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Abstract
Triple negative breast cancers are an aggressive subtype of breast cancer with poor survival, but
there remains little known about the etiological factors which promote its initiation and
development. Commonly inherited breast cancer risk factors identified through genome wide
association studies (GWAS) display heterogeneity of effect among breast cancer subtypes as
defined by estrogen receptor (ER) and progesterone receptor (PR) status. In the Triple Negative
Breast Cancer Consortium (TNBCC), 22 common breast cancer susceptibility variants were
investigated in 2,980 Caucasian women with triple negative breast cancer and 4,978 healthy
controls. We identified six single nucleotide polymorphisms (SNPs) significantly associated with
risk of triple negative breast cancer, including rs2046210 (ESR1), rs12662670 (ESR1), rs3803662
(TOX3), rs999737 (RAD51L1), rs8170 (19p13.11) and rs8100241 (19p13.11). Together, our
results provide convincing evidence of genetic susceptibility for triple negative breast cancer.

Keywords
genetic susceptibility; neoplasms; association study; subtypes; common variant

Introduction
Triple negative (TN) breast cancers are a biologically and clinically distinct subtype of
breast cancer, defined as tumors that exhibit low or no expression of estrogen receptor (ER),
progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2) (1).
Women with TN disease account for approximately 15% of all invasive breast cancers and
are more likely to be younger, African American, have an earlier age at menarche, higher
body mass index during premenopausal years, higher parity, and a lower lifetime duration of
breast feeding (2-4). In addition, TN tumors are typically of higher histologic grade and are
associated with more aggressive disease and poorer survival (1, 5, 6). These differences in
tumor pathology, non-genetic risk factors, and survival among women with TN disease
suggest that the etiology of these tumors may differ from other breast cancer subtypes.

Genome wide association studies (GWAS) have recently identified common, low-
penetrance susceptibility variants that are associated with risk of breast cancer (7-16).
Growing evidence suggests substantial heterogeneity by tumor subtype, defined by hormone
receptor status, for associations with these SNPs. In particular, variants in 5p12, FGFR2,
8q24, 1p11.2, 9p21.3, 10q21.2, and 11q13 are associated with risk of developing ER-
positive tumors (9-12, 14, 17, 18) but not ER-negative tumors, whereas variants in 2q35,
TOX3, LSP1, MAP3K1 TGFB1 and RAD51L1 are associated with both ER-positive and ER-
negative disease (19). To date, no variants have been specifically associated with ER-
negative or TN disease. However, variants at TOX3, 2q35, and two distinct signals at
19p13.1 have been associated with breast cancer risk in BRCA1 mutation carriers, who
predominantly develop tumors displaying an ER-negative and TN phenotype (15, 20, 21).
Thus, additional studies specifically investigating ER-negative and TN disease are necessary
to understand genetic susceptibility to these breast cancer subtypes.

Here we report on the first TNBCC study of genetic susceptibility to TN breast cancer in
which associations between 22 common breast cancer susceptibility loci and risk among
2,980 cases and 4,978 controls were evaluated. This comprehensive study included 21
common variants from all known susceptibility loci identified through currently published
breast cancer GWAS (1p11.2, 2q35, 3p24/NEK10, 5p12/MRPS30, MAP3K1, ESR1, 8q24,
9p21.3, 9q31.2, 10p15.1, 10q21.2/ZNF365, 10q22.3/ZMIZ1, FGFR2, LSP1, 11q13,
RAD51L1, TOX3, 17q23/COX11, 19p13.1) and a SNP from CASP8 identified in a
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candidate-gene study of CASP8 (22, 23). We show that SNPs from four of these loci are
strongly associated with risk of TN breast cancer.

Materials and Methods
Ethics Statement

Study subjects were recruited on protocols approved by the Institutional Review Boards at
each participating institution, and all subjects provided written informed consent.

