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Abstract
Introduction: An automated system for differential white blood cell (WBC) counting 
based on morphology can make manual differential leukocyte counts faster and less 
tedious for pathologists and laboratory professionals. We present an automated system 
for isolation and classification of  WBCs in manually prepared, Wright stained, peripheral 
blood smears from whole slide images (WSI). Methods: A simple, classification scheme 
using color information and morphology is proposed. The performance of the algorithm 
was evaluated by comparing our proposed method with a hematopathologist’s visual 
classification. The isolation algorithm was applied to 1938 subimages of WBCs, 1804 of them 
were accurately isolated. Then, as the first step of a two-step classification process, WBCs 
were broadly classified into cells with segmented nuclei and cells with nonsegmented 
nuclei. The nucleus shape is one of the key factors in deciding how to classify WBCs. 
Ambiguities associated with connected nuclear lobes are resolved by detecting maximum 
curvature points and partitioning them using geometric rules. The second step is to define 
a set of features using the information from the cytoplasm and nuclear regions to classify 
WBCs using linear discriminant analysis. This two-step classification approach stratifies 
normal WBC types accurately from a whole slide image. Results: System evaluation is 
performed using a 10-fold cross-validation technique. Confusion matrix of the classifier is 
presented to evaluate the accuracy for each type of WBC detection. Experiments show 
that the two-step classification implemented achieves a 93.9% overall accuracy in the five 
subtype classification. Conclusion: Our methodology achieves a semiautomated system 
for the detection and classification of normal WBCs from scanned WSI. Further studies 
will be focused on detecting and segmenting abnormal WBCs, comparison of 20× and 
40× data, and expanding the applications for bone marrow aspirates.
Key words: Automated white blood cell classification, color channels, linear discriminant 
analysis, morphology
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INTRODUCTION

The principal types of cells present in the blood are red 

blood cells (RBC), WBCs, and platelets. The percentage 
of WBC subtypes observed in human blood normally 
ranges between the following values: neutrophils 50-



J Pathol Inform 2012, 3:13 http://www.jpathinformatics.org/content/3/1/13

70%, eosinophils 1-5%, basophils 0-1%, monocytes 2-10%, 
lymphocytes 20-45%. Their specific proportions can help 
determine the presence of various pathologic conditions.[1]

The observation of whole blood smears under a 
microscope provides important qualitative and 
quantitative information regarding the diagnosis of 
various diseases including leukemia. Figure 1 shows 
examples of the main subtypes of normal WBCs. WBC 
identification and classification into these subtypes is 
frequently manually performed by experienced technicians 
or pathologists and involves two main elements. The first 
is the qualitative study of the morphology of the WBCs 
which gives information about the adequacy of the smear 
among other parameters including morphologic features 
of the cells. The second is quantitative and it consists 
of differential counting of at least 100 WBCs. Figure 2 
shows the distribution of WBC subtypes. The accuracy 
of cell classification and counting is markedly affected by 
individual operator’s abilities and experience. In addition, 
the identification and differential count of blood cells is 
a time-consuming, repetitive task. Substituting automatic 
detection of WBCs for the manual process of locating, 
identifying, and counting different classes of cells is an 
important challenge in the domain of clinical diagnostic 
laboratories. 

While other technologies such as automated blood 
analyzers can perform a rapid and inexpensive five part 
differential, there is no morphologic correlate with these 
methods which is frequently an important factor in 
diagnosis. Even samples which have normal differential 
counts may have morphologic clues to underlying 
conditions such as myelodysplasia, infection, or B12 or 
folate deficiency. Our proposed method is best viewed 
as a complement to the traditional laboratory analysis 
(such as a CBC) rather than a replacement. Other 
technologies such as flow cytometry can also perform 
accurate differential cell counts, but the cost using 
this technology for a differential count far outweighs 
the benefit unless phenotypic analysis is also needed. 
Amnis Image Stream offers a rather unique technology 
which merges flow cytometery and imaging technologies. 
However, in addition to the costs associated with standard 
flow cytometry it is also uncertain how cellular and 
subcellular details in this setting which uses fluorescent 
antibody labeled cells would compare to those of Wright 
staining. Cellavision is probably the most comparable 
technology for performing differential counts based on 
morphology. Cellavision can perform differential counts 
on glass slides of blood and body fluids. However, our 
technique is the first known implementation of these 
techniques on whole slide images. The advantages 
of using whole slide imaging for this study include 
leveraging existing hardware, enhancing the software 
to facilitate development of other applications, and 
annotating the WSI so that the cells may be classified 

