating the forward model. If adaptation produces a change in the
forward model, then the subject should alter his/her belief regarding
sensory consequences of the motor commands in the postadaptation
phase with respect to baseline. To assess how much this belief had
changed, we asked the subjects to make a self-selected motion with their
right hand to anywhere along a 90° arc, and then point with their left
hand to where they believed the endpoint of their right hand motion was.
Because the self-selected motion could be to any position from 0° to 90°,
in effect they were generalizing their adaptation from the 45° target to
neighboring movements. Furthermore, because they repeatedly made self-
generated motions without readapting to the 45° target, we expected some
decay of the original learning. Therefore, to compare performance of the two
groups of subjects, we first had to fit a function to the performance of each
group to represent the spatial and temporal properties of the results of the
localization task. We used the following set of equations to characterize the
results of the localization task in the postadaptation phase.

ĥ � a1cos(a2(h � a3))

a1 � �1t � �2 (1)

a2 � �3t � �4

a3 � �5t � �6,

Table 1. Characteristics of patients with cerebellar degeneration

Identifier Gender Age (years) Handedness Diagnosis ICARS

1 M 37 L SCA8 46
2 M 54 R SCA6 and SCA8 63
3 F 67 R Autosomal dominant 55
4 F 67 R SCA6 5
5 M 75 R R PICA and R SCA stroke 17
6 F 65 R Sporadic 35
7 M 47 R Sporadic 51
8 F 57 R SCA6 33
9 F 52 R SCA6 23

ADCA, autosomal dominant ataxia.

Izawa et al. • Cerebellar Contributions to Reach Adaptation J. Neurosci., March 21, 2012 • 32(12):4230 – 4239 • 4231



where h is the actual reach angle (deg), t is the
trial number, a1 is associated with the mag-
nitude of the function, a2 is associated with
the width, and a3 is associated with the cen-
ter. We estimated the best fit parameters, �*,
that minimized the squared error between
the model prediction and the actual data. To
estimate the confidence interval, we used a
bootstrapping method and estimated the pa-
rameter set using a nonlinear optimization
algorithm (lsqnonlin in Matlab6.5).

Estimating the inverse model. By definition,
the inverse model is an association between
the goal and the motor commands. To esti-
mate the inverse model, we trained move-
ments to a target at 45° and then measured
the motor commands that the subjects pro-
duced to this and neighboring targets. We
represented the resulting function as

h � b1cos(b2( g � b3)), (2)

where g indicates the goal (target direction).
Because the cursor feedback provided for the
45° target kept the level of the adaptation
constant throughout the block of the postad-
aptation generalization, we assumed that
each parameter b was constant throughout
the block. We identified the model parame-
ters using the same procedure as described
for the forward model.

Modeling the adaptation process. To better
understand our behavioral data, we considered
a simple computational model of adaptation in
which the brain uses the observed sensory
feedback to update its belief about the con-
sequences of motor commands, and then
uses this updated map to search for motor
commands that produce a movement to the
goal. In our simulations, when the hand
moves at direction u, the cursor moves at
direction c. These two variables are related
via perturbation p:

c � u � p. (3)

The forward model encodes the relationship
between motor commands u and sensory con-
sequences (cursor position) c using basis ele-
ments gi via a population code:

p̂(u;w) � w Tg(u) (4)

g � [g1(u), g2(u), . . . , gm(u)] T

w � [w1, . . . , wm] T

In our simulations, the bases were Gaussian functions with a SD of 25°
and centers at 5° intervals. Thus, the predicted sensory consequence
of motor command u is as follows:

ĉ � u � w Tg(u). (5)

Suppose that on trial n, a target is shown at position c*. Using the
forward model, we produce the motor command that is expected to
minimize the difference between c* and ĉ:

u�n� � arg min
u

�c* � u � wTg�u��2. (6)

As a consequence of producing command u ( n ), we observe cursor mo-
tion c ( n ). Using the prediction error c ( n ) � ĉ ( n ), we update our forward
model:

e�n� �
1

2
�c�n� � ĉ �n��2 �

1

2
� p�n� � p̂�n��2

w i
�n�1� � �wi

�n� � �
�ei

�wi
� �wi

�n� � ��c�n� � ĉ�n��gi�u
�n��.

(7)

In our simulations, the learning parameters were set to � � 0.99 and � �
0.1. We simulated this system of equations for a perturbation schedule
that followed the experimental protocol. After training, we assayed the
change in the forward model by presenting movements in various direc-
tions and quantified the predictions of the model (Eq. 4). Similarly, we
assayed the change in the inverse model by presenting targets at various
directions and quantified the motor commands produced by Equation 6.

