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The world contains boundaries (e.g., continental edge for terres-
trial taxa) that impose geometric constraints on the distribution of
species ranges. Thus, contrary to traditional thinking, the expected
species richness pattern in absence of ecological or physiographical
factors is unlikely to be uniform. Species richness has been shown
to peak in the middle of a bounded one-dimensional domain, even
in the absence of ecological or physiographical factors. Because
species ranges are not linear, an extension of the approach to two
dimensions is necessary. Here we present a two-dimensional null
model accounting for effects of geometric constraints. We use the
model to examine the effects of continental edge on the distribu-
tion of terrestrial animals in Africa and compare the predictions
with the observed pattern of species richness in birds endemic to
the continent. Latitudinal, longitudinal, and two-dimensional pat-
terns of species richness are predicted well from the modeled null
effects alone. As expected, null effects are of high significance for
wide ranging species only. Our results highlight the conceptual
significance of an until recently neglected constraint from conti-
nental shape alone and support a more cautious analysis of species
richness patterns at this scale.

I t has been recognized for centuries that species are not evenly
distributed on the Earth’s surface (1). The search for patterns

of species richness and their cause has been a central focus for
decades in ecology and biogeography (2–6). A plethora of
hypotheses have been suggested to account for regional patterns
of species richness, including energy-related variables (7, 8),
topographic heterogeneity (9, 10), area (4, 11), and evolutionary
time (12, 13).

The usual analytical approach taken to evaluate geographical
species richness patterns uses absolute species numbers, assum-
ing that in the absence of whatever ecological and evolutionary
mechanisms that led to today’s pattern, species richness would be
even across space. However, recent work suggests that only
under very specific assumptions is this the case. The real world
contains boundaries that influence the geometry of species’
ranges to an extent that can significantly affect the pattern of
species richness (14, 15). When considering the latitudinal
gradient in species richness for a terrestrial taxon, obviously the
northern and southern edge of the great continental landmasses
present hard boundaries to the latitudinal extent of range (16,
17). It has been demonstrated both with analytical null models
(18, 19) and with simulations (14, 20–22) that without the
existence of environmental or other gradients, a mid-domain
peak of species numbers can be expected by chance when ranges
are placed randomly within such a bounded domain. In fact, this
expectation proves true for any set of theoretical or empirical
ranges placed within a bounded domain. Depending on the exact
distribution of the species’ ranges, the models predict a sym-
metrical pattern of parabolic or quasiparabolic form. Recogni-
tion of the role of geometric constraints has also influenced our
perception of what shapes one-dimensional (1-D) patterns along
elevational (23) and bathymetric richness gradients (22).

Considering these new realizations, an inappropriate null
model (of even distribution of species across space) may have
been in place for 150 years (15). To understand and disentangle

the deterministic effects of environmental, ecological, evolu-
tionary, and historical factors on patterns of species richness
across space, it is important to consider and control for con-
founding stochastic effects. However, by using 1-D geometric
null models to enhance the understanding of, for example, the
latitudinal gradient is only the first important step. Firstly, if
interpreted too simplistically the results can be misleading,
because species’ ranges are not purely linear in the real world
(24). Secondly, the usual measure of species richness used in 1-D
studies is ‘‘band sum’’ (i.e., the sum of species whose ranges
extend into a given latitudinal or longitudinal band). Unfortu-
nately, this procedure confounds observed or simulated pattern
with area effects. If the attempt to evaluate the mid-domain
effect of geometric constraints on the geography of species is to
be consistent, expansion of the 1-D geometric null model to a
two-dimensional (2-D) perspective is required (15). Here we
present a general 2-D null model for spatial patterns in species
richness and exemplify the significance of geometric constraints
on a continental scale pattern by applying it to the species
richness of all 1,596 bird species endemic to Africa.

