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Abstract

Electrical signaling allows communication within and between different tissues and is necessary for the survival of
multicellular organisms. The ionic transport that underlies transmembrane currents in cells is mediated by transporters and
channels. Fast ionic transport through channels is typically modeled with a conductance-based formulation that describes
current in terms of electrical drift without diffusion. In contrast, currents written in terms of drift and diffusion are not as
widely used in the literature in spite of being more realistic and capable of displaying experimentally observable
phenomena that conductance-based models cannot reproduce (e.g. rectification). The two formulations are mathematically
related: conductance-based currents are linear approximations of drift-diffusion currents. However, conductance-based
models of membrane potential are not first-order approximations of drift-diffusion models. Bifurcation analysis and
numerical simulations show that the two approaches predict qualitatively and quantitatively different behaviors in the
dynamics of membrane potential. For instance, two neuronal membrane models with identical populations of ion channels,
one written with conductance-based currents, the other with drift-diffusion currents, undergo transitions into and out of
repetitive oscillations through different mechanisms and for different levels of stimulation. These differences in excitability
are observed in response to excitatory synaptic input, and across different levels of ion channel expression. In general, the
electrophysiological profiles of membranes modeled with drift-diffusion and conductance-based models having identical
ion channel populations are different, potentially causing the input-output and computational properties of networks
constructed with these models to be different as well. The drift-diffusion formulation is thus proposed as a theoretical
improvement over conductance-based models that may lead to more accurate predictions and interpretations of
experimental data at the single cell and network levels.
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Introduction

Electrical signaling allows fast transfer of information within and

between cells. Electrical signals are produced by ionic transport

within tissues, and in particular, across the membranes of cells.

Most transmembrane ionic transport is mediated by membrane-

spanning proteins that may either mechanically translocate ions

across the membrane (transporters), or facilitate ionic diffusion by

forming pores [1]. The dynamics of membrane potential can be

modeled from a macroscopic perspective by assuming that the

membrane, its channels and transporters, and the permeable ions

on both sides of the membrane are equivalent to an electrical

circuit [2,3]. In this description, the total current through the

membrane is the sum of the currents mediated by channels and

transporters. Currents mediated by ion channels are typically

modeled as the product of a conductance and a linear function of

membrane potential [4–7]. This approach will be referred to

herein as conductance-based (CB). However, ionic transport through

channels is driven by electrical drift, as assumed in CB models, but

also by diffusion [8,9] which is not included in CB formulations.

Expressions for transmembrane ionic flux that take diffusion

into account can be derived using the Nernst- Planck equation

[10], and used to describe transmembrane currents as already

done by Goldman [11] and others [12–15]. These currents will be

herein called drift-diffusion (DD) and models of membrane potential

constructed using CB, or alternatively, using DD currents will be

referred to as CB or DD models. CB models are generally

regarded as good descriptions of membrane potential, have been

studied extensively [16–20], and are thus very popular and used

along with experiments to study cellular excitability [2,3,21–25].

On the other hand, DD models are more realistic [11,26] but are

not widely used in the literature. For instance, DD currents

capture important nonlinear phenomena like rectification; a

property that CB models cannot reproduce. In fact, as shown in

the following paragraphs, the CB formulation for current is a linear

approximation of its DD counterpart around the reversal potential of

the current ( Fig. 1 a). DD and CB models reproduce basic features

of the behavior of excitable cells [13,19]. However, the

nonlinearities contributed by DD formulations may result in very

different dynamics in comparison to CB models. It is therefore

PLoS ONE | www.plosone.org 1 April 2012 | Volume 7 | Issue 4 | e34636



important to ask to what extent the two approaches lead to

qualitatively and quantitatively similar behaviors, everything else

being equal. In other words, are CB and DD formulations

computationally equivalent? If so, to what extent?

Models of excitable cells are used to understand the role of ionic

currents on cellular signaling, make testable quantitative predic-

tions, and interpret experimental results. Therefore, it is crucial to

understand more about how the dynamics of the membrane

change with the DD or CB formulation. To start addressing this

question, two low-dimensional versions of the same model of

membrane potential, CB and DD respectively, are constructed.

The two models are assumed to have identical ion channel

populations mediating a leak current and two voltage-gated

currents, namely, a transient sodium (Naz) current and a delayed

rectifier potassium (Kz) current [19,27,28]. The comparison is

done by examining the bifurcation structure and behaviour of the

two models in response to constant and time-dependent current

stimulation, and synaptic input. In each case, different patterns of

ion channel expression were taken into account. The qualitative

features of the dynamics in the two models having identical ion

channel populations are different, as predicted by their non-

topologically equivalent phase spaces and bifurcation structures.