Study populations
Samples from several TN breast cancer case-control series, including 2,778 TN breast
cancer cases and 1,406 unaffected controls, were genotyped on the iPLEX platform. These
subjects were ascertained by 22 studies in 10 different countries: United States, Australia,
Great Britain, Finland, Germany, Netherlands, Greece, Ireland, and Sweden. These included
cases from the KBCP and POSH cohort studies, cases and controls from the MCCS cohort
study, and cases and controls from established population-based breast cancer case-control
studies (BBCS, GENICA, MARIE, SEARCH), hospital or clinic based case-control studies
(ABCS, BIGGS, LMBC, MCBCS, OBCS, SBCS, and RPCI), case-only studies with
geographically matched controls (BBCC, KARBAC, SKKDKFZS, FCCC), and unselected
cases identified in tumor collections (DFCI, ABCTB, DEMOKRITOS). Data from an
ongoing GWAS of TN breast cancer, including cases and controls from several of the
studies described above, and the TN cases from the HEBCS GWAS along with population
control data (n=273) were also included (24). In addition, data from four publicly available
control GWAS data sets (Wellcome Trust Case Control Consortium UK 1958 Birth Cohort
(WTCCC), National Cancer Institute's Cancer Genetic Markers of Susceptibility (CGEMS)
project, Cooperative Health Research in the Region of Augsburg (KORA) study, and the
Australian Twin Cohort study from the Queensland Institute of Medical Research (QIMR))
(n=3,593) were utilized. Age distributions and years of diagnosis for individual study sites
are provided in Supplementary Table 1, and these studies are described in more detail in
Supplementary Material.

Pathology and tumor markers
A TN breast cancer case was defined as an individual with an ER–negative, PR–negative
and HER2–negative (0 or 1 by immunohistochemical staining (IHC)) breast cancer
diagnosed after age 18. Criteria used for defining ER, PR, and HER2 status varied by study.
These are described in detail in Supplementary Table 2. CK5/6 and EGFR IHC data for
identification of basal tumors were not available.

Genotyping
The following 22 SNPs were genotyped on the iPLEX platform: rs11249433 (1p11.2),
rs13387042 (2q35), rs4973768 (3p24), rs10941679 (5p12), rs889312 (MAP3K1), rs2046210
(ESR1), rs12662670 (ESR1, surrogate for rs9397435), rs13281615 (8q24), rs1011970
(9p21.3), rs865686 (9q31.2), rs2380205 (10p15.1), rs10509168 (10q21.2, surrogate for
rs10995190), rs704010 (10q21.2), rs2981582 (FGFR2), rs3817198 (LSP1), rs614367
(11q13), rs999737 (RAD51L1), rs3803662 (TOX3), rs6504950 (17q23), rs8170 (19p13.11),
rs8100241 (19p13.11), and rs17468277 (tagSNP for CASP8 D302H). For 10q21.2,
rs10509168 was genotyped as a surrogate for rs10995190 (14).

Genotype data for 22 SNPs were generated for 2,778 cases and 1,406 controls using a single
multiplex on the iPLEX Mass Array platform (Sequenom). Samples were plated by study as
random mixtures of cases and controls with no-template and CEPH controls in every plate.
Genotyping quality for SNPs and samples was evaluated using an iterative quality control
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(QC) process. SNPs and samples were excluded based on the following criteria: SNP call
rate <95%, Hardy-Weinberg equilibrium (HWE) p-value <0.01 among controls, and sample
call rate <95%. The final dataset of 2707 cases and 1385 controls exhibited SNP call rates
>99%, HWE p-value >0.01, and sample call rates >95%.