and identified in the context of the original image. Our 
proposed method has been applied successfully to a large 
dataset and achieves good classification accuracy for all 
of the WBC subtypes considered. The software is in the 
development stage and our initial data only evaluated 
normal WBCs from manually selected regions of the 
WSI. Further development may include classification of 
abnormal cells and additional automation. Our method 
has been implemented using MATLAB 2009a, a high 
level technical computing language on a system with 
Intel Dual-Core T4200 Processor, 2GHz, 4GB RAM. 
The functions from the Image Processing Toolbox 
and Statistics Toolbox have been used to develop our 
algorithm. The source code for the algorithm is available 
here. (http://www.sci.utah.edu/~tolga/Programs.zip).

Background 
WBC Segmentation 
Image segmentation is a critical step in many image 
analysis problems. The segmentation step is crucial 
because the accuracy of the subsequent feature extraction 
and classification step depends on correct segmentation of 
WBCs. It is also a difficult and challenging problem due 
to the complex appearance of these cells, uncertainty and 
inconsistencies in the microscopic image with variations 
in illumination. Improvement of cell segmentation has 
been a common direction in many research efforts. Many 
automatic segmentation methods have been proposed, 
most of them based on local image information such as 
histogram of regions, pixel intensity, discontinuity, and 

Figure 1: Examples of WBC subtypes

Figure 2: Distribution of WBC subtypes
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clustering techniques.

Many of the segmentation algorithms introduced are 
based on the edge information present in images. We 
discuss several of these approaches next. As proposed by 
Ongun,[2] WBCs were segmented using active contour 
models (snakes and balloons)[3] which were initialized 
using morphological operators. This method works 
well only if the WBCs have dark cytoplasm and are 
distinctly separate from adjacent RBCs. Kumar defined 
a new edge operator, the teager energy operator, to 
highlight the nucleus boundary which is very effective for 
segmenting the nuclei in cell images.[4] They also used a 
simple morphological method to segment the cytoplasm 
from the background and the RBCs. The cytoplasm 
segmentation works well when the RBCs and WBCs are 
not close to each other. In contrast, our method works 
well even with a complicated background. Jiang and 
colleagues,[5] introduced a novel WBC segmentation 
scheme by combining scale-space filtering and watershed 
clustering. Scale space filtering is used to obtain the 
nucleus from the subimage. Watershed clustering in 3-D 
HSV (Hue, saturation, value) histogram is processed to 
extract the cytoplasm. This method may not be sufficient 
in the case of high density of cells, where the RBCs are 
clustered close to the WBCs.[6] To overcome the difficulty 
associated with the high density of cells, Dorini[6] 
introduced the use of some simple morphological 
operators and explored the scale-space properties of a 
toggle operator to improve the segmentation accuracy 
in the WBCs. To avoid leaking, a common problem in 
cell images due to the low contrast between nucleus, 
cytoplasm and background, they used a scale-space toggle 
operator for contour regularization. In this method, 
cytoplasm segmentation presents a few limitations: The 
RBCs touching the WBC are also detected as part of the 
cytoplasm. In our method, we eliminate the RBCs before 
detecting the WBCs.

The above-mentioned algorithms are based on edge 
information. Edge detection methods do not work 
very well when not all cell details are sharp. But 
these methods work well if the contrast between the 
background and the gray internal membrane of the cell 
is stretched using a contrast stretching filter as stated 
by Piuri and Scotti.[7] However, the problem of touching 
RBCs and WBCs remain unresolved. Sadeghian’s 
method[8] used Zack’s simple thresholding method[9] 
for cytoplasm segmentation, which is based on the fact 
that the color intensity of RBC in a blood image is quite 
different from that of cytoplasm. Nuclear segmentation 
was performed using a GVF (gradient vector flow) 
snake. A few approaches that were introduced recently 
dealt only with the segmentation of the nucleus of the 
WBC. For instance, Hamghalam and Ayatollahi[10] used 
histogram analysis and measurement of distance among 
nuclei. The thresholding point was chosen based on the 