Figure 1. Experimental setup and data from representative subjects. A, Experimental setup. Subjects held the handle of a robot
manipulandum and viewed the image projected on a screen that covered both their limb and the robot. The subjects performed a
shooting movement (quick reaching out) to go through a target at 45° and hit a virtual pillow. The white dot at center indicates
their start position. The white arc (radius, 10 cm, centered at the start position) indicates the boundary of the task space. As the
hand crossed the arc, the robot produced a virtual pillow and assisted in bringing the hand back to center. During targeted reaching,
the arc was not visible. B, Time course of the experiment. Localization task is explained in C. Generalization task involved reaching
to targets other than the trained target at 45°. The adaptation phase includes 220 trials in which a perturbation was gradually
imposed on the relationship between hand motion and cursor motion. C, In the localization task, without being given an explicit
target, the subjects made a reach to cross the arc without any form of visual feedback. After the robot brought the hand back to the
start position, subjects pointed with their left hand to the remembered location of their right hand as it crossed the arc in the
previous trial. The arc is displayed only in the localization task. D, Baseline performance in the localization task. Localization error
is the difference between estimated hand position at the end of the reach and actual hand position. E, Baseline performance in the
generalization task. Reach error is the difference between reach angle and target angle. The movements were attracted toward the
45° target, the target for which the movements were repeated. F, Data from a representative control subject. The result of a reach
in the localization task is shown for the baseline condition. The red filled circle is actual reach angle and the open blue circle is the
reported angle (reach percept). During the training phase, a target was displayed at 45° and a visual rotation was gradually
imposed. The gray region represents reach angle for which the cursor would strike the target area. The red trace represents actual
reach angle. The three large spikes reflect set breaks. The result of a reach in the postadaptation localization task is shown in the
final column. The hand reached toward 15° but the subject reported the hand at near 40°. G, Data from a representative cerebellar
subject (CBL). Format is the same as in F.
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Results
We considered an adaptation task in which people reached and
placed a cursor in a target. The relationship between the position
of the hand and the cursor underwent a gradual schedule of ro-
tation: the cursor motion was perturbed so that as the hand
moved to 45°, the cursor moved to 75°, i.e., a visuomotor rotation
that reached a peak of 30°. We chose the gradual form of the
perturbation because previously we have found that, whereas
cerebellar patients are severely impaired in adapting their reach-
ing movements to an abruptly introduced force perturbation
(Smith and Shadmehr, 2005), they were less impaired when that
perturbation was imposed gradually (Criscimagna-Hemminger
et al., 2010). Here, we wondered whether people with cerebellar
damage could adapt their motor commands in response to a
gradual visuomotor perturbation, and if so, would this adapta-
tion be accompanied by a change in the perceived sensory conse-
quences of the motor commands.

Performance during the baseline phase
During the baseline phase, a target was presented at 45°. When
visual feedback was provided, the average reach angle across sub-
jects was 45.56 � 0.14° in the control group and 46.08 � 0.34° in
the cerebellar group (not significantly different; two-tailed t test,
p � 0.16). Without visual feedback, the average reach angle was
46.34 � 0.42° for the control group and 48.52 � 1.23° for the
cerebellar group (not significantly different; two-tailed t test, p �
0.21). Therefore, there was no systematic difference in the bias of
the reaching movements between groups. However, the cerebel-
lar group showed larger variability than the control group when
the visual feedback was provided: the average of reach variability
was 1.44 � 0.12° for the control group and 2.86 � 0.23° for the
cerebellar group (mean � SEM, two-tailed t test, p � 0.001). This
difference in the reach variability was not evident when the visual
feedback was removed (two-tailed t test, p � 0.22). Therefore, in
the baseline condition, the bias of the movements toward the 45°
target in the cerebellar group was comparable to the control
group regardless of visual feedback, though the cerebellar group
exhibited greater variability.

We next compared the performance of the two groups in the
localization task. This task had two parts. In the first part, subjects
used their left hand to point to the remembered location of a
visual target (the view of the left hand was always unobstructed).
The mean error of the pointing position was 1.36 � 0.3° for the
controls and 0.5 � 1.02° for the cerebellar patients (no significant
difference; two-tailed t test, p � 0.45). However, the variability of
this pointing movement was larger for the cerebellar group (SD
of the pointing angle was 0.89 � 0.29° for the control group and
1.44 � 0.17° for the cerebellar group; two-tailed t test, p � 0.05).
In the second part, subjects were shown a circle centered on top of
their right hand, and then reached to a self-selected position any-
where in the first quadrant. The robot then brought their hand
back, and they used their left hand to report where they thought
their right hand had crossed the arc. Localization errors as a
function of reach angle in the two groups are plotted in Figure
1D. We found no systematic differences in the localization per-
formances of the two groups (average localization error, two-
tailed t test, p � 0.77).

