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Abstract

While the term “protein structure' is commonplace, it is increasingly appreciated that proteins may
not possess a single, well-defined structure: some regions of proteins are intrinsically disordered.
The role these intrinsically disordered regions (IDRs) play in protein function is an area of
significant interest. In particular, because proteins containing IDRs are largely involved in
processes related to molecular recognition, the question arises whether IDRs are important in these
recognition events. It has been observed that IDRs are enriched in transcription factors (TFs) in
comparison with other proteins, and we sought to explore this enrichment more precisely, with an
eye toward functional dissection of the prevalence and locations of IDRs in different classes of
TFs. Specifically, we considered the occurrences of 76 classes of DNA-binding domains (DBDs)
within a comprehensive set of 1,747 human, sequence-specific TFs. For each DBD class, we
analyzed whether a significant level of disorder was present within the DBD itself, the N-terminal
or C-terminal sequence flanking the DBD, or both flanking sequences. We found that although the
DBDs themselves exhibit significant order, the regions flanking the DBDs exhibit significant
disorder, which suggests a functional role for such IDRs in TF DNA binding. These results may
have important implications for studies of TFs not just in human but across all eukaryotes, and
suggest future studies focused on testing the roles of N- and C-terminal flanking regions in
determining or modulating the DNA binding a affinity and/or specificity of the associated TFs.
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1. Introduction

The function of a protein is encoded in its amino acid sequence (/.e., primary structure).
However, protein activity typically depends on the protein being folded properly into its
component secondary structure elements (e.g., alpha helices, beta sheets) and the overall,
global conformation of the protein (/.e., tertiary structure). Protein structure can be
determined experimentally at high resolution either by X-ray crystallography or by nuclear

TCorrespondence should be addressed to M.L.B. and A.J.H..

aThough they do not occur often, where they do occur, they exhibit significant disorder in our results as well, corroborating the results
in [4]; see Table 2.
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magnetic resonance (NMR). X-ray crystallography is widely used, but cannot provide
information on the conformation of regions that are either highly dynamic or unstructured in
the crystal. In contrast, while NMR can provide information about flexibility and dynamics
in proteins, it is currently limited to smaller proteins.

Through a combination of structural and biochemical studies, it has become increasingly
appreciated that a protein may not adopt a single, well-defined “structure’, a term connoting
a measure of rigidity. Rather, a protein may sample an ensemble of global conformations;
parts of the protein may be largely constantly structured across this ensemble, while other
parts may be quite variable or flexible across the ensemble. These latter regions are
sometimes termed “intrinsically disordered regions' (IDRs), though they may adopt a more
structured conformation upon interaction with another molecule, whether a protein, DNA, or
other ligand [1].

Proteins are largely involved in processes related to molecular recognition (e.g., binding,
signaling, complex formation, enzymatic catalysis), and IDRs may enable these recognition
events either directly (e.g., serving as the recognition domain of a protein) or indirectly (e.g.,
serving as a hinge that allows two ordered regions of a protein to come together to effect
recognition). For this reason, IDRs have been studied rather extensively over the past
decade, and a large number of computational methods have been developed for the
prediction of IDRs on the basis of amino acid sequence, though this remains an imperfect art
(see [2] for a review).

In this study, we were interested in exploring the role(s) that IDRs might play in the
recognition tasks of transcription factors (TFs) in particular. Computational explorations
have found that IDRs are generally more prevalent in TFs than would be expected by
chance, especially in eukaryotes [3-5]. As a specific example, careful molecular studies
have shown that a region of fifteen amino acids within the DNA-binding domain (DBD) of
the estrogen receptor (ER) is disordered in solution, and makes contacts with DNA (and
with another ER DBD monomer), as shown in a co-crystal structure of the ER DBD bound
to DNA [6]. Moreover, IDRs outside the homeodomain DBD have also been found to
impact the DNA-binding affinity of the Drosgphila TF Ubx [7]. In addition, the region N-
terminal to the proximal accessory region of the Saccharomyces cerevisiae C2H2 zinc finger
TF Adrl is disordered in solution (even after binding DNA) and increases the a affinity for
non-specific DNA, mainly by increasing the DNA association rate; increased affinity for
non-specific DNA might allow a protein to find its specific sites more quickly after
translocation from non-specific sites that are bound initially [8]. Finally, DBDs often have
N- or C-terminal extensions, referred to as “arms' or “tails', that bind DNA but are disordered
when free in solution [9]. Intrigued by this ensemble of findings pointing to the importance
of IDRs in TFs and their interactions with DNA, we sought to explore the connection
between IDRs and TF function more precisely and systematically. We were particularly
interested in determining whether IDRs were more prevalent in the regions flanking the
DBDs that are responsible for the binding of sequence-specific TFs to DNA.