histogram analysis. Nuclei whose distances are less than 
the diameter of the WBC were merged. Rezatofighi 
introduced a novel method based on orthogonality theory 
and Gram-Schmidt process for segmenting the WBC 
nuclei.[11] To apply Gram-Schmidt orthogonalization 
for the segmentation of nucleus of WBC, a 3D feature 
vector was defined for each pixel using the RGB 
components of the images. Then, according to the Gram-
Schmidt method, a weighting vector w was calculated 
for amplifying the desired color vectors and weakening 
the undesired color vectors. They chose the threshold 
appropriately based on the histogram information. In 
these two approaches, cytoplasm segmentation was 
not addressed. We address cytoplasm segmentation 
in addition to nuclei segmentation. The successful 
segmentation of the cytoplasm along with the nucleus 
segmentation aids in the automatic classification of the 
WBCs.

WBC Classification
WBCs are classified according to the characteristics of 
their cytoplasm and nucleus. Pathologists traditionally 
report normal WBCs as classified into five classes, i.e., 
monocytes, lymphocytes, neutrophils, eosinophils, and 
basophils. Since the chosen features affect the classifier 
performance, deciding which features must be used in 
a specific data classification problem is as important as 
the classifier itself. Hematology experts examine the cell 
shape, size, color, and texture in combination with the 
nuclear features. It is important to reflect the rules and 
heuristics used by the hematology experts in selection of 
the features. Several researchers have previously proposed 
features to differentiate WBCs.

As proposed by Ongun,[2] several types of features such 
as intensity- and color-based features, texture-based 
features, and shape-based features are utilized for a robust 
representation of WBCs. Classification methods used in 
this work include k-Nearest Neighbors, Learning Vector 
Quantization, MultiLayer Perceptron, and Support Vector 
Machine. Scotti and Piuri[7] evaluated the binary images 
of the cytoplasm and nucleus to characterize the feature 
set. The standard set of features like area, perimeter, 
convex areas, solidity, major axis length, orientation, 
filled area, eccentricity were separately evaluated for the 
nucleus and the cytoplasm. In addition features like the 
ratio between the nucleus and the cell areas, the nuclear 
“rectangularity” (ratio between the perimeter of the 
tightest bounding rectangle and the nuclear perimeter), 
the cell “circularity” (ratio between the perimeter of the 
tightest bounding circle and the cell perimeter), number 
of lobes in nucleus, area, and mean gray-level intensity 
of the cytoplasm were computed. Their system was 
evaluated using 10-fold cross-validation. The performance 
was compared using different classifiers like nearest 
neighbor classifiers, feed-forward neural network, radial 
basis function neural network, parallel classifier built with 
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feed-forward neural network. In our method, we suggest 
a preliminary classification of the WBC based on the 
number of lobes (single or multi-lobed) in the nucleus 
along with the feature set to achieve better classification 
rate for each of the WBC subtypes.

Our approach aims at achieving a method to identify 
WBCs from manually prepared, Wright-stained WSI. 
The manually prepared Wright-stained peripheral smear 
is easily and routinely performed at low cost. A manual 
differential count is routinely performed in many 
laboratories when a standard CBC has an abnormal value 
or when requested by a clinician. The manual differential 
is performed by a lab technician or a hematopathologist. 
The personnel time associated with performing a 100 cell 
count can range from 1-2 minutes per slide. However, 
considering the volume of peripheral smears reviewed 
in a day, the time dedicated to cell counting can be 
considerable. In addition, the technologist time per slide 
can be considerably greater when the white cell count 
is very low. By utilizing our existing whole slide imaging 
technology, we sought to investigate the feasibility of 
automating the identification of WBCs from digital 
images. This is a preliminary investigation in which we 
sought to determine if these techniques were flexible 
enough to use without performing additional stains or 
cell preparations, adding additional steps, or interrupting 
the current procedures or workflow. We propose a simple 
segmentation scheme based on the difference in color 
channels and morphological operations to segment the 
WBCs. The algorithm has low computational cost but 
good accuracy. Two-step classification with the aid of a 
comprehensive feature set is helpful in realizing better 
accuracy rates in the classification of WBCs. In this 
initial work, our slide data was aggregated and analyzed 
as a group. We validate our approach on 320 images 
with 1938 cells. For comparison we implemented the 
segmentation algorithm proposed by Dorini[6] and the 
features selected for classification were based on the 
features implemented by Scotti and Piuri.[7]

