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Abstract
Array comparative genomic hybridization (aCGH) allows identification of copy number
alterations across genomes. The key computational challenge in analyzing copy number variations
(CNVs) using aCGH data or other similar data generated by a variety of array technologies is the
detection of segment boundaries of copy number changes and inference of the copy number state
for each segment. We have developed a novel statistical model based on the framework of
conditional random fields (CRFs) that can effectively combine data smoothing, segmentation and
copy number state decoding into one unified framework. Our approach (termed CRF-CNV)
provides great flexibilities in defining meaningful feature functions. Therefore, it can effectively
integrate local spatial information of arbitrary sizes into the model. For model parameter
estimations, we have adopted the conjugate gradient (CG) method for likelihood optimization and
developed efficient forward/backward algorithms within the CG framework. The method is
evaluated using real data with known copy numbers as well as simulated data with realistic
assumptions, and compared with two popular publicly available programs. Experimental results
have demonstrated that CRF-CNV outperforms a Bayesian Hidden Markov Model-based
approach on both datasets in terms of copy number assignments. Comparing to a non-parametric
approach, CRF-CNV has achieved much greater precision while maintaining the same level of
recall on the real data, and their performance on the simulated data is comparable.

Keywords
Array comparative genomic hybridization; copy number variations; conditional random fields

1. Introduction
Structure variations in DNA sequences such as inheritable copy number alterations have
been reported to be associated with numerous diseases. It has also been observed that
somatic chromosomal aberrations (i.e. amplifications and deletions) in tumor samples have
shown different clinical or pathological features in different cancer types or subtypes.1–3

With remarkable capacity from current technologies in assessing copy number variants
(CNVs), there is a great wave of interest recently from the research community to
investigate inheritable as well as somatic CNVs.1–8 Broadly speaking, there are essentially
three technological platforms for copy number variation detections: array-based technology
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(including array comparative genomic hybridization (aCGH), as well as many other variants
such as oligonucleotide array or bacterial artificial chromosome array), SNP genotyping
technology,3,4 and next-generation sequencing technology.9

Not surprisingly, various algorithms have been proposed for different data in recent years.
The primary goal of all such studies is to identify and localize the copy number changes.
One important commonality in data from different platforms is the spatial correlation among
clones/probes/sequences. Many existing approaches have taken advantage of such a property
by utilizing the same methodology, Hidden Markov Models (HMMs), which can
conveniently model spatial dependence using a chain structure. Results have shown initial
success4,5,7,8 of HMMs. However, there is an inherited limitation for all these HMMs, i.e.
they are all first-order HMMs and cannot take into consideration long-range dependence.
We propose to develop and apply a novel undirected graphical model based on Conditional
Random Fields (CRFs)10 for the segmentation of CNVs. It has been shown that CRFs
consistently outperform HMMs in a variety of applications, mainly because CRFs can
potentially integrate all information from data.10 This property makes CRFs particularly
appealing for modeling CNV data since one can define feature functions using data from a
region rather than a single or two data points for emissions and transitions, respectively, in
HMMs.

Our major analytical contributions include the construction of the CRF model, the definition
of effective feature functions using robust statistics, and the development of efficient
computation algorithms for parameter estimations. As an illustration of our proposed model,
we have applied our approach on real and simulated data based on array technology, and
compared its performance with two popular segmentation algorithms. Experimental results
have demonstrated that CRF-CNV outperforms a Bayesian Hidden Markov Model-based
approach on both datasets in terms of copy number assignments, with little sacrifice of
accuracy in breakpoint identification due to smoothing. Compared to a non-parametric
approach, CRF-CNV has achieved much greater precision while maintaining the same level
of recall on the real data. On the simulated data, CRF-CNV has obtained better accuracy in
identifying breakpoints with comparable performance in copy number assignments.

The remainder of this article is organized as follows. In Sec. 2, we give a brief overview of
aCGH data and existing approaches for detecting CNVs from aCGH data. We also briefly
mention the differences between HMMs and CRFs. Details about model developments and
implementations are provided in Sec. 3. Our experimental results on two datasets and
comparisons with other two programs are presented in Sec. 4. We conclude the paper with a
few discussions in Sec. 5.