In addition, genotype data from cases and controls included in a TN GWAS were available
to supplement the iPLEX genotypes. Cases from 10 study sites (ABCTB, BBCC, DFCI,
FCCC, GENICA, MARIE, MCBCS, MCCS, POSH, SBCS) were genotyped using the
Illumina 660-Quad SNP array. A subset of MARIE cases were genotyped using the Illumina
CNV370 SNP array. HEBCS cases and controls were genotyped using the Illumina 550-Duo
SNP array. GWAS data for public controls were generated using the following arrays:
Illumina 660-Quad (QIMR), Illumina 550(v1) (CGEMS), Illumina 550 (KORA), and
Illumina 1.2M (WTCCC). For HEBCS, population allele and genotype frequencies on 221
healthy population controls genotyped on Illumina HumanHap 370CNV in the NordicDB, a
Nordic pool and portal for genome-wide control data, were obtained from the Finnish
Genome Center (25). These GWAS data were independently evaluated by an iterative QC
process with the following exclusion criteria: minor allele frequency (MAF) <0.01, call rate
<95%, HWE p-value <1×10-7 among controls and sample call rate <98%. When DNA was
available (n=1,402), we re-genotyped samples from the TN GWAS as part of the iPLEX
study in an effort to obtain as much data as possible from a single platform. Therefore,
following preferential selection of data from the iPLEX study, genotypes for an additional
273 cases and 3,593 controls were included from the GWAS data (Table 1). No GWAS
genotype data were available for rs10941679 (5p12), rs2046210 (ESR1), rs6504950 (17q23)
and only partial data were available for five other SNPs because of the absence of these
SNPs from some or all of the GWAS genotyping platforms (Table 1). As a further measure
of genotype quality, genotype concordance was evaluated for the 1,402 samples included in
both the iPLEX and GWAS. Eighteen of 19 SNPs, had concordance rates >98% and
rs8100241 showed concordance of 96.3% .

Statistical methods
Allele frequencies for each of the 22 SNPs included in these analyses were estimated using
the iPLEX genotype data and the combined GWAS and iPLEX data for cases, controls, and
all subjects (Supplementary Table 3). Associations for TN breast cancer were estimated
using unconditional logistic regression adjusted for country of residence. The sites were
categorized by country of origin (American, Australian, British, Finnish, German, Greek,
Irish, and Swedish) (Table 1). SNPs were coded for a gene-dose effect by assigning a three-
level (0, 1, 2) variable to each genotype (log-additive model). We calculated p-values, odds
ratios (ORs) and 95% confidence intervals from these logistic regressions. Pair-wise
interactions were tested by including multiplicative interaction terms in logistic regression
models. Homogeneity of ORs by country was tested using the Q statistic (26) and the extent
of heterogeneity was estimated by the I2 statistic (27). All analyses were conducted using
SAS version 9.2, R version 2.11.0, or Plink version 1.07.

Results
We evaluated 22 breast cancer susceptibility SNPs identified in breast cancer GWAS for
associations with TN disease using genotype data from an iPLEX study of the 22 SNPs
supplemented with data from a TN GWAS. The combined data resulted in a case-control
study of 2,980 cases and 4,978 controls from 25 studies in eight countries (Table 1). All 22
SNPs were in Hardy-Weinberg equilibrium among controls at p>0.01. Only rs17468277 and
rs1011970 showed evidence of heterogeneity by country (rs17468277: p=0.047, I2=50.8%;
rs1011970: p=0.093, I2=42.8%). Of the 22 SNPs from 20 loci, eight were significantly
associated with risk of TN breast cancer (p<0.05) (Table 2). Six SNPs from four loci,
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rs2046210 (p=4.38 × 10-7), rs12662670 (p=1.13 × 10-4), rs999737 (p=2.96 × 10-4),
rs3803662 (p=3.66 × 10-5), rs8170 (p=2.25 × 10-8), and rs8100241 (p=8.66 × 10-7),
remained significant after correction for multiple testing (p<2.27 × 10-3). Adjustment for age
did not change the magnitude or significance of our results. In addition, we did not find
evidence of significant interactions with age for any of the 22 SNPs.