METHOD 

Slide Preparation and Scanning
An Aperio CS scanner (Aperio Technologies, Vista, 
CA) outfitted with an Olympus UPlanSApo 20×, 0.75 
Numerical Aperture Objective Lens and Basler L301kc 
trilinear-array CCD line scan camera was used to create 
the whole slide images. Ten sequential, Wright-stained 
peripheral blood slides submitted for hematopathologist 
review were scanned at 20×. Slides were prepared 
manually according to the lab protocol and our current 
workflow. A drop of blood was pulled between two slides 
at roughly 45 angle to create a blood film slide which was 
allowed to air dry. Slides were briefly fixed in methanol 
prior to staining with Harelco Wright’s stain. Slides 

were then cover slipped prior to scanning at 20×. The 
use 20× vs. 40× is frequently an issue of discussion in 
digital pathology. While 20× provides faster scan times 
and smaller files, the image quality is better with a 40× 
scan. We chose 20× as a starting point to demonstrate 
proof of concept with a secondary goal of comparing 
the performance of the algorithms on 40×. Scan times 
ranged from 5-10 minutes per slide. Whole slide imaging 
captured a technician selected area of the blood film 
(ranging from 17 mm - 22 mm in height by 15 mm - 
25 mm in length) using automated focus. Images were 
compressed at a quality setting of 70% during the capture 
process with resulting file sizes averaging between 20 and 
60 megabytes. 

Detection and Segmentation of  White Blood Cells 
from Peripheral Blood Smear
WBC counting is performed by pathologists only in 
thin areas of the blood smear. Similarly, we manually 
selected optimal regions adjacent to feathered edge and 
stored the images corresponding to the thin sections of 
the blood smear. While regions were manually selected 
in this preliminary study, additional work is being done 
to automate this process. Each of these images has 2-15 
WBCs.

For easy identification of the WBCs, the whole blood 
slides are stained with Wright’s stain, which produces 
a dark intensity in nuclei of WBCs. We convert the 
images from RGB (red, green, blue) to HSV (hue, 
saturation, value) space. First, using the saturation image, 
we threshold it to approximately identify the nuclei. 
A threshold value of 0.55 is used in our experiment 
(saturation range = 0-1). We eliminate extremely small 
regions based on their area. The advantage of using 
the saturation image for thresholding is to eliminate 
variations in illumination that occur. Finally, we crop 
the part around the nucleus making sure that the whole 
WBC is captured. If the distance between two nuclei is 
less than 5.52 µm, then they belong to the same WBC. 
The advantage of using only the cropped image is that 
the regions containing mostly RBCs (which lack nuclei) 
are eliminated. We process all the images and record the 
detected WBCs. The advantage of this method is that 
we do not have any false negatives in the detection of 
the WBCs. We do capture some redundant cells (false 
positives) which have been stained, but we eliminate 
them in further processing by manually assigning them 
to a noise class. Figure 3 depicts the flowchart for WBC 
detection.

We have implemented a novel, simple, and robust 
segmentation scheme for segmenting WBCs. Information 
is present in all color channels of the images. RBCs are 
mostly pink/red in color and the WBCs have a dark 
stained nucleus. We take advantage of the information 
present in the blue and red channels. The intensity range 
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of images is 0–255. First we threshold (threshold value 
= 0.9 *255) the given subimage based on intensity and 
eliminate small regions to obtain a binary image. This 
eliminates the background pixels, leaving only the RBCs 
and the WBC. Thresholding and smoothing the difference 
in the red and blue channels helps in identifying the 
RBCs (threshold value = 0.1 *255). Subtracting the 
RBCs and the background from the original image results 
mostly in an image of WBCs. Hence, we are left with 
WBCs which may have small parts of RBCs attached 
to them. We fill in details lost due to our thresholding 
operation using a standard hole filling algorithm. Using 
a disk-shaped structuring element we get rid of the thin 
parts (morphological opening) of the RBCs which are 
attached to the WBC. This procedure helps in detecting 
the boundary of the WBC. Once the WBC boundary has 
been extracted we concentrate on separating the WBC 
region into cytoplasm and nucleus. We use the saturation 
image again to threshold the detected WBC. This 
thresholding (threshold value = 0.55) operation yields 
a binary image of the nucleus. By taking the difference 
between the WBC image and the nucleus image we get 