2. Materials and Methods

2.1. Constructing the TF and non-TF control sets of proteins

We created two non-redundant datasets of human proteins: a TF set and a non-TF set for use
as a control. The procedure for constructing these sets and ensuring their non-redundancy is
described below and summarized in Figure 1A.

We assembled the TF set from a published repertoire of human TFs [10]. In their study,
Vaquerizas and colleagues manually curated and identified 1,987 TF-coding human
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genomic loci in the Ensembl database [11]; the list includes 1,960 high-confidence entries
and 27 entries curated as probable. We cross-referenced these Ensembl loci against the
RefSeq database (release 47) [12] to obtain 2,362 protein isoforms associated with 1,747
genes. To reduce sequence redundancy and thus potential bias, if multiple isoforms were
associated with the same gene, we selected only the longest. This resulted in a final total of
1,747 unique TF protein sequences, and in subsequent analysis, we call this our 7F set.

We assembled our non-TF control setby downloading all human proteins from RefSeq, and
excluding the 2,362 TF-associated isoforms from above, which yielded a total of 32,567
non-TF proteins. To match the size and sequence length distribution of our TF set, we
randomly sampled 1,747 proteins from the 32,567 according to the empirical sequence
length distribution of the TF set; to ensure non-redundancy during this process, at each
iteration we required that the sampled protein come from a locus not previously sampled.
Therefore, the resulting control set contains 1,747 unique non-TF protein sequences.

2.2. Comparing the TF and non-TF control sets of proteins

To ensure that the non-TF set represents a well-constructed control for the TF set, we
compared various properties of the two sets. First, we compared the sequence length
distributions of the TF set and the non-TF control set, in addition to the set of all human TFs
(7.e., with redundancy). As shown in Figure 1B, no apparent di erences exist between the
sequence length distributions in the TF set, the non-TF control set, and the set of all human
TFs.

Next, we compared the amino acid compositions of the TF set, the non-TF control set, and
the set of all human TFs (Figure 1C). The amino acid composition of sequences in IDRs has
been shown to be significantly di erent from that in ordered regions [14], and IDRs have
been shown to have high prevalence in TFs [4], so we might expect compositional di
erences between the TF sets and the non-TF control set. Indeed, compared to the non-TF
control set, both TF sets are enriched in disorder-promoting amino acids (e.g., P, E, S, K, Q,
H), and depleted in order-promoting amino acids (e.g., W, F, Y, I, M, L, V) [13, 14], as
expected. However, the amino acid compositions of our non-redundant TF set and the set of
all human TFs are nearly identical, suggesting that our procedure for removing redundancy
introduces no significant compositional bias.

2.3. Identifying DNA-binding domains (DBDs) and their locations within proteins

Our goal is to investigate the prevalence and locations of IDRs within human TFs, and in
particular, the spatial relationships between IDRs and DBDs in TFs. To identify all
sequence-specific DBDs that occur within human TFs, we started with the entire set of
human proteins from RefSeq and identified every Pfam domain [15] that was contained in a
human protein with a p-value below 0.05. We manually filtered for those domains whose
text descriptions in the Pfam or InterPro [16] databases indicated that the domain mediates
sequence-specific DNA binding, resulting in 76 domains which we henceforth call Pfam
DBDs.

Using HMMER [17] with default parameters, we searched for the locations of matches to
Pfam DBDs within our TF set. We found 71 of the 76 Pfam DBDs matched to proteins in
our TF set, with 32 DBDs appearing more than five times. Of the 1,747 proteins in our TF
set, 669 contained only a single DBD, while another 642 contained multiple DBDs; proteins
with multiple DBDs are typically those containing multiple zinc fingers, which are
annotated as separate domains even if they occur in tandem within a protein. Indeed, the TF
with the highest number of DBDs is zinc finger protein 91 (RefSeq: NP 003421), which
contains 31 zf-C2H2 (zinc finger, C2H2-type) domains. The zf-C2H2 domain is interesting
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in its own right as it is by far the most prevalent domain in our TF set, appearing a total of
4,154 times, almost 20 times as often as the next most prevalent domain.