For constant stimulation, the smallest sustained current amplitude

that causes a transition between rest and repetitive oscillations in

the membrane potential, or Icyc for short, is shown to differ in the

two models. In a more dynamical setting, the recruiting current,

defined as the smallest amplitude in an up-going ramp stimulus

that results in action potentials, is shown to be significantly smaller

than Icyc for both models, and smaller in the DD model than in the

CB model. The excitatory synaptic current that causes repetitive

spiking is also shown to be smaller than Icyc, and repetitive spiking

in response to synaptic input requires a smaller number of

synapses in the DD model in comparison to the CB model. In

sum, repetitive spiking occurs for smaller stimulus currents, and

within a smaller range in the DD model in comparison to the CB

model. The results presented here can be modified and extended

for the study of other excitable membranes.

Methods

Electrodiffusion currents and membrane potential
The formulation for transmembrane currents driven by drift

and diffusion used here is a generalization of a derivation based on

first principles of thermodynamics and electrochemistry previously

reported in [13] and expanded in [29]. The derivation starts by

considering the ionic flux through open pores across the

membrane written as the sum of electrical drift and diffusion with

the Nernst-Planck equation (see Text S1 and [9,12]). In brief, the

cross-sectional area of the pore region inside an ion channel and

the electric field across the membrane are assumed to be smoothly

varying functions of distance along the pore. Assuming the flow of

charge is stationary and integrating the equation between the

intra- and extra-cellular domains along the pore axis allows writing

an expression for the transmembrane current as a function of the

membrane potential v. As a result, the current carried by ions of

type S as they electrodiffuse through an open pore can be written

as

i~~aasT
ffiffiffiffiffiffiffiffiffi
SeSi

p
sinh

zs(v{vs)

2vB

� �
: ð1Þ

where v is the membrane potential, vs, zS , Se, and Si are the

Nernst potential, valence, extracellular and intracellular concen-

trations of the ion S [13]. The term ~aa is a constant approximation

to a function that depends on the properties of the pore, the

electric field across the membrane, the mobility of S, and other

factors [30]. The Goldman constant field approximation [11] can

be obtained as a particular case of Eq. 1 if it is assumed that the

electric potential inside a channel is a linear function of the

distance along the channel pore, and that the pore has constant

cross-sectional area [13,27]. The potential vB is the quotient

kT=qe where k is Boltzmann’s constant, qe is the elementary

charge, and T the absolute temperature. The current in Eq. 1 can

be regarded as a macroscopic description of the transmembrane

current produced by ions of type S as they diffuse through an open

channel and will be herein referred to as a DD current. For

contrast, the CB current through an open channel permeable to S
is a linear function of v (Fig. 1 a) given by

Figure 1. DD and CB currents and convergence to steady state. (a) DD and CB currents in gray ( Eq. 1 ) and black ( Eq. 2 ) respectively. (b)
Convergence to steady state in a model of membrane potential ( Eq. 14 ) with dynamics as in Eqs. 15–16.
doi:10.1371/journal.pone.0034636.g001

Same Channels, Different Excitabilities
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iCB~�gg(v{vs) ð2Þ

where �gg represents the maximal conductance of the current

carried by S-ions. For Kz and Naz ions, but not for Ca2z, the

concentrations Se and Si can be regarded as constants [4,27].

Whole-membrane currents
The formulation in Eq. 1 can be extended to consider the

current mediated by several hundreds or thousands of gated

channels. Let channel gating be represented by a number ps

between 0 and 1 that depends on the gating mechanism of the

channel. The gated whole-membrane current can be written as:

I~Nsps~aasT
ffiffiffiffiffiffiffiffiffi
SeSi

p
sinh

zs v{vsð Þ
2vB

� �
: ð3Þ

where NS is the number of channels in the membrane. Loosely

speaking, the quantity Nsps can be thought of as the average

number of open channels permeable to S (see [31] for an

interesting perspective in this regard). If the absolute temperature

and the transmembrane concentrations of Naz and Kz are

assumed to be constant [4,27], then

�aaS~~aasNsT
ffiffiffiffiffiffiffiffiffi
SeSi

p
ð4Þ

can be thought of as a constant representing the maximum current

through the membrane.