the cytoplasm region. Hence this simple, extremely fast 
method can be used to segment the blood image to get 
the desired results. Figure 4 depicts the flowchart for 
the WBC segmentation. Figure 5 shows examples of the 
segmented WBC.

Segmented vs . Nonsegmented Nucleus 
Classification
WBCs can be broadly classified into cells with segmented 
nuclei and cells with nonsegmented nuclei as shown in 
Figure 6. The nucleus shape is the key factor in deciding 
the class to which the WBC belongs. We have found 
that deciding whether the nucleus is segmented or 
nonsegmented first gives a significant advantage to the 
final classification process. Ambiguities associated with 
connected nuclear lobes are resolved by detecting local 
maximum curvature points, detecting concavities, and 
partitioning them through geometric rules. The flowchart 
in Figure 7 gives the steps for the classification of WBC 
into segmented and nonsegmented WBCs. Figure 8 gives 
a visual interpretation of the goals of each step. Figure 
8a shows a white blood cell image. Figure 8b shows the 
boundary of the nucleus superimposed on the white 
blood cell. The process of classification of the WBC into 
these two broad classes can be described in the following 
steps:

Detection of maximum curvature points: The goal of this 
step is to identify local curvature maxima corresponding 

Original color image

RBG to JSV conversion

Threshold saturation image, eliminate small regions

Crop WBC based on nucleus

Cropped WBC

Threshold intensity image, eliminate small regions

Threshold (Red-Blue) image

Y=Origina - RBC - background

Y=Fill Holes in Y

Morphological opening of Y

Boundary detection of the WBC

Threshold detected WBC

Nucleus image

WBC-Nucleus=Cytoplasm

Figure 3: Flowchart for WBC detection

Figure 4: Flowchart for WBC segmentation

Figure 6: Examples of WBC with (a) segmented and (b) 
nonsegmented nucleusFigure 5: Segmented WBC

a b
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to sharp bends (corners). We utilize global and local 
curvature properties in extracting the maximum 
curvature points. After contour extraction we compute 
the curvature using Equation  and retain the local 
curvature maxima points.[12,13]
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where x(s) and y(s) represent the x-coordinates and 
y-coordinates of the boundary points respectively. x’ and 
y’ represent the first derivatives with respect to s. x’’ and 
y’’ represent the second derivatives with respect to s.

Elimination of low curvature maxima is done by 
calculating an adaptive threshold according to the mean 
curvature within a region of interest.[12] The region of 
interest (ROI) of a maximum curvature point is defined 

as the segment of the contour between the two nearest 
curvature minima points surrounding it denoted by L1 
and L2. The ROI of each maximum curvature point is 
used to calculate a local threshold adaptively where P 
is the position of the maximum curvature point on the 
contour, and R is a coefficient:
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where k  is the mean curvature of the ROI and i is the 
index of the point on the nucleus boundary. The absolute 
value of the curvature is used to distinguish between low 
curvature maxima points against high curvature maxima 
points. A round corner (low curvature maxima) tends to 
have absolute curvature smaller than T(p), while a sharp 
corner (high curvature maxima) tends to have an absolute 
curvature larger than T(p). The reasoning for choosing an 
appropriate value of R can be found in reference 12. A value 
of 1.5 is used for R in our experiment. Figure 8c shows high 
curvature maxima detected from a contour.