The baseline phase ended with a generalization task in which
subjects reached to targets at 45° and neighboring locations with-
out visual feedback. We observed an interesting trend in the data
of both groups: reaches to neighboring targets appeared to be
biased toward the 45° target. For example, small target angles
produced positive reach errors, whereas large target angles pro-

duced negative reach errors (Fig. 1E). Statistical analysis showed
a main effect of target direction (two-way ANOVA, F(6,102) �
1147, p � 0.0001). That is, the reaches were attracted to the 45°
target. Interestingly, the bias was stronger in the cerebellar sub-
jects than the controls (group-by-target direction interaction,
two-way ANOVA, F(6,102) � 2.95, p � 0.01). Because the baseline
phase included repetition of reaches to the 45° target, the obser-
vation of a bias is consistent with the idea that repetition of a
reach acts as an attractor, pulling movements of the neighboring
directions toward the repeated target (Verstynen and Sabes,
2011). It is possible that in cerebellar patients, repetition pro-
duces a larger than normal bias. However, because we did not
measure performance in the generalization task before or after
repetition of the 45° target, we cannot determine whether the bias
that we are seeing is due to repetition of that movement or due to
other factors.

In summary, in the baseline phase of reaching toward the 45°
target, in the baseline phase of the localization task, and in the
baseline phase of the generalization task, performances of the two
groups were generally comparable in terms of bias, although the
cerebellar group tended to show more variability. Repetition of
the movements toward the 45° target affected movements to
other targets, resulting in an attraction of the neighboring trajec-
tories. This attraction may have been stronger in cerebellar pa-
tients than in healthy controls.

Performance of representative subjects during adaptation
We used a localization task as a proxy for the forward model
before and after adaptation (Fig. 1C). The performances of two
representative subjects for two representative movements are
shown in the columns labeled “baseline” in Figure 1, F and G. The
control subject chose to reach to 46° and then estimated her hand
position at 52°. The cerebellar subject chose to reach to 45° and
reported her hand position at 40°. During the adaptation blocks,
the subjects were presented with a target at 45°. A perturbation
was gradually imposed on the motion of the cursor, rotating it in
a counterclockwise direction with respect to motion of the hand.
In Figure 1, F and G, the gray area represents where the hand
should move to compensate for the perturbation. Trial after trial,
the control and cerebellar subjects altered their motor com-
mands, changing the direction of hand motion. At the end of
training, the perturbation reached �30°. At this stage, in re-
sponse to the target at 45°, the control subject reached to �15°
and the cerebellar subject reached to �17°. After completion of
the adaptation phase, we revisited the localization task to assess
the state of the forward model. When the control subject reached
towards 13°, she localized her hand at 38°, a difference of approx-
imately �25° in the direction of the perturbation. In contrast,
when the cerebellar subject reached to �13°, she localized her
hand at 22°, a difference of only �9°. That is, whereas the two
subjects appeared to show comparable levels of change in their
motor commands during the adaptation block, they showed large
differences in their beliefs regarding sensory consequences of
these motor commands. The control subject had a much stronger
mismatch between actual and reported position of her hand at
the end of training than the cerebellar subject did.

Group performance during training
The behavioral data during adaptation is summarized in Figure 2.
Figure 2A shows the average reach direction for each group as a
function of trial during the adaptation phase. To quantify this
change in motor commands, we measured the difference in reach
direction between the initial and final five trials (the trials before
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the localization task). This change is shown in Figure 2B. The
control subjects showed a change of 30.45° � 0.37°. The cerebel-
lar subjects showed a change of 29.7° � 0.94°. This change was
comparable in the two groups (two-tailed t test, p � 0.44). These
measures were taken at the end of the shooting movement when
the hand crossed the target. We also examined performance ear-
lier in the reach at 150 ms after reach start. The amount of adap-
tation was again not distinguishable between the two groups
(two-tailed t test, p � 0.42). That is, by the end of training in
response to the target at 45°, both groups of subjects had learned
to alter their motor commands by �30°.

We noted that during adaptation, the set breaks produced
slight forgetting, as performance immediately after the break was
worse than immediately before the break. We quantified this for-
getting as percentage change in reach angle from the trial before
the break to the trial after the break (Fig. 2C). These changes were
larger in the cerebellar subjects (repeated-measures ANOVA,
main effect of group, F(1,17) � 8.45, p � 0.01), suggesting a larger
amount of forgetting due to the set breaks than in controls.