2.4. Predicting intrinsically disordered regions (IDRs) and their locations within proteins
using multiple existing methods

To perform our analysis, we first needed to predict the ordered and disordered regions
within proteins using existing computational tools. Since this remains a bit of an imperfect
art, we took care to ensure that our conclusions would not be overly dependent on the
predictions of any single choice of method. Consequently, we chose to use three distinct
disorder prediction tools, each demonstrated to perform with high accuracy [2]: PONDR
VSL2 [18], DISOPRED?2 [19], and PreDisorder 1.1 [20].

PONDR VSL2 (also called DisProt VSL2) was evaluated as the top-ranked disorder
predictor in CASP7 in 2006 [21], and PreDisorder was ranked among the top methods in
disorder prediction during CASP8 in 2008 and CASP9 in 2010. These methods employ a
variety of techniques to analyze sequence and structural information for IDR prediction:
PONDR VSL2 uses support vector machines (SVMs) to separately address prediction
problems in short versus long sequence regions, and then merges the results using a logistic
regression model; DISOPRED? is also based on SVMs, and compared to other prediction
methods, the main difference is that it is directly trained on the whole sequence using
various combinations of binary-encoded amino acid sequence, secondary structure
predictions, and sequence profiles; and PreDisorder 1.1 is based on an ab initio prediction
method along with a meta-prediction method.

2.5. Defining disorder features: spatial relationships of IDRs relative to DBDs within TFs

Given the annotated DBDs and the predicted disorder regions in the TF set and the non-TF
control set, we sought to systematically analyze the association between TF DBDs and
predicted IDRs by testing for enrichment of IDRs at different locations relative to DBDs.
Specifically, we were interested in IDRs within the DBD itself, as well as the regions
flanking the DBD, and we developed five distinct “disorder features': we say that @ DBD is
disordered if at least a fraction fof its residues are predicted to be disordered; we say that
the N-terminal flank of a DBD is disordered if at least a fraction fof the 30 residues flanking
the DBD in the N-terminal direction are predicted to be disordered; analogously, we say that
the C-terminal flank of a DBD is disordered if at least a fraction fof the 30 residues flanking
the DBD in the C-terminal direction are predicted to be disordered; we say that both flanks
of a DBD are disordered if both the N-terminal and C-terminal flanks are disordered; and
finally, we say that an entire TF is disordered if at least a fraction fof all of its residues are
disordered. We wanted to be fairly stringent in identifying these disorder features, so that we
could focus on those with the highest confidence; therefore, we chose the value of 0.8 for £

2.6. Calculating statistical significance of disorder features

To assess whether the prevalence of disorder features within and flanking DBDs was
unusually high or low, we needed to determine a suitable measure of significance.

Moreover, since different computational tools predict IDRs at different rates (see Section 3.2
below), our significance measure needed to enable the comparison of results across
methods, and not be biased by methods that are systematically more or less likely to predict
disorder within proteins.

We thus developed two different null models to test for the significance of our disorder
features (e.g., disordered DBD, N-terminal flank, or C-terminal flank). The first null model
pretended that the location of a DBD occurred uniformly at random within each sequence,
and was based on the TF set. The second null model also pretended that the location of a

Pac Symp Biocomput. Author manuscript; available in PMC 2012 April 16.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

GUO etal.

3. Results

Page 5

DBD occurred uniformly at random in each sequence, but was based on the non-TF control
set. In summary, these two null models—in which the location of a DBD was chosen
uniformly at random—uwere designed to test whether the spatial relationships between IDRs
and DBDs were statistically significant or simply occurred by chance.

With each null model providing a baseline expectation for how often a disorder feature
might be found by chance, we could then compute a significance measure based on the p-
value from a hypergeometric distribution (7.e., Fisher's exact test). For each disorder feature
we considered, we computed two separate p-values, one for each null model. Consistency of
significance across the two different null models thus gave us some confidence that our
results were robust to the specific choice of null model.