The effects of 2-D geometric constraints can be pictured as
follows: because species tend to have continuous distributions
when viewed at regional scales, their pattern of occurrence
inherently includes positive spatial autocorrelation—that is, a
species is more likely to be present at a place close to one where
it is known to occur than at one distant from that place. In
addition, on an insular continent overlaid by a grid of quadrats,
a quadrat near to a hard boundary (e.g., the continental coast-
line) is on average surrounded by fewer quadrats than one far
away from it. Thus, the likelihood that a quadrat contains part
of a given species’ range that is randomly placed on the continent
is a function not only of the range size, but also of its geographic
position. It tends to increase with average distance from hard
boundaries. Considering the whole species pool this means that,
by chance alone, more species are expected to occur in regions
away from boundaries (e.g., centers of continents). The exact
probability of a quadrat containing one species’ range or the full
species pool is a function of a quadrat’s distance to all boundaries
and the range-size values. Here we use a Monte Carlo simulation
solution for this problem.

The outlined effect on the spatial distribution of a species pool
only applies when the boundary really is a true border for all
species in the analysis. Of course, the argument is not limited to
the land–sea boundary, but could be extended to include re-
gional and local boundary effects, for example, for habitat
specialists. However, an objective, noncircular rationale for the
selection of subgroups is likely to prove difficult. If the goal is to
examine a continental community as a whole, a simple distinc-
tion between regions that are habitable and nonhabitable for the
whole community appears to be justifiable, relevant, and simple.

Abbreviations: 1-D, one-dimensional; 2-D, two-dimensional.
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Methods
In the search for an appropriate null model for species richness
in bounded regions, we accept certain parameters as clearly
given from empirical data: the overall number of species, their
geographic range sizes, and the geographic location of taxon-
wide boundaries.

The ‘‘Area Model.’’ This is our basic model, in which species ranges
are scattered randomly across the continent and constraining
hard boundaries exist. On a gridded plane the edges of the fully
habitable continent delimit a hard boundary, beyond which the
plane is fully uninhabitable (e.g., ocean for terrestrial animals).
Allocation of a species’ range (defined as number of quadrats

Fig. 1. Latitudinal (Left) and longitudinal (Right) gradients in observed and simulated species richness of breeding birds endemic to Africa. (A and B) Observed
and simulated band sums (means from 100 runs, error bars too small for display) using observed 1-D range extents. (C and D) Observed and simulated band sums
(means from 100 runs, error bars too small for display) using observed 2-D range sizes. (E and F) Mean species richness per quadrat (6SE) of observed and 2-D
simulation data (means from 100 runs).
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occupied) by random sampling of quadrats without replacement
is analogous to throwing rice grains onto a bounded checker-
board, whereby all grains end up somewhere on the board. This
model has similarities with the passive sampling hypothesis (25,
26), where the probability of a species’ occurrence is propor-
tional to the area considered.

The ‘‘Geometric Constraints Model.’’ In this model we introduce
range continuity as an assumption. Several different techniques
for describing and simulating species distributions have been
used for detecting species associations (27). Here we apply a very
simple process of range allocation, akin to dropping a certain
volume of dye onto a bounded shape, which then spreads within
the bounded surface. For each species with a predetermined
range size, a ‘‘starting’’ quadrat is chosen randomly among all
habitable quadrats. A species’ range is then produced by re-
peated ‘‘expansion’’ in steps of one quadrat added per time in
random direction from a randomly chosen edge of all already
occupied quadrats until the final range size is reached. Quadrats
qualifying for ‘‘expansion’’ must be adjacent in horizontal or
vertical (i.e., cardinal) direction, not yet occupied by the species,
and habitable. This process is repeated for all species. It is similar
to a flow of liquid through an unstructured bounded lattice
according to a nearest neighbor rule, which results in maximum
spatial contagion of ranges. We believe that this range expansion
algorithm is the most parsimonious one with a process that is
stripped of any underlying ecological and physiographical factors

except hard boundaries. When actual geographic ranges of
species are mapped onto a coarse-resolution grid on regional and
continental scale, cells indicating presence tend to show a
clumped distribution and are usually connected (28). We calcu-
late species richness by summing the number of overlapping
ranges in each quadrat.