Rs2046210, located upstream of ESR1 on chromosome 6q25.1, exhibited a strong
association with TN disease [odds ratio (OR)=1.29, 95% Confidence Interval (CI) 1.17 –
1.42; p=4.38 × 10-7] (Figure 1a), whereas rs12662670, located further upstream of ESR1,
displayed a similar effect but slightly less significant association with TN disease [OR=1.33-
fold, 95% CI 1.15 – 1.53; p=1.13 × 10-4] (Figure 1 b). To assess the independence of these
two ESR1 SNPs, which are not correlated in HapMap subjects of European ancestry
(r2=0.09), we included both SNPs in a multivariate model. Rs2046210 was more strongly
associated with TN risk than rs12662670 [rs2046210 OR=1.24, 95% CI 1.12 – 1.38; p=5.64
× 10-5; rs12662670 OR=1.20, 95% CI 1.00 – 1.44; p=0.053] in this model, suggesting that
rs2046210 may account in part for these two associations. In addition, two SNPs at 19p13.1
shown to have genome wide significant associations with breast cancer in BRCA1 mutation
carriers, were highly significantly associated with TN breast cancer [rs8170: OR=1.27, 95%
CI 1.17 – 1.38; p=2.25 × 10-8] [rs8100241: OR=0.84, 95% CI 0.78 – 0.90; p=8.66 × 10-7]
(Figure 1 c,d). Multivariate modeling of these two SNPs, which are moderately correlated
in HapMap subjects of European ancestry (r2=0.74), showed that rs8170 is more strongly
associated with TN breast cancer risk [rs8170: OR=1.22, 95% CI 1.10 – 1.34; p=7.56 × 10-5;
rs8100241: OR=0.90, 95% CI 0.83 – 0.98; p=0.014] although both variants are retained in
the model. Additionally, rs3803662 (TOX3), which has been strongly associated with risk of
ER-negative breast cancer (OR=1.15, p=2.1 × 10-10) (19), was associated with a 1.17-fold
increase in risk of TN disease [OR=1.17, 95% CI 1.09 – 1.26; p=3.66 × 10-5] (Figure 1e).
Likewise, the rs999737 (RAD51L1) SNP was significantly associated with risk of TN breast
cancer [rs999737 OR=0.86, 95% CI 0.80 – 0.93; p=2.96 × 10-4] (Figure 1f). In contrast,
rs17468277 (ALS2CR12/CASP8) (p=0.005) was not significantly associated with TN breast
cancer risk after correction for multiple testing, suggesting that this result should be
interpreted with caution. None of these six SNPs showed evidence of heterogeneity by
country (Figure 1). To further understand the influence of variants in the 6q25.1 and
19p13.11 loci on TN risk, we looked for statistical interactions between the SNPs in these
regions. While there was no evidence for a statistical interaction between rs2046210 and
rs1266270 (p=0.820) at 6q25.1, we found strong evidence of an interaction (p=0.004)
between rs8170 and rs8100241 from 19p13.1, in a multiplicative model.

Next we performed a subset analysis using the iPLEX data alone (2,707 cases, 1,385
controls) for the 19 SNPs with both iPLEX and GWAS genotypes to assess the consistency
of our results. Analysis of associations with TN disease in the iPLEX-only dataset showed
that odds ratios for the 19 SNPs were consistent in both direction and magnitude of effect
compared to the analysis using all available genotype data, although some variation in the
significance of the associations was observed (Table 2). Four of the SNPs significantly
associated with TN breast cancer in the overall analysis retained statistical significance in
the iPLEX-only analysis (rs12662670 p=3.52 × 10-4; rs3803662 p=8.25 × 10-4; rs8170
p=7.30 × 10-8; rs8100241 p=1.81 × 10-6) after correction for multiple testing. Results were
unchanged for rs2046210 from the ESR1 locus, because the overall analysis was restricted to
iPLEX data as a result of missing GWAS data for this variant. Finally, while the rs999737
(RAD51L1) SNP was only marginally associated with TN breast cancer risk in the iPLEX-
only analysis (rs999737 p=0.053), the estimate of effect for this SNP was consistent with the
effect observed in the overall analysis.
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Importantly, genotype data from a subset of these cases and controls have previously been
used in association studies involving a number of these SNPs by the Breast Cancer
Association Consortium (BCAC). To avoid duplication and to assess the degree to which
these BCAC samples influenced our results, we also performed a subset analysis in which
we excluded all cases and controls used in the BCAC studies (n=1,819 cases; n=4,038
controls) (Supplementary Table 4). The effect estimates and significance of associations
with TN disease in either the iPLEX or combined analyses were not substantially modified
following the removal of these cases and controls (Supplementary Table 5).