2. Preliminary
2.1. ACGH data and analysis

Though theoretically, our approach can be applied to data from different experimental
platforms, we focus primarily on aCGH data in this analysis. Mathematically, aCGH data
usually consist of an array of log2 intensity ratios for a set of clones, as well as the physical
position information of each clone along a genome. Fig. 1 plots the normalized log2 ratio of
one cell line (GM04435) analyzed by Snijders et al.11 Each data point represents one clone
and the y-axis represents normalized log2 intensity ratio. The primary goal in CNV detection
based on aCGH is to segment a genome into discrete regions that share the same mean log2
ratio pattern (i.e. have the same copy numbers). Ideally, the log2 ratio of a clone should be 0
if the cancer sample/cell line has a normal number (i.e. 2) copies of DNA, and the value
should be around 0.585 (or −1) if it has one copy of gain (or loss). However, as shown in
Fig. 1, aCGH data can be quite noisy with vague boundaries between different segments. It
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may also have complex local spatial dependence structure. These properties make the
segmentation problem intrinsically difficult. Approaches using a global threshold generally
do not work in practice.

2.2. Existing algorithms
In general, a number of steps are needed to detect copy number changes from aCGH data.
First, raw log2 ratio data usually needs some pre-processing, including normalization and
smoothing. Normalization is an absolute necessary step to alleviate systemic errors due to
experimental factors. Usually the input data is normalized by making the median or mean
log2 ratio of a selected median set from normal copy number regions to be zero. Smoothing
is used to reduce noises that are due to random errors or abrupt changes. Smoothing methods
generally filter the data using a sliding window, attempting to fit a curve to the data while
handling abrupt changes and reducing random errors.

The second step in analyzing aCGH data is referred to as segmentation and aims to identify
contiguous sets of clones (segments) that share the same mean log2 ratio. Broadly, there are
two related estimation problems. One is to infer the number and statistical significance of
the alterations, the other is to locate their boundaries accurately. A few different algorithms
have been proposed to solve these two estimation problems. Olshen et al.12 have proposed a
non-parametric approach based on the recursive circular binary segmentation (CBS)
algorithm. Hupe et al.13 have proposed an approach called GLAD, which is based on a
median absolute deviation model to separate outliers from their surrounding segments.
Willenbrock and Fridlyand14 have compared the performance of CBS (implemented in
DNA-Copy) and GLAD using a realistic simulation model, and they have concluded that
CBS in general is better than GLAD. After obtaining the segmentation outcomes, a post-
processing step is needed to combine segmentations with similar mean levels and to classify
them as single-copy gain, single-copy loss, normal, multiple gains, etc. Methods such as
GLADMerge13 and MergeLevels14 can take the segmentation results and label them
accordingly.

As noted by Willenbrock and Fridlyand,14 it is more desirable to perform segmentation and
classification simultaneously. An easy way to merge these two steps is to use a linear chain
HMM. A few variants of HMMs have been proposed for aCGH data in recent years.7,15

Guha et al.15 have proposed a Bayesian HMM which can impose biological meaningful
priors on the parameters. Shah et al.7 have extended this Bayesian HMM by adding
robustness to outliers and location-specific priors, which can be used to model inheritable
copy number polymorphisms. Note that all these models are first-order HMMs which cannot
capture long-range dependence. Intuitively, it makes sense to consider high-order HMMs to
capture informative local correlation, which is an important property observed from aCGH
data. However, considering higher orders will make HMMs more complex and
computationally intensive.

2.3. Conditional random fields
To overcome the limitations of HMMs, we propose a new model based on the theory of
Conditional Random Fields (CRFs). CRFs are undirected graphical models designed for
calculating the conditional distribution of output random variables Y given input variables X.
10 It has been extensively applied to language processing, computer vision, and
bioinformatics with remarkable performance when compared with directed graphical models
including HMMs. The key difference between CRFs and HMMs is that one can define
meaningful feature functions that can effectively capture local spatial dependence among
observations.
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In general, a linear-chain CRF (Fig. 2) is defined as the conditional distribution

where the partition function

Here θ = {θij} are parameters. Functions {fij} are feature functions. X̃i is a neighbor set of Xi
that are needed for computing features related clone i and i + 1. S(i) is the total number of
feature functions related to clone i and i + 1.