Adaptation of the motor commands
After 225 adaptation trials, there was another set break, and then
we measured performance in a generalization task in which we
presented subjects with visual targets at neighboring positions to
the trained target. The objective was to quantify the association
between the goal of the movement (target position) and the mo-
tor commands necessary to achieve that goal, i.e., a proxy for the
inverse model. In the generalization block, visual feedback was
provided for only the 45° target and no other targets. In this way,
we attempted to maintain the adapted state of the 45° target (i.e.,
prevent forgetting) while we measured generalization to other
targets. The results are plotted in Figure 3A. In Figure 3, the
dashed lines represent baseline performance and the solid lines
represent performance after adaptation. The shaded area repre-
sents the change in the reach angle from baseline to postadapta-
tion. The area of the shaded region is our measure of the total
change in the inverse model. This change appeared comparable
in the two groups of subjects (1185 � 58 deg 2 in the cerebellar
group and 1263 � 52 deg 2 in the control group; two-tailed t test,
p � 0.33). The change in the reach angles peaked for targets near
45° (the trained target direction), and then gradually declined for
neighboring targets (Fig. 3B). To compare these patterns quanti-
tatively, we fitted a cosine function to the performance of each
subject, allowing for a parameter that described location of the
peak, a parameter that described magnitude at the peak, and a
parameter that described the width of the generalization func-
tion. The fitted models are plotted in Figure 3C. While we found

no significant difference in the distribution of model parameters
for the two groups (two-tailed t test, p � 0.08 for magnitude of
generalization; p � 0.34 for location of the peak, and p � 0.39 for
the width of the generalization function), there was a trend to-
ward a smaller magnitude of adaptation in the cerebellar subjects,
although this trend did not reach significance. Overall, using the
area depicted in Figure 3A, we would estimate the change in the
inverse model for the cerebellar subjects at 93.4 � 6% of that of
the control subjects.

Changes in perception of sensory consequences of
motor commands
Following the generalization task, there was another set break, and
we then revisited the localization task. As before, without being given
an explicit target, the subjects made a movement with their right
hand to anywhere along an arc (without visual feedback), the robot
brought their hand back to center, and then they used their left hand
to report where they thought their right hand had crossed the arc.
The results are plotted in Figure 3D. The dashed lines represent
baseline performance and the solid lines represent performance in
the first five trials after adaptation. The shaded area represents
the change in the reach percept from baseline to postadaptation. The
area of the shaded region is our proxy for the total change in the
forward model. This change was significantly larger in the control
group (two-tailed t test, p � 0.0001). Figure 3E is a plot of the change
in reach percept with respect to baseline. For control subjects, the
training produced a 20° shift in percept of hand position and was
centered on reaching movements toward 30°. For the cerebellar pa-
tients, the change in percept was approximately half as much and
was centered on reaching movements toward 45°.

Figure 3E is our estimate of the change in the perceived loca-
tion of the hand as a function of motor commands as measured in
the first five trials of the localization task. Because the reach di-
rections were randomly selected by the subjects, the number of
data points in each bin was not balanced between groups. Fur-
thermore, using the average of the initial five trials did not allow
us to capture the decay properties of this perceptual change.
Thus, to quantitatively compare performance in the localization
task in the two groups, we fitted a cosine function to the data with
parameters that could decay with time (Eq. 1). The left subplot in
Figure 3F shows the fitted model’s performance for the first lo-
calization trial. The parameters that describe the perceptual
change were significantly different in the two groups. The peak
magnitude was significantly smaller for the cerebellar group
(two-tailed t test, p � 0.001), the center was located at a signifi-
cantly smaller angle for the control group (two-tailed t test, p �

Figure 2. Group performance during training. A, Reach direction over trials during the training. The data points are the average (�SEM) of the reach angle across subjects. The gray area indicates
reach region for which the cursor would strike the target. B, Change in reach angle from the first five trials to the last five trials of training (immediately before generalization task). The two groups
displayed comparable change in their motor commands. C, Change in reach angle from the trial before to the trial after the set break. Cerebellar subjects (CBL) exhibited greater forgetting.
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0.009), and the decay rate was significantly smaller for the cere-
bellar group (two-tailed t test, p � 0.015).

Comparison of the data in the localization task between the
control and cerebellar groups is reasonable only if the motor
commands produced by the two groups are comparable. Figure
3G plots the distribution of reach directions in the two groups.
We found no significant differences in these two distributions
(Kolmogorov–Smirnov test, p � 0.86). Figure 3H plots the fitted
model of the localization data as a function of reach angle and
trial, illustrating that the perceptual change in the control group
had a larger initial peak, but also a larger decay rate. Overall, using

the area depicted in Figure 3D and the model fits in Figure 3F, we
would estimate that perceptual change for the cerebellar subjects
was 45 � 9% of that of the control subjects.