3.1. Comparing the three methods for predicting IDRs within proteins

We used three different disorder prediction tools to predict IDRs in both the TF set and the
non-TF control set. Though the purpose of this paper is to make use of existing prediction
methods and not to evaluate them (which has already been done by others, for example [2,
21]), it is important to have at least an overall sense of how each method is performing on
our protein sets. A summary of the results of the three methods is shown in Figure 2 and
listed in Table 1. In Figure 2, we compare the fraction of each protein's residues predicted as
disordered by each method. In Table 1, we calculate the total percentage of protein residues
predicted as disordered by each method, along with the average length of each predicted
IDR. The figure and table reveal that all three methods consistently predict proteins in the
TF set to have a greater fraction of disordered residues, more disordered residues, and longer
IDRs than proteins in the non-TF control set, confirming earlier findings that IDRs are
enriched in TFs.

As an aside, it is apparent that PONDR VSL2 is far more likely than the other two methods
to call a residue as disordered, in both the TF set and the non-TF control set, suggesting that
the method is probably operating at a different point on its receiver operating characteristic
(ROC) curve, with high sensitivity but also perhaps a relatively high false positive rate [21].
In addition, the average length of IDRs predicted by PONDR VSL2 is higher than the other
two methods, which may be related to the previous point, but may also be because the
method uses different SVMs to predict IDRs in short and long sequences separately.

3.2. Assessing significance of order or disorder within and flanking human TF DBDs

To systematically study the associations between IDRs and DBDs, for each occurrence of a
DBD class within a human TF, we calculated 30 different p-values: the significance under
two different null models (based on the TF set and the non-TF control set) of five different
kinds of disorder features (DBD, N-terminal flank, C-terminal flank, both flanks, and entire
TF) as computed by three different prediction methods (PONDR VSL2, DISOPRED2, and
PreDisorder 1.1). For each combination of null model and feature, we say that the feature
exhibits significant disorder under that null model if at least two of the three prediction
methods predict disorder at p-value < 0.005; on the other hand, we say that the feature
exhibits significant order under that null model if at least two of the three prediction
methods predict disorder at p-value = 0.995. Note that it is certainly possible for a feature to
be neither significantly ordered nor significantly disordered under a particular null model.

Although we computed whether features exhibited significant order or disorder across all
Pfam DBDs occurring in our TF set, to avoid artifacts due to small sample size, we
restricted our subsequent analysis to the 32 DBD classes with at least five occurrences in the
TF set. Many of the most frequent DBD classes, including the 10 most prevalent ones, are
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structurally similar and can be roughly classified into two groups: (1) those containing zinc
fingers, and (2) those containing a basic helix-turn-helix type of domain, domains in which
helices are separated by loops (e.g., Homeobox, HLH, Fork_head, Ets). The enrichment
analysis results for these 32 DBD classes are listed in Table 2; at the bottom of the table, we
also included the Pfam domains Basic, AT_hook, and P53 (Basic and AT_hook are included
because we mention them below in comparison to another study; P53 is a well-studied DBD
included for general interest).

The top 10 most frequently occurring DBD classes in human TFs all exhibit significant
order within the DBD itself, suggesting that structural flexibility within these domains is
rather limited. Strikingly, our results indicate that although the DBDs themselves exhibit
significant order, the regions flanking the DBDs are likely to exhibit significant disorder.
Only in the case of zf-C2H2 do the flanking regions exhibit significant order (this will be
discussed further in the next section). In contrast, 26 of the other 31 DBDs exhibit
significant disorder in either the N-terminal flank, the C-terminal flank, or both; and none of
the other 31 DBDs exhibit significant order in either flank under either null model. This is
consistent with prior studies in which it was found that DBDs are often separated by flexible
linker regions, allowing TFs to bind DNA with fine control over DNA binding a nity [22,
23].

3.3. Investigating detailed spatial relationships of IDRs relative to DBDs within TFs

To further investigate the detailed spatial relationships of the IDR predictions of the three
different methods to protein DBDs, we generated a meta-plot of the average predicted order/
disorder in the vicinity of each Pfam DBD according to each prediction method. To do this,
we first identified all occurrences of a Pfam DBD in the TF set, and then across all those
occurrences, calculated the average (mean) order/disorder score predicted by each method at
each residue within the DBD match and both of its flanks (up to 30 amino acids). In cases
where a TF contained only a partial DBD match and not a full domain according to the
HMMER alignment, we considered only the aligned region in our calculations. We
normalized the resulting scores for the purpose of comparison across methods, and for
uniformity in scale across plots for different DBD classes (Figure 3).