We will use a linear-chain CRF model for CNV detection. Our feature functions to be
defined can use observed data from a region. Therefore, it can capture abundant local spatial
dependence. In addition, by using a linear-chain CRF, we can effectively combine
smoothing, segmentation and classification into one unified framework.

3. Methods
3.1. Linear-chain CRF model for aCGH data

Our model is based on the linear-chain CRF Model in Fig. 2. Let X = (X1,…, Xn) denote the
normalized log2 ratio intensities along one chromosome for an individual, where Xi is the
log2 ratio for clone i. One can assume that these n clones are sequentially positioned on a
chromosome. Let Y = (Y1, …, Yn) denote the corresponding hidden copy number state,
where Yi ∈{1, …, s} and s the total number of copy number states. These states usually
indicate deletion, single-copy loss, neutral, single-copy gain, two-copy gain or multiple-
copy gain. The exact number of states and their meaning need to be specified based on
specific input data. X̃i(u) is defined as a neighbor set of Xi around clone i, i.e. X̃i(u) = {Xi−u,
…, Xi−1, Xi, Xi+1, …, Xi+u}, where u is a hyper-parameter to define the dependence length.
Similarly, we define X̃i,i+1(u) = {Xi−u,…, Xi, Xi+1,…, Xi+1+u}, 

and . The dependence length u plays a similar role like the
width of a sliding window in smoothing methods. The conditional probability of Y given
observed log2 ratio X based on our linear-chain CRF structure can be defined as

(1)

where the partition function
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Here θ = {λj, μj, ωj, νjk} are parameters that need to be estimated. Functions fj, gj, lj and hjk
are feature functions that need to be defined. For notational simplification, we drop the
parameter u in our subsequent discussions and write X̃i(u) as X̃i and etc. Parameters, feature
functions and main variables in our model are summarized in Table 1.

3.2. Feature functions
One important step to build our model is to define meaningful feature functions that can
capture critical information from input data. Essentially, we define two types of feature
functions, analogous to the emission and transition probabilities in HMMs. However, our
feature functions can be of any form. Therefore, our model can provide much more
flexibility and be able to capture long-range dependence. The emission feature functions fj
(Yi, X̃i) and gj (Yi, X̃i) are defined as follows

where med X̃i is defined as the median value of set X̃i. Our emission features serve two
purposes. First, they are used as a median filter that will automatically smooth the input
data. More importantly, the feature functions based on the first-order and second-order
median statistics are robust sufficient statistics one can derive from a normal distribution,
which resemble the emission pattern of log2 ratio intensities for a given hidden copy number
state.

The transition feature function hjk(Yi, Yi+1, X̃i,i+1) and the initial feature function lj (Y1, X̃1)
are defined as follows

Here aj denotes the mean log2 ratio for clones with copy number state j (j = 1, …, s). a0 and
as+1 denote the greatest lower bound of log2 ratio for clones with copy number state 1 and
the least upper bound of log2 ratio for clones with copy number state s, respectively.
Without loss of generality, we assume a0 < a1 < ··· <as+1. We define the initial feature
function lj (Y1, X̃1) such that data from the clone set X̃1 will only provide information to its
own labelled state. Furthermore, when Y1 = j, the closer the med X̃1 to aj, the higher value
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for lj (Y1, X̃1), the more information data will provide and contribution to parameter ωj is
higher. It will achieve the highest value of 1 when med X̃1 = aj. The transition feature
function hjk (Yi, Yi+1, X̃i,i+1) is similarly defined using the clone set X̃i,i+1. When Yi = j and

Yi+1 = k, the closer the  to aj and the  is to ak, the higher the value for
hjk(Yi, Yi+1, X̃i,i+1), and the data will contribute more information to νjk. Clearly, both types
of our feature functions can capture the local spatial dependence over a set of adjacent
clones, thus potentially providing more robust inference about hidden copy number states.

The feature functions in our CRF-CNV model can be regarded as a generalization of feature
functions in HMMs. (see Appendix A). The transition feature functions of HMMs are index
functions. They do not depend on observations. However, our transition feature functions
can capture the local spatial dependence over a set of adjacent clones. The way we define
feature functions embodies the core idea of CRFs, which make our CRF-CNV model more
promising.