Performance of individual cerebellar subjects
People with cerebellar damage are generally impaired in reach
adaptation paradigms, but exhibit between-subject variability
that is likely due to the specific location of the cerebellar damage.
For example, degeneration of the anterior lobe of the cerebellum
affects force field adaptation more than visuomotor adaptation
(Rabe et al., 2009; Donchin et al., 2012). Damage in the regions

Figure 3. Estimating the change in the inverse and forward models in the control and cerebellar (CBL) groups. A, Performance in the generalization task in the baseline (dashed line) and
postadaptation (solid line) conditions. The colored regions represent the within-group change in performance. Error bars are SEM. B, Within-subject change in reach angle from the baseline to the
postadaptation condition in the generalization task (a proxy for the change in the inverse model). Error bars are SEM. C, Results of fitting a cosine function (Eq. 2) to the data in the generalization task.
The bar graphs are parameters of the fit. Shaded regions and error bars are 95% confidence intervals. D, Performance in the localization task in the baseline (dashed line) and postadaptation (solid
line, representing the first five trials) conditions. The colored regions are the within-group change in performance. The y-axis is the reported reach angle. Error bars are SEM. E, Within-subject change
in reach percept in the localization task (a proxy for the forward model). Error bars are SEM. F, Fit of a cosine function (Eq. 1) to the data in the localization task. The bar graphs (right) are parameters
of the fit. The peak magnitude, center location, and decay rate were all significantly different between the two groups. The cosine function (left) represents the change in the forward model, as
evaluated at the first localization trial, with respect to baseline. G, Distribution of reach directions in the control and cerebellar groups during the localization task. The plot shows the probability of
reach angle (bin size, 10°). H, Time course of change in reach percept as a function of trial in the postadaptation localization trials. The plots are generated from a fitted model (Eq. 1).
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served by the SCA impairs adaptation in
the force field and visuomotor rotations
tasks, but the impairment is less if the
damage is to the regions served by the
PICA (Donchin et al., 2012). Because we
did not have access to MRI data and vol-
umetric analysis, and because our patient
population size was small, there is concern
that the differences in the localization task
may be due to a few patients that may have
also learned poorly in the adaptation task.

To consider this question, we plotted a
measure of perceptual change as a function
of adaptation driven change in motor com-
mands for each subject (Fig. 4A). In Figure
4A, the x-axis shows an adaptation index for
each subject (change in reach direction, end
of training with respect to start of training,
our measure of change in the inverse model;
as in Fig. 2B) and the y-axis shows the aver-
age change in reach percept for that subject
(our measure of change in the forward model). Along the x-axis of
Figure 4A there is overlap between the two groups of subjects, rein-
forcing our observation that the change in motor commands at the
end of adaptation was comparable between groups. However, along
the y-axis we see a strong dissociation between the two groups: the
cerebellar group is clustered below the control group. The data in
Figure 4A suggests that regardless of how well the cerebellar subjects
adapted to the perturbation, they almost uniformly showed a pat-
tern of perceptual change that was smaller than those in healthy
controls. The only patient who had a perceptual change within the
cluster of healthy controls was Patient 4. This patient was our most
mildly affected individual in terms of clinical symptoms (ICARS
score of 5; Table 1).

The between-subject variability in adaptation was greater in the
cerebellar subjects than in control subjects (distribution along the
x-axis; Fig. 4A). Was some of this variability due to disease severity?
In Figure 4B, we have plotted change in reach direction at the end of
training (with respect to before training) as a function of ataxia score.
We found a significant negative correlation (r ��0.68, p � 0.04). In
Figure 4C, we have plotted change in reach direction during the
generalization trials (for target at 45°) as a function of ataxia score.
We again found a significant negative correlation (r � �0.79, p �
0.01). In contrast, we found no significant correlation between ataxia
score and performance in the localization task (r � �0.35, p 	 0.3).
As the data in Figure 4A suggests, when we considered our study
groups together, we found a correlation between magnitude of
change in the localization task and magnitude of change in motor
commands during adaptation training (r � 0.58, p � 0.01). How-
ever, there were no significant correlations within the cerebellar or
the control groups.

In summary, despite comparable changes in motor com-
mands in cerebellar and control subjects, the extent of changes in
perceived sensory consequences of motor commands in the cer-
ebellar subjects was almost entirely outside the range of healthy
controls. The degree of adaptation in motor commands was as-
sociated with disease severity.

A potential link between changes in perceived sensory
consequences of motor commands and changes in motor
commands
A number of reports have found that a side effect of training in a
visuomotor rotation paradigm is a shift in the perceived state of

the arm (Synofzik et al., 2008; Cressman and Henriques, 2009,
2010). Synofzik et al. (2008) interpreted these findings as evi-
dence for a change in a forward model that associates motor
commands with sensory consequences. However, Cressman and
Henriques (2010) have uncovered evidence arguing that these
changes reflect proprioception recalibration and are unrelated
to learning an association between motor commands and sen-
sory consequences. Therefore, it is unclear whether changes in
perceived state of the arm after visuomotor adaptation are due
to changes in forward models, or a form of sensory recalibra-
tion. Here we performed a simulation to ask whether the spe-
cific pattern of change in percept in the localization task could,
in principle, be due to a system that learned to associate motor
commands with sensory consequences.