Figure 3 displays meta-plots for five of the ten Pfam DBDs most prevalent in human TFs.
Results from DISOPRED2 and PreDisorder 1.1 are fairly consistent across all five domain
classes. Moreover, all three methods are in good agreement in zf-C2HC and demonstrate
similar prediction trends in zf-C4, Homeobox, and HLH. Extended to all the DBDs listed in
Table 2, over 67.2% of the DBD classes that are found to exhibit either significant disorder
or significant order are identified as such by all three methods.

Nevertheless, some discrepancies in the results from the different methods are evident, such
as zf-C2H2. The C2H2-type zinc finger domain is the most prevalent DBD class found in
metazoan TFs, including in human [24]. It is also one of the most highly ordered DBDs;
however, the linker regions between these C2H2 zinc finger domains are often disordered
[25]. As shown in Figure 3A, PONDR VSL2 reports that the C2H2 domain occurrences in
human TFs exhibit significant disorder in both the C2H2 domain itself and the adjacent N-
and C-terminal flanks; however, DISOPRED?2 and PreDisorder both report the opposite,
namely that zf-C2H2 and its flanks exhibit significant order. Liu and colleagues carefully
analyzed the diffculties of predicting intrinsic disorder in the zf-C2H2 domains and their
linker regions [4]. They concluded that because many linker regions between C2H2 zinc
fingers are quite short, the windowing procedures employed by some IDR prediction
algorithms prevent them from being detected as disordered; the result is an artifact in which
linker regions between C2H2 zinc fingers are over-predicted as being ordered.

Pac Symp Biocomput. Author manuscript; available in PMC 2012 April 16.
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3.4. Analyzing spatial relationships for some DBD classes prevalent in human TFs

3.4.1. Zinc fingers—Zinc fingers are small structural motifs whose folds are stabilized by
coordination of one or more zinc ions. Zinc fingers can be classified according to their zinc-
coordinating residues and folds. In Figures 3A—C, we show our IDR prediction results for
the three major zinc finger domain classes found in human TFs: zf-C2H2 (the most
prevalent DBD class in human TFs), zf-C4 (also referred to as nuclear receptors), and zf-
C2HC. Although all three classes contain zinc fingers, we find variability in their regions of
order and disorder. As discussed above, the C2H2 zinc finger domain is itself believed to be
highly ordered, with individual ordered zinc fingers separated by highly flexible linker
regions [25]. We find that the C4 domain exhibits significant order within the DBD itself,
but significant disorder in flanking regions. In contrast, we find that the C2HC domain
exhibits significant disorder in both the DBD and flanking regions.

3.4.2. Homeobox—Homeobox (homeodomain fold) is the second-most abundant DBD
class within human TFs. The homeodomain fold consists of an approximately 60 amino acid
helix-turn-helix structure in which three alpha helices are connected by short loop regions.
Our results (Figure 3D) extend the results of a prior study [7] that found multiple
intrinsically disordered sequences located outside the homeodomain DBD of the Drosophila
TF Ubx, that allow Hox family members (/.¢., a subclass of TFs with Homeobox DBDSs) to
bind DNA with high affinity but relatively low specificity [26, 27].

3.4.3. HLH—HLH (basic helix-loop-helix) is the third-most abundant DBD class within
human TFs, and is characterized by two a-helices connected by a loop. TFs that have this
domain typically bind DNA as either homo- or hetero-dimers, with each monomer
contacting DNA through a helix containing basic residues that facilitate DNA binding [28].
As shown in Figure 3E, all three methods report that HLH exhibits significant order within
the domain itself, but significant disorder in both the N- and C-terminal flanking regions.
Our results also indicate that a short but highly disordered region may frequently occur in
the middle of the HLH domain, consistent with prior observations that the linker regions and
the loop region of HLH proteins are of higher flexibility, allowing dimerization by folding
and packing one smaller helix against the other one [28].