3.3. Parameter estimation
Unlike the standard algorithms for HMM training, there are significant computational
challenges to efficiently and accurately estimate parameters for CRFs. Implementation of
the training algorithms for our proposed CRF model requires sophisticated statistical and
numerical algorithms. To our best knowledge, no existing implementations can be trivially
used to solve our problem. We propose the following algorithm for the parameter
estimation.

In general, given a set of training data  = {(X(d), Y(d)), d = 1, …, D}, to estimate parameter
θ in model (1), one needs to maximize a penalized conditional log likelihood which is
defined as follows

(2)

Here D is the number of training samples, ||θ|| is the L2 norm of θ, σ2 is the penalization
coefficient. The penalization term ||θ||2/2σ2 is added for regularization purpose. Before one
can solve the optimization problem, one has to first specify an additional set of hyper-
parameters that include the dependence length u, the mean log2 ratios {aj, j = 0, …, s + 1}
and the penalization coefficient σ2. The set of {aj} can be directly estimated given the
training data set , i.e. the maximum likelihood estimate of aj is just the mean value log2
ratios of all clones with copy number state j in  for j = 1, …, s. While a0 and as+1 can be
imputed using the minimum log2 ratio of all clones with copy number state 1, and the
maximum value from all clones with copy number state s, respectively. For the dependent
length u and the penalization coefficient σ2, we rely on a grid search approach through
cross-validation. More specifically, the original training set  will first be partitioned into
two sets  and . We call  the new training set and  the validation set. For a given
range of (discrete) parameter values of u and σ2, we train the model on  and get estimates
of θ for each fixed pair of (u0, ). The exact procedure to estimate θ given (u0, ) will be
discussed shortly. We then apply the trained model with estimated parameters on the
validation set  and record the prediction errors under the current model. The model with
the smallest prediction error as well as their associated parameters (u, σ2, θ) will be chosen
as the final model. The prediction error is defined as the mean absolute error (MAE) for all
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samples in the validation set . The absolute error for a clone i is defined as |Yi − Ŷi|, where
Yi is the known copy number and Ŷi is the predicted copy number for clone i. This measure
not only captures whether a prediction is exactly the same as the real copy number, but also
reflects how close these two numbers are.

For a given set of hyper-parameters {aj}, u and σ2, the optimization of Lθ in Eq. (2) can be
solved using gradient-based numerical optimization methods.16 We choose the non-linear
Conjugate Gradient (CG) method in our implementation, which only requires the
computation of the first derivatives of Lθ. The partition function Zθ(X) in the log likelihood
and the marginal distributions in gradient functions can be computed using forward-
backward algorithms. Due to page limitation, we provide the technical details of the CG
method and the efficient computation of the derivatives of Lθ in Appendix B.

For graphical model based approaches such as HMMs, many researchers group both
individuals and chromosomes in the analysis of aCGH data, which can dramatically reduce
the number of parameters needed without sacrificing much inference accuracy. We also take
a similar approach. This is reflected by our homogeneous CRF structure.

3.4. Evaluation methods
We have implemented the above proposed approach as a Matlab package termed CRF-CNV
and evaluated its performance using a publicly available real dataset with known copy
numbers11 and a synthetic dataset from Willenbrock and Fridlyand.14 Notice that many
clones have normal (2) copies of DNAs, therefore the number of correctly predicted state
labels is not a good measure of performance of an algorithm. Instead, we compare the
performance of CRF-CNV with two popular programs in terms of the number of predicted
segments and the accuracy of segment boundaries, referred to as breakpoints. To summarize
the performance of an algorithm over multiple chromosomes and individuals, we use a
single value called F–measure, which is a combination of precision and recall. Recall that
given the true copy number state labels and predicted labels, precision (P) is defined as 
and recall (R) is defined as , where ntp is the number of true positive (correctly predicted
breakpoints), np is the number of predicted breakpoints, and nt is the number of true
breakpoints. F -measure is defined as F = 2P R/(P + R), which intends to find a balance
between precision and recall. The two programs we chose are CBS12 and CNA-HMMer,7
both of which have been implemented as Matlab tools. As mentioned earlier, CBS is one of
the most popular segmentation algorithms and different groups have shown that it generally
performs better than many other algorithms. CNA-HMMer is chosen because we want to
compare the performance of our CRF model with HMMs, and CNA-HMMer is an
implementation of Bayesian HMM model with high accuracy.7