There are two interesting aspects of our data in the control
group that are worth highlighting. First, in the localization task in
the control group, the peak of the change in percept was not for
reaches toward 45°, but 31°. Second, in the generalization task,
healthy people generalized their learning in an asymmetric fash-
ion (Fig. 3B): training to a target at 45° produced a greater gen-
eralization to smaller target angles than larger target angles.
Conversations with our colleague Maurice A. Smith raised the
idea that both patterns may be a signature of a system that learns
to associate motor commands with sensory consequences. We
followed up on this theory with a simulation. In our simulation,
motor commands on a given trial were associated with a pre-
dicted sensory consequence (cursor motion). The difference
between observed and predicted consequences produced adapta-
tion in the forward model. On the next trial, the motor command
that was generated was based on a search of the possible com-
mands and their expected sensory consequences (Eq. 6). In this
way, changes in the forward model directly impacted both the
percept about sensory consequences and the motor commands
on the next trial. We show that such a system can, in principle,
account for the asymmetry in generalization (Fig. 3B) and the
pattern of change in percept (Fig. 3E).

The simulation results are shown in Figure 5. With each step
in the perturbation, the reach direction changes to bring the cur-
sor close to the target at 45° (Fig. 5A). By end of training, in
response to the 45° target, the motor commands are reaching
toward 15°, a change of �30° from baseline. We have plotted the
state of the forward model during training as would be estimated

Figure 4. Performance of individual subjects. A, Average change in reach percept for each subject, plotted against that subject’s
change in reach direction during adaptation training. The x-axis is the same measure as in Figure 2 B, i.e., change in reach angle
from the first five trials to the last five trials of training (immediately before localization task). The y-axis is the change in reach
percept for each subject (localization task, postadaptation period with respect to preadaptation), averaged over reaches made
between 15° and 55°. Blue circles represent healthy controls; red circles represent cerebellar patients. The number next to each
circle identifies that cerebellar subject in Table 1. B, Change in reach direction during adaptation training is plotted against that
subject’s ataxia score. The y-axis is the same measure as in Figure 2 B, i.e., change in reach angle from the first five trials to the last
five trials of training. Generally, the subjects who were more impaired in their clinical score also exhibited less adaptation. C,
Change in reach angle from the baseline to the postadaptation condition in the generalization task, as measured for reaches to the
main target (at 45°), is plotted for each subject against that subject’s ataxia score.
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in the localization task at intervals of 20 trials in Figure 5, B and C.
The effect of training is a shift in the peak of the forward model
from reach angles at 45° to �20°. This is a reflection of the history
of motor commands and sensory prediction errors during train-
ing. Superimposed on this plot is the data from the localization
task in control subjects (Fig. 3D,E). The control subjects exhib-
ited a maximum change in their percept of hand position for
reach angles at �31°, whereas cerebellar subjects exhibited a
peak at 45°. The bias of the data in the control group toward
smaller reach angles is consistent with the hypothesis that the
localization task is measuring a component of the forward
model. However, the magnitude of the peak and its shift in
location are smaller in the measured data than predicted by the
simulations.

Now let us consider the interesting fact that the generalization
function (Fig. 3B) is asymmetric. We can show that this may be
linked to adaptation of the forward model. In our simulations,
the forward model is represented by a set of basis functions that
encodes the map from motor commands to motion of the arm
(reach angle). To generate the motor commands, our simulations
relied on these bases to predict the sensory consequences, and
selected those commands that brought the arm to the target lo-
cation. Therefore, the representation that we chose for simulating
the forward model directly predicts what we should see during
the generalization task, i.e., our proxy for the inverse model. In
Figure 5, D and E, we have plotted the state of the inverse model
during training as would be measured in the generalization task
at intervals of 20 trials. Superimposed on this plot is the data from
the generalization task in control subjects (Fig. 3B,C). With in-
creased training, the generalization of the simulation narrows for
larger target angles but remains unchanged for smaller target
angles. As a result, in our simulations, the generalization profile
of the inverse model at the end of training is asymmetric, skewed
toward smaller target angles (Fig. 5E). It is interesting that the
control group also exhibited greater generalization toward
smaller target angles than larger angles (two-tailed t test, p � 0.05;

Fig. 3B, slope of the left and right sides of
the generalization function). According
to the simulations, the reason for this
asymmetry is that the motor commands
on each trial are relying on a forward
model that associates previous motor
commands with their sensory conse-
quences. The generalization data for the
cerebellar group exhibited no significant
asymmetry (two-tailed t test, p � 0.10;
Fig. 3B, slope of the left and right sides),
although comparison of these two groups
did not reach significance (two-tailed t
test, p � 0.55; Fig. 3B, difference in slope
of left and right sides).

In summary, we performed a simula-
tion in which, on a given trial, our system
used its forward model to search for the
best motor command that would produce
a sensory consequence consistent with
moving a cursor to a target. Once the mo-
tor command was generated, it predicted
the sensory consequences of it, and then
learned from the difference between the
predicted and actually observed sensory
consequences. This updating of the for-
ward model affected the motor com-

mands on the next trial. Our simulation predicted two interesting
results. First, in the localization task, the peak of the change in
percept should not be for reaches to the trained target, but for
reaches toward targets that are at smaller angles. Second, in the
generalization task, motor commands should show asymmetric
generalization, displaying greater generalization to angles that are
smaller than the trained target. We observed both of these fea-
tures in the data of our healthy controls.