Delaunay triangulation of points of maximum curvature: 
The goal of this step is to construct the set of all 
potential edges that might correspond to the boundaries 
between the different lobes of a segmented nucleus. 
The high curvature maxima found in the previous step 
are used as the candidate vertices for these edges. A 
triangle S from T satisfies the Delaunay criterion if the 
interior of the circumcircle through the vertices of S 
does not contain any points. If all triangles satisfy the 
Delaunay criterion, then the triangulation T is called 
Delaunay triangulation.[14] We apply the Delaunay 
triangulation (DT) to all points of maximum curvature 

Start

Input nucleus image

Detect points of maximum curvature

Delaunay triangulation of points of maximum curvature

Rules to retain necessary edges

Classify into segmented or nonsegmented nucleus

Stop

a

e

b

f

c

g

d

h
Figure 8: Steps representing segmented vs. nonsegmented nucleus classification, (a)  White blood cell image; (b) Nucleus boundary 
superimposed on the white blood cell image; (c) Maximum curvature points; (d) Triangulation of maximum curvature points; (e) Removal 
of background edges; (f) Retaining edges if the tangents are in opposite directions; (g) Retaining edges if the edge vector and tangent vector 
are perpendicular; (h) Retains edges if the end points have curvatures in the same direction

Figure 7: Step 1 of classification
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to find candidate edges which potentially separate 
different segments of the nuclei.[15] The results for an 
example contour are shown in Figure 8d.

Rules to Retain Necessary Edges
Shape and Color-Based Rules
A set of conditions based on observations are first 
checked to see if a WBC has segmented nuclei.

We eliminate all edges if the nucleus has a roundness ratio 
>λ1 and classify the cell as nonsegmented nucleus type. 
The roundness ratio is calculated as the ratio of the area 
and the square of the perimeter of the contour as shown in 
Equation (3).[16] A circle has the value “1” and for structures 
with increasing irregularity, the value tends to “0.”

Eliminate all edges if the ratio of the original area of 
nucleus to the convex hull of nucleus >λ1 and classify 
the cell as of nonsegmented nucleus type. A set A is said 
to be convex if the straight line segment joining any two 
points in A lies entirely within A. The convex hull H of an 
arbitrary set >λ is the smallest convex set containing S.[17]

Find the ratio of the area of the red/pink regions to the 
area of the entire of WBC. The red/pink regions are found 
by taking the difference between the red and blue image 
(red - blue) and thresholding it to obtain a binary image. 
If the ratio is >λ3, then the nucleus is classified directly 
without further processing as a segmented nucleus.

We use λ1= 0.75, λ2=0.85, λ3=0.3.

If there are two or more nuclei present in one cell, the 
nucleus is directly classified as a segmented nucleus;

2

AreaRoundness factor 4* *
Perimeter

p= (3)

Geometric Rules

If the above reasons are not satisfied, a series of geometric 
rules helps us in separating the cells with segmented 
nucleus from the cells with nonsegmented nucleus. 
Let Sij be the edge connecting two points of maximum 
curvature maxima pi and pj. Ti and Tj are the unit vectors 
representing the tangent directions at pi and Sij. The 

following set of rules is used:

We need to retain edges that are inside the nucleus only. 
Hence, we eliminate edges that pass through the background 
and edges that intersect the boundary [Figure 8e].

For a valid edge separating two lobes, the tangent vectors 
at the endpoints are in opposite directions. We use the 
dot product of the tangents to check this condition. 

The edge Sij is eliminated if Ti  Tj Ti > Th1; observe 
here that the dot product of these two tangents will be 
negative always if these tangents are oppositely directed 
[Figure 8f].

The tangents need to be orthogonal to the edge vector.[15]

We eliminate edges if max  · ,  · 
| | | |

æ ö
ç ÷
ç ÷
è ø

ij ji
i j

ij ji

s s
T T

s s  > Th2. If the

edges and the tangents are orthogonal, the dot product 
of vectors along these vectors will be approximately 0 
[Figure 8g].

We need to ensure that the endpoints of the edges have 
curvatures in the same direction as in Figure 9a. To check 
this condition, we calculate the product of the curvature 
values at the endpoints of the edge. The edge Sij is 
eliminated if k i  k j  < 0. The product is negative if the 
points have curvatures in different directions as shown 
in Figure 9b. This condition eliminates edges if the end 
points of the edge have opposite curvatures [Figure 8h].