4. Experimental Results
4.1. A real example

The Coriell data is regarded as a well-known “gold standard” dataset which was originally
analyzed by Snijders et al.11 The data is publicly available and has been widely used in
testing new algorithms and in comparing different algorithms. The CBS algorithm has been
applied on this dataset in the original paper. We redo the analysis using the Matlab code to
obtain a complete picture. The Coriell data consists of 15 cell lines, named GM03563,
GM00143, …, GM01524. We simply use number 1, 2, …, 15 to represent these cell lines.
For this particular dataset, there are only three states (s = 3), i.e. loss, neutral and gain.
Notice that unlike CBS, CRF-CNV requires training data to obtain parameters. It is unfair to
directly compare the prediction results of CRF-CNV on training data with results from CBS.
We take a simple approach which divides the 15 samples into three groups, with each group
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having 5 samples. In the first run, we use Group 1 as training data and Group 2 as validation
data to obtain model parameters (as discussed in Sec. 3.3). We then use the model to predict
data in Group 3 (testing data), and record the prediction results. In the second and third run,
we alternate the roles of Groups 1–3 and obtain prediction results of samples in Group 1 and
Group 2, respectively. Finally we summarize our results over all 15 samples. For example,
for the first run, we first obtain {aj, j = 0, …, 4} directly based on samples in Group 1. The
estimates of {aj } is (−1.348, −0.682, −0.001, 0.497, 0.810). To search the penalization
coefficient σ2 and the dependent length u, we define the search space as A × B = {0, 1, 2, …,
30} × {0, 1, …, 5}. For each data point (m, u0) ∈ A × B, we let σ2 = 400 × 0.8m and u = u0.
Essentially, to search σ2 in a broad range, we use a geometric decay. The upper bound on u
is set to be 5 because for aCGH data such as the Coriell dataset, each clone can cover a quite
long range of DNA. The optimal σ2 and u will be chosen by minimizing the prediction errors
on samples in Group 2 (the validation set). Our results indicate that the model with u = 1 and
m = 21 achieves the lowest prediction error. Note that u = 1 implies feature functions are
defined based on a window size of 3. The values of θs can be estimated simultaneously. We
then apply Viterbi’s algorithm to find the most possible hidden copy number states for
samples in Group 3, as well as the number and boundaries of segments. Run 2 and Run 3
will obtain results on Group 1 and Group 2. For the CNA-HMMer, one can either use its
default priors or use training data to obtain informative priors. We have tested the
performance of CNA-HMMer both with and without informative priors.

Table 2 shows the segment numbers of each sample from the Gold Standard, and from the
predicted outcomes of the three algorithms CRF-CNV, CBS and CNA-HMMer. The
segment number detected by CRF-CNV is exactly the same as the Gold Standard for almost
all samples (except for samples 9 and 10). Further examination of samples 9 and 10 (see Fig.
3) reveals that the segment that we missed in sample 9 only has one clone, which has been
smoothed out by our algorithm. The segment missed in sample 10 is also very short and the
signal is very weak. Our results have shown that CBS has generated many more segments
comparing to the ground truth, which is consistent with the results in the original paper. The
overall number of segments reported by CNA-HMMer with default priors is even greater
than the total number from CBS. On the other hand, once we have used training data to
properly assign informative priors for CNA-HMMer, it almost returns the same number of
segments as CRF-CNV. The only exception is that CNA-HMMer missed one breakpoint in
sample 1. This illustrates that by using correctly labeled training data, both CRF-CNV and
CNA-HMMer can effectively eliminate all false positives in this dataset. For the subsequent
experiments, we only report the results of CNA-HMMer with proper training.