Empirical Data. We use species richness data on African breeding
birds to compare the model outcomes with real-world patterns.
African birds are suitable for this test, because of their large
geographic ranges, well known large-scale distribution, and the
well defined biogeographical boundaries of the African land-
mass. We used the distribution data of all 1,905 African breeding
birds compiled by the Zoological Museum, University of Copen-
hagen on a 1° longitude–latitude grid with 2,605 quadrats
(quadrats containing less than 50% dry land had been excluded).
Quadrat size varies slightly with latitude, ranging from 10,190
km2 to 12,364 km2. Maps were compiled from standard reference
works and dozens of other published references (including
recent atlases and unpublished research) and, for difficult re-
gions and taxa, experts’ opinions were sought (the full list of
sources is available at http:yywww.zmuc.dkycommonweby
researchybiodata.htm; for mapping methodology see refs. 29 and
30). The distribution of 1,596 of these species is confined to the
African, almost exclusively sub-Saharan mainland.

Empirical Richness Patterns. We derived a map of empirical species
richness by calculating the sum of species at any one quadrat.

Fig. 2. Simulated and observed species richness patterns of all 1,596 breeding birds endemic to Africa. (A) Means of 100 runs of the area model: randomly
scattered ranges for 1,596 species with range sizes drawn from observed data; values range from 209 (light) to 217 (dark) species. (B) Means of 100 runs of the
geometric constraints model: continuous ranges with range sizes drawn from observed data; values range from 60 (light) to 312 (dark) species. (C) Observed data;
values range from 3 (light) to 546 (dark) species. All values are shown in quantile classification.

Table 1. 1-D and 2-D fits of null model predictions on observed species richness of breeding birds endemic to Africa

Perspective n

1-D model 2-D GC model used as 1-D

2-D models used as 2-D

A GC

r2 ta 5 0 tb 5 1 r2 ta 5 0 tb 5 1 r2 ta 5 0 tb 5 1 r2 ta 5 0 tb1

1-D band sum
Latitude 55 0.66 0.84 21.59 0.66 24.17 3.88 0.26 20.97 21.71 0.44 2.46 20.86
Longitude 68 0.61 0.38 21.59 0.62 24.14 3.62 0.92 213.53 4.71 0.88 8.22 1.00

1-D band mean
Latitude 55 — — — — — — 0.01 0.87 20.87 0.63 21.05 1.60
Longitude 68 — — — — — — 0.02 1.30 21.30 0.57 1.69 21.50

2-D 1,742 — — — — — — 0.00 2.50 22.61 0.21 3.83 26.19

Different perspectives, measures, and models. 1-D model refers to the one-dimensional Monte Carlo model that uses observed range extents (15); GC and A
refer to the geometric constraints and area model, respectively. n is the number of observations for each test; ta 5 0 is the t test statistic that indicates the deviation
of intercept a from zero for the regression of observed versus predicted data (a measure of fit in magnitude); tb 5 1 indicates the deviation of slope b of the
regression from unity (a measure of fit in shape). t values in italics indicate a rejection of the tested hypothesis at the P 5 0.05 level (two-tailed). Note that in
this test as few as ten truly independent observations are sufficient to reject the null hypothesis for any t . 2.3 and not even over 10,000 observations can reject
it for any t , 1.96.
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Acknowledging the significant change in habitat and barrier that
the Sahara constitutes for birds, we drew a line along the
southern edge of the World Wildlife Fund ecoregions ‘‘South
Saharan Steppe’’ and ‘‘Woodland and North Saharan Steppe and
Woodland’’ (31) and defined this as the northern boundary of
the focal region for analysis. Just four of the 1,596 species
endemic to Africa extend (only marginally) into regions north of
this boundary. All other boundaries were simply defined by the
edges of continental Africa. This led to a map of sub-Saharan
Africa with 1,742 1° quadrats with 372,792 positive quadrat
records of 1,596 species. On a quadrat-by-quadrat basis, the
species richness of these endemic birds is highly correlated with
overall breeding bird species richness (r2 5 0.984, n 5 1,742).

Modeled Richness Patterns. We modeled the patterns of species
richness in this region expected from our ‘‘area model’’ and
‘‘geometric constraints model’’ by using the observed number of
species and the statistical distribution of geographic range sizes
as given parameters. Means of 100 runs were used for analysis.
For both observed and modeled data latitudinal and longitudinal
gradients of species richness were calculated as band sums (sum
of species whose ranges extend into a band of 1° width) and band
means (mean number of species per quadrat in a given latitudinal
or longitudinal band). The program GEOSPOD, developed for this
analysis, can be downloaded from http:yyevolve.zoo.ox.ac.uky
softwarey.