We used Th2 = 0 and Th2 = 0.4.

We check the above conditions for each edge in the 
Delaunay triangulation. After the above conditioning, we 
label as segmented nucleus if the number of detected 
edges is larger than zero. Otherwise, the WBC is classified 
as a cell with nonsegmented nucleus. 

An example of this classification is shown in Figure 8. 
Figure 8a shows a white blood cell image. Figure 8b 
shows the boundary of the nucleus superimposed on 
the white blood cell. Figure 8c shows the local curvature 
maxima points on the nucleus boundary. Figure 8d shows 
the triangulation of the points of maximum curvature to 
find the candidate edges. In Figure 8e the background 

Figure 9: Examples to illustrate the curvature of convex and concave regions
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edges have been eliminated. Figure 8f retains edges if 
the	 angle	between	 tangents	 is	 close	 to	π	 radians.	Figure	
8g retains edges if the edge vector and tangent vector 
are close to perpendicular. Figure 8h retains edges if end 
points have curvatures in the same direction. Finally, 
three edges are present in the end indicating that the 
nucleus has three segments that are interconnected.

Automated Classification of  WBC to its Subtype
To classify the WBC to its respective subtype, we use 
features that describe the characteristics of the cytoplasm 
and the nucleus. We choose 19 features such as area, 
perimeter, convex area, solidity, orientation, eccentricity, 
separately evaluated for the nucleus and the WBC. 
The result obtained from the previous step gives us 
information about the broad nucleus type (segmented or 
nonsegmented). This result is a novel binary feature added 
to our classifier. In addition features like “circularity” (ratio 
between the perimeter of the tightest bounding circle and 
the nuclear perimeter) of the nucleus, nucleus to cytoplasm 
ratio, ratio of nucleus area to area of WBC, entropy of the 
cytoplasm, and mean gray-level intensity of the cytoplasm 
(all three color channels) are computed.[7] Fishers linear 
discriminant is used to reduce our multidimensional dataset 
to six dimensions. We use a linear discriminant in this six-
dimensional space to classify the data to their respective 
type. Linear discriminant analysis (LDA) is used to find 
a linear combination of the features which characterizes 
or separates these five classes of WBCs. The classifier is 
biased using the number of samples in each class. The 
system is evaluated using 10-fold cross-validation. Cross-
validation is a technique for assessing how the results 
of a statistical analysis will generalize to an independent 
dataset. It is mainly used in settings where the goal is 
prediction, and one wants to estimate how accurately a 
predictive model will perform in practice. One round of 
cross-validation involves partitioning a sample of data into 
complementary subsets, performing the analysis on one 
subset (called the training set), and validating the analysis 
on the other subset (called the validation set or testing set). 
To reduce variability, multiple rounds of cross-validation 
are performed using different partitions, and the validation 
results are averaged over the rounds. The functions from 
the Statistics Toolbox in MATLAB have been used to 

analyze the data.

RESULTS AND DISCUSSION

Segmentation Results
This system has been tested using images obtained 
from the ARUP Laboratory, University of Utah. Our 
dataset consists of 320 images at 20× magnification that 
contain 1938 expert labeled WBCs. The input images 
have been processed to detect the WBCs. We obtained 
1938 subimages with single correctly positioned WBCs. 
We did not have any false negatives in the detection 
of WBCs. The false positive rate was 10.25%. The false 
positives consist of regions of artifact or debris that 
have stain and color characteristics which fall within 
the thresholding parameters. We eliminated the false 
positives by manually assigning them to a noise class. The 
performance of the segmentation algorithm was evaluated 
by comparing our proposed method with a hematologist’s 
visual segmentation. The segmentation algorithm was 
applied to 1938 subimages of WBCs; 1804 of them were 
accurately segmented. The accuracy rate for segmentation 
was 93.08 %. Figure 10 shows some segmentation results. 
The main advantage is the elimination of the RBCs using 
the difference image. Some of the examples present 
segmentation results for more complex images, with a 
complicated background and containing several RBCs 
close to the WBC. There are also cells with multiple 
nuclei. We obtained good segmentation results for both 
cases. The examples shown reflect the performance of the 
algorithm for all the WBC types.