Discussion
Here we report on the first study by the TNBCC and the largest study to date of genetic
susceptibility to TN breast cancer, which is comprised 2,980 cases and 4,978 controls from
25 studies in eight countries. We show that a subset of breast cancer susceptibility SNPs
identified through GWAS are also associated with risk of TN breast cancer. Specifically, we
determined that six breast cancer susceptibility SNPs from four loci- rs2046210 (ESR1),
rs12662670 (ESR1), rs999737 (RAD51L1), rs3803662 (TOX3), rs8170 (19p13.1) and
rs8100241 (19p13.1)- are associated with risk of TN breast cancer. Of these, rs8170
(19p13.1) achieved genome-wide significance (p=2.25 × 10-8). Overall, these findings
provide strong evidence of genetic susceptibility to triple negative breast cancer.

We identified highly significant associations between SNPs at 6q25.1 and risk of TN breast
cancer, including rs12662670 (p=1.13 × 10-4) and rs2046210, which reached near genome-
wide significance (p=4.38 × 10-7). These variants are located approximately 30kb and 60kb
upstream of the first untranslated exon and 180kb and 210kb upstream of the first coding
exon of ESR1, which encodes the estrogen receptor-α protein.

The rs2046210 SNP was originally reported in a breast cancer GWAS in Chinese women
(13) where a stronger association among ER-negative than ER-positive breast cancers was
observed. Importantly, the magnitude of effect in this TN study [OR=1.29, 95% CI 1.17 –
1.42] was identical to that reported for ER-negative breast cancer in the Chinese study
[OR=1.29, 95% CI 1.21-1.37]. In contrast, a study of women of European ancestry did not
observe an association with breast cancer, although analyses were not stratified by ER status
(28). When combined with our results the suggestion is that this SNP may be specifically
associated with TN or ER-negative disease. The second variant in the ESR1 locus,
rs12662670, was originally associated with breast cancer in the same study of women of
European ancestry [OR=1.12, 95% CI 1.03 – 1.21] and was used as a surrogate for
rs9397435 , which is associated with breast cancer risk [OR=1.15, 95% CI 1.06 – 1.25]
independently of rs2046210 (28). Here rs12662670 showed a strong influence on TN breast
cancer risk [OR=1.33, 95% CI 1.15 – 1.53] again suggesting that variation in the ESR1 loci
is specifically associated with risk of ER-negative and/or TN breast cancer. It remains to be
determined whether a single locus represented by rs2046210 or two loci accounted for by
rs2046210 and rs9397435, are associated with ER-negative and TN breast cancer at
chromosome 6q25.

Since TN breast cancer is defined in part by the absence of expression of estrogen receptors,
we can speculate that inherited variation may down-regulate ESR1 expression and promote
formation of ERα negative tumors. However, recent studies in mice have shown that the
mammary stem cell compartment can be regulated by 17β-estradiol and progesterone
through a paracrine-signalling mechanism from steroid receptor-positive luminal cells to
steroid receptor-negative stem cells (29, 30). Thus, SNPs in the ESR1 locus may promote
expansion of receptor negative precursors and subsequent development of TN tumors.
Interestingly, variation in the 5’ region of ESR1 has been associated with an increased risk
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of breast cancer relapse in a British prospective cohort study (31), which was accounted for
by including tumor grade and nodal status in multivariate models. Thus the causal SNPs in
this area may be associated with a more aggressive tumor phenotype.