Statistics. Biogeographical data, such as geographical ranges, are
spatially autocorrelated, which reduces P values by overestimat-
ing degrees of freedom. Acknowledging this problem, no actual
levels of significance are presented.

Results and Discussion
Traditionally, species richness data on this scale have been
examined from a 1-D perspective, in particular in the form of

band sums, usually with reference to latitude. Fig. 1 A and B
(open circles) present the observed species richness patterns in
Africa by using a traditional band sum perspective. Species
richness of latitudinal bands increases steeply from the Sahara to
the equator and then decreases gradually toward the south (Fig.
1A). Examined from west to east, species numbers show a
plateau in Western Africa, then reach much higher numbers in
the central longitudes, and decrease steeply in the eastern parts
toward the edge (Fig. 1B).

We compare the observed pattern with the predictions of the
1-D null model proposed by Colwell & Hurtt (14), which
randomizes the empirical latitudinal and longitudinal range
extents and predicts an approximately parabolic pattern. To
directly compare this 1-D model with our 2-D geometric con-
straints model we retrieved for all species the longitudinal and
latitudinal range extents from the distribution database. With
these extents as observed range sizes, we run both models for a
‘‘condensed African continent’’ of observed length, but with just
one quadrat width along the focal domain. The results of the 1-D
version of our 2-D model exhibit a less marked peak and less
steep drop-off in species sums toward the edges (triangles in Fig.
1 A and B) than the 1-D model (squares in Fig. 1 A and B). This
inconsistency is due to the fact that the algorithm of the 2-D
geometric constraints model allows ranges to ‘‘build’’ toward or
away from the edges by permitting the initial midpoint to move.
In contrast, the 1-D model discards any range midpoint that, with
the given range size, would extend beyond the boundary and
chooses a new midpoint until the range is fully contained in the
domain. Therefore, in the 1-D model more species accumulate
in the middle and fewer near the edges. Both models show
reasonably good agreement with the observed patterns of band
sums (Table 1).

When the actual 2-D range sizes are used for simulation and
the traditional band sum perspective is taken, both the 2-D

Fig. 3. Species richness of breeding birds endemic to Africa for species with large (.100 quadrats, 840 species, A) and small (#100 quadrats, 756 species, B) range
size. Quantile classification. Values range from 2 (light) to 440 (dark) in A and from 0 (light) to 120 (dark) in B.

Table 2. 1-D and 2-D fits of geometric constraints model predictions for different categories

Perspective n

Passerines (1,064) Nonpasserines (532)

Range size

#100 (756) .100 (840)

r2 ta 5 0 tb 5 1 r2 ta 5 0 tb 5 1 r2 ta 5 0 tb 5 1 r2 ta 5 0 tb1

1-D band mean
Latitude 55 0.58 21.94 2.48 0.65 0.12 0.23 0.05 3.28 23.03 0.68 21.35 1.84
Longitude 68 0.60 0.01 20.08 0.49 3.66 23.25 0.00 1.71 21.71 0.60 1.86 21.71

2-D 1,742 0.18 2.32 22.91 0.22 11.43 211.90 0.02 12.57 212.59 0.26 6.53 26.69

Regression results from the geometric constraints model for different categories. Numbers in parentheses refer to numbers of species in the category. n is the
number of observations for each test; ta 5 0 is the t test statistic that indicates the deviation of intercept a from zero for the regression of observed versus predicted
data (a measure of fit in magnitude); tb 5 1 indicates the deviation of slope b of the regression from unity (a measure of fit in shape). t values in italics indicate
a rejection of the tested hypothesis at the P 5 0.05 level (two-tailed). Note that in this test as few as ten truly independent observations are sufficient to reject
the null hypothesis for any t . 2.3 and not even over 10,000 observations can reject it for any t , 1.96.
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geometric constraints model and area model (a model ac-
counting for the effects of area per se, but ignoring the effects
of geometric constraints) partly show a good fit with the
observed pattern along the latitudinal and longitudinal gradi-
ent (Fig. 1 C and D). The species richness predictions from the
area model are consistently higher and the predictions from
the geometric constraints model (assuming continuous ranges)
are consistently lower than the observed species richness,
forming an envelope about the observed values. Both 1-D and
2-D simulations of these two models show a much better fit
along the longitudinal than the latitudinal gradient. For lati-
tude they both predict highest species richness between 15° and
5° north, whereas the observed richness peaks around the
equator.