4. Discussion

In this study, we used three different computational disorder prediction methods to
investigate the prevalence of IDRs within DBDs and in their flanking regions across
essentially the entire repertoire of human, sequence-specific TFs and their associated Pfam
DBDs. Our choice of multiple prediction methods was motivated by a desire to be able to
draw robust conclusions that were not dependent on any one particular method.

Previously it was found that TFs are enriched for IDRs [3, 4]. At the same time, DBDs
responsible for TF binding did not seem themselves to be particularly enriched for IDRs. For
example, of the 25 DBDs studied in [4], only the Basic and AT_hook domains exhibited
high amounts of disorder; however, those domains are not particularly prevalent in human
TFs, occurring in our TF set just four times and one time, respectively.2 We were intrigued
by the possibility that the enrichment of IDRs observed in TFs might be at least partly due to
disorder in the regions flanking DBDs; under such a hypothesis, DBDs can be thought of as
islands of order flanked by regions of disorder.

Our results support exactly such a hypothesis: the most prevalent DBDs in human TFs
exhibit significant order, but the flanking regions of these DBDs generally exhibit
significant disorder. Similarly, although DBDs of intermediate prevalence (occurring
between 5 and 20 times in our TF set) do not appear often enough to exhibit either
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significant order or disorder within the domains themselves, most of them still exhibit
significant disorder in one or both flanking regions.

The functional role played by the significant prevalence of disorder in the regions flanking
DBDs of human TFs is unclear. However, we can speculate that the increased flexibility a
orded by these flanking IDRs might contribute to the ability of TFs to 1) recognize target
sequences in the DNA appropriately, 2) bind to a wider diversity of DNA target sequences,
3) be anchored with higher affinity to the DNA after recognizing target sequences, 4) bind to
other factors and complexes positioned on the DNA or involved in transcriptional
regulation, or 5) present activation domains to downstream transcriptional regulatory
machinery. It should be emphasized that these possibilities are speculative; however, the
results of this study suggest numerous testable hypotheses regarding the roles of N- and C-
terminal regions flanking DBDs for many frequently occurring DBDs in hundreds of human
TFs. For example, the importance of the predicted disorder in these flanking regions in
determining or modulating the DNA binding affinity and/or specificity of the associated TFs
could be investigated with protein binding microarrays (PBMs) [29, 30]. PBMs could assay
the affinity and/or specificity of proteins representing the DBDs with their flanking regions,
as compared to either the DBDs alone or the DBDs with mutant flanking regions predicted
not to be significantly disordered. If found to contribute to the DNA binding affinity and/or
specificity of TFs, IDRs that flank DBDs would broaden the scope of functional domains to
be considered when evaluating the potential impact of mutations or natural polymorphisms
within exomes, such as in medical sequencing projects.

This study was focused on human TFs; however, since these DBD classes are the
predominant DBD classes not just in human TFs but throughout eukaryotes, the results of
this study may have important implications for studies of TFs across all eukaryotes.
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(A) A schematic of the pipeline for generating the TF set and the non-TF control set. (B)
Sequence length distributions of the TF set (nr TFs), the non-TF control set, and the set of
all human TFs (with redundancy). (C) The amino acid compositions of the TF set, the non-
TF control set, and the set of all human TFs. Amino acids are listed from most order-
promoting to most disorder-promoting, according to [13]. It is apparent from the histogram
that compared to proteins in general, TFs have fewer order-promoting residues (e.g., W, F,
Y, I, M, L, V) and more disorder-promoting residues (e.g., P, E, S, K, Q, H).
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Fig. 3.

Shown are meta-plots for five prevalent DBDs in human TFs. (A) zinc-finger C2H2-type
(length: ~23 amino acids), (B) zinc-finger C2HC-type (length: ~31 amino acids), (C) zinc-
finger C4-type (length: ~70 amino acids), (D) homeodomain fold (length: ~58 amino acids),
and (E) helix-loop-helix (length: ~53 amino acids).
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Table 1

Statistics summarizing disorder predictions on all the residues of all the proteins in both the TF set and the
non-TF control set using three different disorder prediction tools.

TF set non-TF ctrl set
% of residues predicted in average length of IDRs % of residues predicted in aver age length of IDRs
DRs IDRs
PONDR VSL2 83.2% 106 53.3% 39
DISOPRED2 47.4% 44 34.1% 36
PreDisorder 1.1 50.1% 19 38.3% 18
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