The SNPs rs8170 (p=2.25 × 10-8) and rs8100241 (p=8.66 × 10-7) located at 19p13.1 were
first identified as modifiers of breast cancer risk in BRCA1 carriers (15) and as risk factors
for ovarian cancer (32) and were also shown to be significantly associated with ER-negative
breast cancer (15). In this study we showed that rs8170 displayed a genome wide significant
association with TN breast cancer, suggesting that we can now identify variation in the
19p13.1 locus as a risk factor for TN disease. Interestingly, rs8170 attenuated the
significance of rs8100241 when the SNPs were included in a multivariate regression model
for breast cancer, whereas these both SNPs retained significance in multivariate models
evaluating effects on BRCA1 associated breast cancer and ER-negative breast cancer (15).
In addition, our data suggest that these SNPs have a multiplicative effect on TN breast
cancer risk. Further studies are required to determine whether these SNPs represent
independent signals in the 19p13.1 locus. Additional studies are also needed to identify the
underlying causative genetic events in this locus and to determine if the causative events for
BRCA1, ER-negative, and TN breast cancer as well as ovarian cancer are in common.

These 19p13.1 variants are located in a cluster of genes including C19orf62, ANKLE1, and
ABHD8. ABHD8 encodes the abhydrolase domain containing 8 protein, which is a gene of
uncharacterized function, and is located about 13 kb downstream of both rs8170 and
rs8100241. The SNP rs8170 is located within C19orf62, which encodes the MERIT40
protein, while rs8100241 is located within ANKLE1, a protein of unknown function which
encodes ankyrin repeat and LEM domains. MERIT40 is the most plausible candidate in this
region for breast cancer susceptibility because it is a component of the BRCA1-A complex
and is required to ensure the integrity and localization of this complex during the repair of
DNA double-strand breaks, specifically through the recruitment and retention of the
BRCA1-BARD1 ubiquitin ligase and the BRCC36 deubiquitination enzyme (33-35).
However, it remains to be determined whether the causal variants at 19p13.1 alter MERIT40
expression or function or influence other genes in the region such as ANKLE1 or ABHD8.

We also found that variants in RAD51L1 (rs999737, p=2.96 × 10-4) and TOX3 (rs3803662,
p=3.66 × 10-5) were strongly associated with risk of TN breast cancer. Rs999737
(RAD51L1) was originally identified in a recent breast cancer GWAS of women of
European ancestry (12). Detailed studies of breast tumors have suggested that rs999737 is
associated with both ER-positive and ER-negative breast cancer, which is consistent with
our findings. RAD51L1 is a member of the Rad51-like family and functions in the double-
strand break repair and homologous recombination pathway (36). When coupled with the
association of the 19p13.1/MERIT40 locus with TN, the suggestion is that modification of
DNA repair genes is an important mechanism involved in predisposition to TN breast
cancer. The SNP rs3803662, located telomeric to the gene TOX3, was also strongly
associated with TN breast cancer in our study (p=3.66 × 10-5). This SNP was originally
identified in two GWAS of breast cancer (7, 9) and has been associated with risk of
developing both ER-positive and ER-negative tumors (9). The SNP is also associated with
risk of BRCA1 related breast cancers (15), which are primarily ER-negative or TN. TOX3
encodes a protein containing an HMG-box that is speculated to be involved in the
modification of DNA and chromatin structure (37).

Only a subset of the 22 susceptibility loci were associated with TN disease in this study.
This suggests that there may be heterogeneity in the predisposition loci associated with
different breast tumor subtypes. However, it is important to consider whether limited
statistical power may have influenced our results. Among the 16 SNPs that did not reach
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statistical significance in this study, the effect estimates for variants at 1p11.2, 2q35, 8q24,
9q31.2, 10p15.1, 10q21.2/ZNF365, 10q22.3/ZMIZ1, and FGFR2 showed either no evidence
for association or were in the opposite direction compared to the original GWAS findings.
Interestingly, 2q35 has been associated with both ER-negative (19) and BRCA1-related
breast cancer (21), and was marginally significant in a smaller set of TN breast cancer (19).
However, we found no evidence for association at 2q35 among TN breast cancer, indicating
that risk for this locus may be limited to non-TN, ER-negative breast cancer. In contrast, the
ORs for SNPs at CASP8, 9p21.3, and COX11 were comparable in magnitude to the original
GWAS findings, while the ORs for variants at 3p24/NEK10, 5p12, MAP3K1, LSP1, and
11q13 had only mildly attenuated effects. Our results are also consistent with a recent study
reporting associations between MAP3K1, 3p24/NEK10, COX11, and CASP8 and ER-
negative breast cancer (19). These results suggest that we may have had insufficient power
to detect significant associations for these SNPs among TN breast cancers.