As a comparison measure, the number of segments is a very rough index because it does not
contain information about breakpoints. To further examine how accurate the predicted
breakpoints by each approach, we pool all the breakpoints from all the samples and use the
F measure defined earlier to compare the performance of the three algorithms. Note that
even though exact matches are possible, shifting by a few clones around boundaries is also
likely given noisy input data. Therefore we use a match extent index D to allow some
flexibility in defining matches of predicted breakpoints to those given by the gold standard.
Table 3 shows F measures given different match extent values for the three methods.
Clearly, CBS has the worst performance, regardless of the match extent values. This
partially reflects that it has many false positives. The results from CNA-HMMer are very
accurate when no match extent is allowed and then shows modest increase when we increase
the value of D from 0 to 1. The results of CRF-CNV lie in between when the match index D
= 0. However, the performance of CRF-CNV is greatly enhanced when D = 1 and finally it
outperforms CNA-HMMer when D ≥ 2. The primary reason CRF-CNV has shifted one or a
few positions for many breakpoints is because of the automatic median smoothing step. In
contrast, CNA-HMMer directly models outliers using prior distributions.

YIN and LI Page 8

J Bioinform Comput Biol. Author manuscript; available in PMC 2012 April 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4.2. Simulated data
Though results on the real data have shown that CRF-CNV has a better performance than
CBS and CNA-HMMer, the experiment is limited because the sample size is very small. To
further evaluate the performance of CRF-CNV, we test the three algorithms using a
simulated dataset obtained from Willenbrock and Fridlyand.14 The dataset consists of 500
samples, each with 20 chromosomes. Each chromosome contains 100 clones. Each clone
belongs to one of six possible copy number states. The authors generated these samples by
sampling segments from a primary breast tumor dataset of 145 samples and used several
mechanisms (e.g. the fraction of cancer cells in a sample, the variation of intensity values
given a copy number state) to control the noise level. By using simulated data from the
literature, we can obtain an unbiased picture about CRF-CNV’s performance. The original
paper also compared three algorithms and concluded that CBS has the best performance.

To train CRF-CNV, we divide the 500 samples into three groups as usual. This time, the
training set Group 1 contains sample 1–50, the validation set Group 2 contains sample 51–
100 and the test set Group 3 contains sample 101–500. We use the same grid search
approach as discussed earlier to obtain hyper-parameters {aj}, u and σ2. For each fixed set of
hyper-parameters, we use the conjugate gradient method to obtain parameter θ. Finally, we
use Viterbi’s algorithm to decode the most possible hidden copy number state labels for
samples in Group 3 and compare the results with the other two algorithms. In addition, we
also compare the predictions by CRF-CNV on Group 2 and Group 3 to see, using new
testing data, how much deterioration our model might incur based on sub-optimal
parameters inferred from a small number of samples. Results from CBS and CNA-HMMer
are also presented separately for these two groups for easy comparison. We also use Group 1
as training data to assign proper priors for CNA-HMMer.

Table 4 shows the total number of segments in Group 2 and Group 3 predicted by CRF-
CNV, CBS and CNA-HMMer, and in comparison with the known segment number.
Interestingly, on this simulated data, both CBS and CNA-HMMer have predicted smaller
number of segments. CRF-CNV has predicted smaller number of segments on Group 2 and
greater number of segments in Group 3. However, the number of segments does not provide
a whole picture. We therefore examine the accuracy of boundary prediction by each method
using the F measure for both Group 2 and Group 3. Table 5 shows the F measures for
different methods, different groups and different match extents. As expected, the F measure
increases as D increases from 0 to 4 for all methods and for both data groups. It is also not
surprising to see that the results of CBS and CNA-HMMer on Group 2 and Group 3 are
consistent. Interestingly, the performance of CRF-CNV on Group 3 is also very close to its
own performance on Group 2. This property is desirable because it illustrates the robustness
of CRF-CNV. The performance on new testing data is almost the same as the performance
on validation data, which is used to select optimal hyper-parameters. This observation
alleviates the need of training samples by our approach and makes it more practical. Note
that the sizes of training data and validation data are also very small. One can expect that
with a small number of training data, our approach can be used to reliably predict new data
generated under the same experimental conditions. In terms of the performance of the three
approaches, CNA-HMMer is more accurate then CRF-CNV, and CBS is the worst for the
case of exact match. However, when we relax the matching criteria by increasing the value
of D, both CBS and CRF-CNV achieve better performance than CNA-HMMer. The results
of CNA-HMMer and CRF-CNV are consistent with those from the real data. While CBS has
much better performance compared to those from the real data, this might be attributed to
the simulation process because CBS was used to segment the 145 samples from the primary
breast tumor dataset.14