Classification Results
A vector of 19 features was extracted for every WBC. The 
experts assigned the correct classification of each extracted 
WBC. The resulting dataset (1938(number of cells)×19 
(features)) has been used to determine the subtype of the 
WBC segmented using linear discriminants as described 
in the Methods section. The system was evaluated using a 
10-fold cross-validation technique.

We observed that there is a lot of misclassification 
between various classes as seen in Table 1.[6,7] The rows 
in the confusion matrix represent the real subtype and 

Table 1: Confusion matrix for the comparison method (five subtypes)[6,7] Rows represent the correct 
classification by experts. For each row, the columns represent the classification made by the approach 
used in the comparison method. The classification percentages made by the algorithm is enclosed in 
brackets. Diagonal entries indicate correct classification and are indicated in bold

Type Neutrophil Eosinophil Basophil Lymphocyte Monocyte

Neutrophil 791 (94.94) 9 (1.08) 1 (0.12) 19 (2.53) 10 (1.33)
Eosinophil 23 (40.35) 32 (57.89) 1 (1.75) 0 (0) 0 (0)
Basophil 0 (0) 0 (0) 4 (80) 1 (20) 0 (0)
Lymphocyte 29 (10.07) 2 (0.67) 5 (1.68) 243 (81.21) 19 (6.38)
Monocyte 14 (21.38) 3 (4.62) 1 (1.54) 7 (10.77) 40 (61.54)
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the columns represented the detected subtype. An initial 
classification of the WBCs into cells with a segmented 
nucleus (neutrophils, eosinophils, basophils) and cells 
without nuclear segmentation (lymphocyte, monocyte) 
improves the performance of the classification. The 
accuracy of classification is improved for all the classes, 
see Table 2.

This five subtype classification is generally performed by 
pathologists. We obtain very good classification results for 
the given dataset as seen in Table 2. Experiments show 
that the two-step classification implemented achieves a 
93.9% overall accuracy in the five subtype classification. 
Results indicate that the morphological analysis of white 
blood cells is achievable and it offers good classification 
accuracy. The individual classification rate needs to 
be improved for eosinophils and monocytes. A higher 
segmentation accuracy would result in lowering the error 
rate in the classification process.

CONCLUSION

There are currently WBC classification systems based 
on morphology in clinical use such as the Cellavision 
system. However, the classification performed by 
Cellavision utilizes small snap shot images obtained 
directly from a glass slide. In contrast the techniques 
described in this paper allow identification of WBCs 
from a whole slide image. The use of WSI technology 
allows some advantages over the Cellavision system 
including leveraging of capital equipment, expansion 
of software to include other applications involving 
WSI, and identifying and localizing the WBCs in the 
context of the original WSI. While the localization 
functions were not part of the current study, further 
work is currently being pursued to implement some 
of these benefits. Viewing the classified cells in their 
original context on Wright stained WSI allows the 
pathologist to also evaluate red blood cells, platelets, 
and smear adequacy data in addition to the WBCs. 
This technique may facilitate work flow by replacing 
tedious and monotonous work with automation while 
maintaining all of the digitized data in the original 
smear. Even though the time to scan and analyze the 

slide may is longer than a manual differential count, the 
time associated with pathologist review may actually be 
decreased by completing the automated analysis prior 
to the pathologist spending any time on the case. In 
addition, scanning and classifying the cells is mostly 
machine driven and requires very little hands on time, 
thus allowing personnel to perform other duties. 

This is a report of a developmental step to assess the 
viability of a larger scale automated solution. The 
methodology achieves a semiautomated system for 
the detection and classification of normal WBCs from 
scanned WSI. Experiments show that the two-step 
classification implemented achieves good overall accuracy 
in the five subtype classification. Results indicate that the 
morphological analysis of white blood cells is achievable 
and it offers good classification accuracy. Further studies 
will be focused on detecting and segmenting abnormal 
WBCs, comparison of 20× and 40× data, and expanding 
the applications for bone marrow aspirates. In the future, 
we will also perform the elimination of false positives in 
WBC detection in an automated manner using linear 
discriminants on the same feature set used for classification.
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