Several limitations should be considered when interpreting these results. First, different
ascertainment criteria were used among the contributing breast cancer studies with cases
being ascertained from population-based or hospital-based case-control studies. Importantly,
genetic main effects models in other large breast cancer consortia such as BCAC have
provided stable risk estimates for SNPs across a wide range of study designs. This would
suggest that in the case of these genetic variants, ascertainment and study design issues had
limited influence on the results of genetic association studies for breast cancer. The
consistency in effect estimates among BRCA1-related breast cancers, ER negative breast
cancer, and now triple negative breast cancer for variants at 19p13.1, 6q25, and TOX3
provide additional evidence that these estimates are robust to variability in study design.
Further, our evaluation of interactions with age was underpowered, and unavailability of
family history on the majority of studies precluded investigations of interactions by family
history. There is also variability in the criteria used to define ER, PR, and HER2 status of
cases between studies (Supplementary Table 2). For HER2, cases with scores of 0 or 1 by
IHC were defined as HER2 negative. Cases with IHC of 2+ were not included in order to
minimize erroneous inclusion of HER2 positive cases. In general, cases were considered ER
or PR negative based on IHC of tumors using thresholds of <1% of cells stained, <10% of
cells stained, or an Allred score of 0-2, which incorporates both intensity and percentage of
staining in tumor cells. In addition to variability in thresholds for positivity, factors such as
tissue fixation, antibody choice, and interpretation of positive immunostaining may also
affect the definition or ER or PR status across study sites (38, 39). The resulting
heterogeneity in the definition of triple negative breast cancer may influence our ability to
detect associations with susceptibility loci that are specific to triple negative or ER negative
disease. However, we did successfully identify six genetic loci associated with triple
negative disease, and the lack of heterogeneity in effect estimates across study sites in this
analysis (Figure 1) would suggest that our findings are generally robust to the differences
noted above. Additionally, in a sensitivity analysis including only cases from studies with
the most stringent criteria for defining TN cases (<1% of cells stained positive for ER and
PR, HER2 0 or 1+ on IHC), the effect estimates were very similar to those from the
complete analysis for the six SNPs in ESR1, 19p13.11, TOX3, and RAD51L1, with some
attenuation of significance. Finally, it is important to note that the results of this study are
specific to Caucasian women. While greater proportions of African Americans and Latinas
than Caucasians develop TN breast cancer, it is not known whether similar associations with
the SNPs described here exist in these populations. Further studies are needed to address this
question.

In conclusion, our study provides convincing evidence for genetic susceptibility to TN
breast cancer and suggests that susceptibility loci may differ by histological breast tumor
subtype, defined by ER, PR and HER2 status. These findings add to the evidence suggesting
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that these subtypes likely arise through distinct etiologic pathways. Additional studies, such
as those from the Breast Cancer Association Consortium, will be important for determining
whether these SNPs are exclusively associated with ER-negative, TN disease, or even basal
breast cancer, a more refined subgroup of TN tumors. Fine mapping and functional analyses
of these susceptibility loci are needed to identify the casual variants and mechanisms
underlying the associations with TN breast cancer risk.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Breast cancer susceptibility loci and risk of TN breast cancer
Forest plots for six breast cancer susceptibility loci and risk of TN breast cancer are shown
by country. Country-specific odds ratios (95% CIs) are denoted by black boxes (black lines).
Overall OR estimates are represented by black diamonds, where diamond width corresponds
to 95% CI bounds. Box and diamond heights are inversely proportional to precision of the
OR estimate. I2 values were 0 for each of these 6 SNPs, indicating no heterogeneity by
country.
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