YIN and LI Page 9

J Bioinform Comput Biol. Author manuscript; available in PMC 2012 April 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



5. Conclusion and Discussions
The problem of detecting copy number variations has drawn much attention in recent years
and many approaches have been proposed to solve the problem. Among these computational
developments, CBS has gained much popularity and it has been shown that it generally
performs better than other algorithms on simulated data.14 However, as shown in the
original paper (as well as rediscovered by our experiments), CBS has reported many more
false positives on copy number changes in the standard Coriell dataset identified by spectral
karyotyping.11 Another commonly used technique for segmentation is HMMs. HMM
approaches have the advantage of performing parameter estimation and copy number
decoding within one framework and its performance is expected to improve with more
observations. Furthermore, Lai et al.17 have shown that HMMs performed the best for small
aberrations given a sufficient signal/noise ratio. However, almost all HMMs for aCGH are
first-order Markov models and thus cannot incorporate long region spatial correlations
within data.

We have presented a novel computational model based on the theory of conditional random
fields. We have also developed effective forward/backward algorithms within the conjugate
gradient method for efficient computation of model parameters. We evaluated our approach
using real data as well as simulated data, and results have shown our approach performed
better than a Bayesian HMM on both datasets when a small shift is allowed while mapping
breakpoints. Comparing with CBS, our approach has much less false positives on the real
dataset. On the simulated data set, the performance of our approach is comparable to CBS,
which has been shown to be the best among three popular segmentation approaches.

Like with any other CRF, in order to train our model, one has to rely on some training data.
To be practically useful, Bayesian HMMs such as CNA-HMMer also need training data for
proper assignments of informative priors. We argue that the problem is not that serious as it
appears to be, primarily for two reasons. First, as illustrated in our experiments, our
algorithm is indeed very robust and performs consistently even when one may not find the
optimal estimates of model parameters. For example, we used a simplified procedure in the
analysis of the simulated dataset by randomly picking one subset for training. Theoretically,
parameters estimated from such a procedure might heavily depend on this particular subset
and might not be necessarily globally optimal. However, the results in Table 5 have shown
that the performance on new testing data is almost the same as the results in the verification
data which has been used to tune the parameters. Furthermore, the training size required by
our algorithm is very small, as illustrated by both the real and the simulated data. Our
algorithm requires the number of hidden states to be known. It suggests that we train our
algorithm for a specific platform. The parameters can then be used for future data to be
generated on the same platform. Our algorithm can be applied in real application that the set
of hidden states for predicted data is a subset of the platform we train. If the predicted data
contains the state we never learnt from training data, the accuracy of our algorithm will be
reduced.

In terms of computation costs, CNV-CRF has two separate portions: time for training and
time for prediction. The training requires intensive computations to optimize the log-
likelihood and to determine the hyper-parameters. In addition, one can also perform k-fold
cross-validations, which will require much more computational time. On the contrary, once
the parameters have been estimated, the prediction phase is rather efficient. Fortunately, the
training phase of our algorithm only requires a small number of samples, which makes the
algorithm still practically useful. For our proposed method, we focus primarily on aCGH
data. More recently, new algorithms have been proposed to identify CNVs from new SNP-
genotyping platforms by integrating information from both SNP probes and CNV probes.18
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Next-generation sequencing is on the horizon, i.e. one can use massively parallel sequencing
technique to identify CNVs with finer resolutions. For our future work, we will investigate
possible extensions and applications of our algorithm on other high-throughput technologies
(such as SNP-genotyping and next-generation sequencing) in detecting copy number
alterations.
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Appendix A. Relationship of CRFs and HMMs
A special case of our linear-chain CRF model defined in Subsec. 3.1 corresponds to a

familiar HMM. For example, let , ωj = log P(Y1 = j), νjk = log P(Yi+1
= k|Yi = j), fj (Yi, Xi(u)) = I{Yi=j}medX̃i, gj (Yi, X̃i(u)) = I{Yi=j}(med X̃i)2 lj (Y1, X̃1(u)) =
I{Y1=j}, hjk(Yi, Yi+1, X̃i,i+1(u)) = I{Yi=j,Yi+1=k}, let med X̃i = Ti, then Model (1) becomes