Because band sums do not control for area effects, the
appropriate 1-D measure to use is band means (average number
of species per quadrat within each band). Band means of species
richness are smaller in magnitude and in pattern in some places
different to band sums (Fig. 1 E and F). The results of the
geometric constraints model fit both magnitude and shape of the
latitudinal and longitudinal pattern very well. This model closely
mimics the relatively steep increase from north to south and
decrease in species richness from east to west. Unsurprisingly,
the band means of the area model predictions are constant and
show no correlation with the real data (29).

A look at the 2-D pattern (Fig. 2) reveals that the species
richness predictions under the geometric constraints model are
highest in the central AfricayCongo region, with a gradual
decrease toward the continental edges. This is somewhat in
contrast with the observed centers of highest species richness,
which are in the Albertine Rift and Eastern Arc Mountains of
East Africa and the Cameroon highlands. However, large parts
of West and Southern Africa come out as particularly species-
poor in both simulated and observed data and the model fit is
good overall. A split of the data into passerine (1,064 species)
and nonpasserine (532 species) birds reveals that species richness
in both groups is similarly well predicted by the null model
(Table 2).

We note that, although band sum is the measure most
commonly used in species richness gradient analyses and null
model simulations, it can give a misleading picture when applied
to real-world continents and regions. Unless the geographic
extent of the other dimension is constant along the domain,
mid-domain or other peaks can occur simply because of variation
in the width of that domain (32). The importance of area in
shaping species richness patterns has long been recognized, and
its impact on shaping species richness patterns has recently
received new attention (21, 33). In the band-sum perspective, the
effect of area alone, as demonstrated with our model using
randomly scattered ranges, can account for much of the pattern
of observed richness, while matching very poorly the actual 2-D
pattern. This commands caution toward purely 1-D analyses or
null model simulations using band sums, unless the effect of
width of the other dimension is modeled explicitly (19).

One-dimensional analyses may oversimplify the issue of
which mechanisms determine species richness, because bio-
logical processes act in at least two dimensions. An extension
of the null-model analysis to two dimensions is thus needed
and reveals that although the predictive power of geometric
constraints is still indisputably strong, it is weaker than in the
1-D view of the same pattern. This may ref lect that ecological
and physiographical factors manifest themselves more in 2-D
than simply in latitude and longitude. Our results suggest that
a null model accounting for geometric constraints on species
distribution cannot serve as a sole general explanation for the
spatial variation in species richness. However, this is not what
a null model sets out to do (34, 35). The aim of our study was
to enhance the principles of geometric constraints from one to
two dimensions by formulating an appropriate model, and to
visualize its significant consequences with reference to real-
world, large-scale geographic boundaries and observed
patterns.

Will geometric constraints help us to understand the distri-
bution of birds of conservation concern? Most often, threat of
extinction coincides with small range size (36), which itself
affects the impact of geometric constraints. Under a random
placement of range origins (geometric constraints model),
small-ranging species are less likely to experience hard bound-
aries than wide-ranging species—the impact of boundaries on
their species richness pattern should be smaller. When restrict-
ing simulation and analysis to species with ranges up to 100 1°
quadrats (756 species), the expected pattern from geometric
constraints alone is almost uniform with a drop toward the
edges. Thus, null-model predictions here do not offer new
insights. Small-ranging species are in fact distributed markedly
nonuniformly, with over 100 species in the Eastern Arc,
Albertine Rift, and Cameroon mountain regions (Fig. 3B), and
the null-model fit is close to zero in both 1-D domains and both
perspectives. It is species with large ranges for which the
continental geometry has highest impact (19); they are very
likely to also occupy the center of the bounded area, which
therefore hosts more species. The map for the 840 species with
ranges above 100 quadrats (Fig. 3A) clearly confirms this
notion, because the model fits are very good. Certainly, for
wide-ranging species, and more generally all assemblies in-
cluding them, large-scale species richness patterns are affected
by boundaries and their effect can be modeled. However, the
challenge of explaining the variation above and beyond null-
model expectations remains.
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