In contrast, a feature of the data that our model could not
account for was the lack of correlation between degree of change
in the localization task and degree of change in the motor com-
mands. As is evident in Figure 4A, in healthy individuals, there is
no correlation between change in percept in the localization task
and amount of adaptation in motor commands during training.
Our simulations predicted existence of this correlation because
change in the forward model is the only signal that produces
change in the motor commands. Recent results have demon-
strated that error-dependent learning (which in our simulations
drives the change in the forward and inverse models) is only one
component of motor learning and there exists other components
that depend on reward prediction error (Izawa and Shadmehr,
2011; Pekny et al., 2011).

Discussion
Let us define an inverse model as a map that associates goal of the
movement (e.g., placing a cursor in a target position) with motor
commands that achieve that goal, and define a forward model as
a map that associates motor commands with their sensory con-
sequences. Does damage to the cerebellum affect learning of in-
verse models, forward models, or both? To produce learning in
these hypothetical maps, we perturbed the relationship between
displacement of the hand and displacement of the cursor. The
training focused on a single target position. To assay the change
in the inverse model, we presented people with goals near the
trained target. We observed that people with cerebellar damage
learned to alter their motor commands in response to the trained

Figure 5. Simulation results. A, The simulated adaptive system was trained on a perturbation protocol similar to the one
experienced by the subjects. B, State of the forward model in trials 1, 21, 41, etc. Red line is the state at baseline; dark blue line is
the state at end of training. With increased trials, the peak shifts to smaller reach angles. Superimposed on the simulation data are
data from control subjects in the localization task (Fig. 3D). C, Change in the forward model with respect to baseline. The black line
is data from control subjects in the localization task (Fig. 3E). D, Reach angle as a function of target direction. The colored lines
represent state of the inverse model (Eq. 6) in trials 1, 21, 41, etc. Red line is the state at baseline; dark blue line is the state at end
of training. With increased trials, the generalization narrows for larger target angles. Superimposed on the simulation data are data
from control subjects in the generalization task (Fig. 3A). Arrow indicates the trained target direction (45°). E, Change in the inverse
model with respect to baseline. The black line is data from control subjects (Fig. 3B).
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target and generalized this to neighboring targets in a way that
was similar to healthy controls. To assay the change in the for-
ward model, people self-selected a movement without an explicit
target and then reported where they believed their hand had
moved to (Synofzik et al., 2008). In healthy people, the training
induced significantly larger shifts in predicted sensory conse-
quences of motor commands than in people with cerebellar
damage.

Numerous studies have documented cerebellar involvement
in motor adaptation. Yet, the computational function of the cer-
ebellum during motor adaptation remains unclear. Some have
suggested that the function of the cerebellum is to act as an in-
verse model, generating the sequence of the motor commands
that take into account dynamics of the body (Gomi and Kawato,
1992; Kawato and Gomi, 1992a,b). Some have suggested that the
function of the cerebellar is to act as a forward model, predicting
the sensory consequence of action (Wolpert and Miall, 1996;
Doya, 1999; Paulin, 2005; Shadmehr and Krakauer, 2008; Izawa
and Shadmehr, 2011). Still others have suggested a function that
involves both kinds of internal models (Wolpert and Kawato,
1998).

The results from our localization task support the hypothesis
that the cerebellar function during motor learning is related to
formation of forward models. Our simulations showed that as a
consequence of adaptation, the peak of the change in the forward
model should have shifted from a reach angle at 45° (target direc-
tion) to �20°. This view is consistent with the results of Gonzalez
Castro et al. (2011), who observed that during reach adaptation
in force fields, adaptation was greatest along sensory states that
were most repeated, and not along the target directions that were
most repeated. As a consequence, our simulations predicted that
the maximum illusion in the localization task caused by the train-
ing in the reaching task should have been for reaches 25° away
from the trained target direction. In control subjects, we observed
a shift of 14°, but observed no shift in the cerebellar group. Fur-
thermore, the simulations predicted that the peak change in the
localization task should have a magnitude of �30°. In control
subjects, we observed a magnitude of 21°, and in the cerebellar
group the magnitude was 11°.