(3)

where .
Model 3 is equivalent to an HMM with normal emission distribution. In this regard, if
Model 1 is built based on median smoothed data {med X̃i}, the model parameters and feature
functions are selected as above, then Model 1 reduces to Model 3. However, we notice that
in our Model 1, neither the initial function lj (Y1, X̃1(u)) nor the transition function hjk(Yi,
Yi+1, X̃i,i+1(u))} is a simple index function. They depend on the observation X. Moreover, the
parameters θ of Model 1 are with more freedom than that of Model 3. These properties make
our Model 1 more promising.

Appendix B. Outline of the CG Algorithm and Efficient Computation of the
Derivatives of Lθ

The nonlinear CG method only requires the computation of the first derivatives. The outline
is as follows

where θ(0) is the initial value of θ,  is the first derivative function of L. The first order
derivatives of Lθ with respect to {λj}, {μj}, {ωj} and {νjk} are given by
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We have noticed the computational cost of training. The partition function Zθ(X) in the
likelihood and the marginal distributions P (Yi = y|X(d)), P (Yi = y, Yi+1 = y′|X(d)) in the
gradient can be efficiently computed by forward-backward algorithms, both of which have
an O(ns2) complexity, where n is the clone number, s is the hidden state number. However,
each training data will have a different partition function and marginal distributions, so we
need to run forward-backward for each training data for each gradient computation. The cost
for all training is O(ns2DG), where D is the number of training examples, G is the number of
gradient computations required by the optimization procedure.

We define forward variables γi and backward variables ηi as follows

Here,

Combining forward and backward recursions, we see that

Zθ(X(d)) can also be efficiently computed using forward variables .
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We notice that the forward variables γi and backward variables ηi are unstable. They may
suffer from overflow or underflow due to numerous times of exponential product
calculations. Stable modification is to derive recursive relationship of the forward variables
γi and backward variables ηi in the log type. It is easy to show that log γi(y′, d) obeys the
recursive relationship

where y0 = arg maxy log γi−1(y, d). The backward variables ηi(y′, d) has a similar log-type
recursive relationship; we omit it for brevity.

The marginal distributions P (Yi = y|X(d)) and P (Yi = y, Yi+1 = y′|X(d)) can be calculated
using stable log γi and log ηi, for example, P (Yi = y|X(d)) = exp{log γi(y, d) + log ηi(y, d) −
log Zθ(X(d))}, y = 1, …, s; i = 1, …, n, where log Zθ(X(d)) = log γn(y0, d) + log(1 + Σy≠y0
exp[log γn(y, d) − log γn(y0 d)]), y0 = arg maxy log γn(y, d).
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Fig. 1.
Array CGH profile of a Corriel cell line (GM04435). The borders between chromosomes are
indicated by vertical bars.
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Fig. 2.
A linear chain conditional random field model for array CGH data.
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Fig. 3.
Predicted breakpoints by CRF-CNV (bottom) vs. true breakpoints (up) on two cell lines
GM01535 (a) and GM07081 (b).
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Table 1

Notation for key elements in our CRF-CNV model.

n Number of clone

s Number of copy number state

Xi log2 ratio for clone i

Yi Hidden copy number state for clone i

u Dependent length

σ2 Penalization coefficient

aj Mean log2 ratios with copy number state j

λj, μj Emission parameters

fj, gj Emission feature functions

ωj, νjk Transition parameters

lj, hjk Transition feature functions

X̃i(u) Neighbor set of Xi

X̃i,i+1(u) Neighbor set of Xi and Xi+1
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Table 3

Comparison of F measure with different match extent values for three algorithms.

Method \Match extent CRF-CNV CNA-HMMer CBS

0 0.638 0.877 0.333

1 0.914 0.947 0.500

2 0.948 0.947 0.519

3 0.967 0.947 0.519

4 0.967 0.947 0.519
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Table 4

Comparison of number of segments predicted by three different approaches.

Method\Data Group 2 Group 3

Gold 997 8299

CRF-CNV 966 8868

CNA-HMMer 784 6692

CBS 867 7430
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