Limitations of the localization task as an assay of the
forward model
There are two kinds of sensory consequences associated with
motor commands: visual feedback associated with the cursor and
proprioceptive feedback associated with the arm. Furthermore,
when one is holding a novel tool, there are two kinds of possible
perturbations: the tool can act as a perturbation that alters both
forms of sensory feedback and the visual display can act as a
perturbation that alters only the visual feedback. In this scenario,
Haith et al. (2008) showed theoretically that some fraction of the
prediction error is assigned to a perturbation to the arm, and
some to the visual display of hand position (Shadmehr and
Mussa-Ivaldi, 2012). The localization task assays the net change
in proprioceptive state of the arm, but does not assay the change
caused by the perturbation to the visual feedback (the cursor).
Therefore, from a theoretical perspective, the localization task
provides only a partial picture of the change in the forward
model. Furthermore, as Cressman and Henriques (2010) have
demonstrated, changes in perceived location of the arm occur
even when one passively views movements of the hand in a visuo-
motor rotation paradigm. Although the effects reported by that
study are threefold smaller than what we see here, it suggests that
changes in percept cannot be viewed solely as a signature of a

system that associates motor commands with sensory conse-
quences. Rather, the changes that we recorded in perception of
arm position may be due to a combined change in forward model
and in association of proprioception with vision. Importantly, we
observed that the peak change in percept in the patients was
centered at the trained target direction, whereas the peak in the
controls was shifted. Our simulations suggest that this shift is a
signature of adaptation in a map that associated motor com-
mands with sensory consequences. It is possible that what we
observed in cerebellar patients is a relatively intact adaptation of
maps that associate one sensory modality with another, but im-
paired adaptation in maps that associate motor commands with
sensory consequences. In support of this theory, a recent experi-
ment in some of the same patients that we studied found normal
sensory realignment in a task in which proprioceptive state of the
arm was matched with a visual cursor (H. Block and A. Bastian,
unpublished observations).

Learning from sensory prediction error to alter
motor commands
Does adaptation in a forward model contribute to changes in
motor commands? In our simulation we assumed that the motor
commands are generated through a search of the motor space,
finding the best command in terms of a match between expected
sensory consequences and target. Partial evidence in support of
this idea is that the simulations predicted an asymmetric gener-
alization profile, something that agreed with our observations
(Fig. 5E). However, recent studies of motor learning have ob-
served evidence of a specialized inverse model that can be learned
independently of the forward model through reinforcement
learning (Izawa and Shadmehr, 2011) or repetition (Diedrichsen
et al., 2010; Huang et al., 2011; Verstynen and Sabes, 2011). Fur-
thermore, in our healthy subjects, we did not observe a correla-
tion between magnitude of change in the localization task (proxy
for the forward model) and magnitude of change in the reach
direction (proxy for the inverse model) (Fig. 4A), as might be
expected if changes in the forward model are the only factor that
drive changes in the inverse model. Therefore, it seems likely that
changes that take place in motor commands during adaptation
are only partly driven by changes in forward models.

Learning despite a damaged cerebellum
Our results strengthen our previous report in a force field adap-
tation paradigm: people with cerebellar damage maintain an abil-
ity to improve their motor commands in response to a gradually
increasing perturbation (Criscimagna-Hemminger et al., 2010).
It is possible that the cerebellar patients may have adapted by
relying on reward prediction error. When adaptation is driven
solely by reward prediction error, the resulting behavior has two
signatures: little or no change in the forward model as assayed in
the localization task, and a narrow generalization function as
assayed in the reach to target task (Izawa and Shadmehr, 2011). In
contrast, our cerebellar patients exhibited smaller than normal
changes in the localization task, but a reach to target generaliza-
tion function that was comparable to healthy people (Fig. 3B).
Therefore, performance of cerebellar patients is not consistent
with the hypothesis that, in the gradual paradigm, they relied
solely on reward prediction errors.

Because cerebellar degeneration is a chronic disease, the brain
may engage neural mechanisms that allow for partial compensa-
tion. A potential clue is that both here and in an earlier reaching
experiment (Criscimagna-Hemminger et al., 2010), we found
that cerebellar patients showed a greater amount of forgetting at
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set breaks [however, note that in saccade adaptation, cerebellar
subjects exhibit little or no forgetting (Xu-Wilson et al., 2009)].
This suggests that in reach adaptation in cerebellar patients, there
is a stronger than normal dependence on a fast process (Smith et
al., 2006), a process that shares resources with the declarative
system (Keisler and Shadmehr, 2010). It is possible that the ability
of the cerebellar patients to adapt in the gradual condition is
partly due to a greater than normal reliance on the declarative
system. Two points, however, argue against this idea. First, we
observed normal generalization in our assay of the inverse model.
Second, we observed slower than normal decay in the assay of the
forward model in the localization task. More studies are needed
to understand the neural mechanisms that allow cerebellar pa-
tients to improve their performance in the gradual perturbation
schedule.

In summary, we found that despite cerebellar damage, the
brain maintained an ability to learn motor commands that effec-
tively canceled the perturbation in a reaching task in which the
perturbation was imposed gradually. However, cerebellar dam-
age impaired the ability to learn the visual sensory consequences
of those commands.
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