Voltage-dependent gating is described from a macroscopic

perspective as a first-order process with steady states written

explicitly in terms of the change in free energy caused by the

conformational changes that underlie channel gating. Ligand-

gated channels are modeled following previous work by Destexhe

et al. [32].

Membrane potential
The comparison between the DD and CB models is done with a

two-dimensional dynamical system defined in terms of a core set of

currents: a leak current, two voltage-gated currents carried by

Naz and Kz, and a stimulus current representing either

stimulation through an electrode, or fast excitatory synaptic input.

Importantly, all the currents are written using the same gating

functions and therefore, the only differences between the two

models are in the driving force portion of the currents. An implicit

assumption in this construction is that additional membrane

channels and transporters fulfill a complementary, but not

necessary, role in producing rest-to-spiking transitions, as explicitly

illustrated, for instance in [27].

The membrane potential is represented by the variable v with

dynamics defined by:

C
dv

dt
~IS{IN{IK{IL, ð5Þ

�ttw
dw

dt
~(1{w) exp sw

gw

vB

v{vwð Þ
� �

{w exp (sw{1)
gw

vB

v{vwð Þ
� �

ð6Þ

where C is the membrane capacitance and IS , IN , IK , and IL

represent, respectively, current from an external stimulus, voltage-

gated Naz and Kz currents, and a non-gated leak current (see

Table 1). The variable w represents the dynamics of the Kz

channel activation. The gating charge and half-activation potential

of w are, respectively, gwqe and vw. The basal rate of the gating

reaction, 1=�ttw, is a function of temperature [7]. Since all the

simulations presented here are assumed to occur at 22oC, �ttw

becomes a constant. The peak and symmetry of the time constant

as functions of v are controlled by �ttw and sw, respectively

[29,33,34]. Naz channel inactivation and Kz channel activation

are linearly coupled [18,19,27]. Steady state activation for Naz

channels is given by m?(v)~ 1z exp gm(vm{v)=vB½ �f g{3
. Pa-

rameters for the simulations can be found in Table 2.

The stimulus current is either a constant (used as a bifurcation

parameter), a time-dependent function representing external

stimulation, or a time- and voltage-dependent function represent-

ing synaptic input. The smallest IS necessary to cause a transition

between rest and sustained oscillations with a square pulse will be

referred to as Icyc. The time-dependent stimulation will consist of 5

epochs: (1) bottom, with stimulus amplitude 0 nA, (2) ramp up

(Up), (3) constant stimulation with amplitude equal to the

maximum reached by the ramp (Top), (4) ramp down (Down),

and (5) bottom again. This stimulation protocol will be referred to

as up-top-down (UTD). Unless otherwise specified, Up, Top, and

Down epochs have the same duration with IS being continuous as a

function of time. For IS with a ramping stimulation, the minimum

current amplitude required to start sustained oscillations during Up

or Top will be called recruitment current, and the stimulus amplitude

during Down at which a transition between sustained oscillations

and rest occurs will be called de-recruitment current.

Synaptic input. The activity of the presynaptic cells is simulated by

generating NE independent spike trains with gamma-distributed

interspike intervals, each with a mean rate rE [34,35]. For

simplification purposes, it is assumed that an action potential in

each of the input neurons activates, on average, k synapses after a

presynaptic action potential [35,36], each synapse having a

maximum postsynaptic current amplitude �aaS . Each synapse made

by the nth presynaptic cell is gated with a time-dependent

probability of opening sn(t) with dynamics defined by

dsn

dt
~an(1{sn)Cn(t){bnsn, n~1,:::,NE , ð7Þ

where Cn is the concentration of neurotransmitter for each of the k
synapses activated by the nth presynaptic neuron at times t0,t1,:::
(see [32] and Fig. S2 and Table 3). The time-course of

neurotransmitter concentration in the cleft is given by

Table 1. Functional forms of the different transmembrane
currents.

Current DD CB

IL
�aaL sinh

v{vL

2vB

� �
�ggL v{vLð Þ

IK
�aaK w sinh

v{vK

2vB

� �
�ggK w v{vKð Þ

IN
�aaN m?(v)(1{w) sinh

v{vN

2vB

� �
�ggN m?(v)(1{w) v{vNð Þ

IS
{k�aaS

PNE

n~1 sn(t) sinh
v{vS

2vB

� �
2k�ggS

PNE

n~1 sn(t) v{vnð Þ

Gating is the same in both formulations.
doi:10.1371/journal.pone.0034636.t001

Same Channels, Different Excitabilities
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Cn(t)~�ccn
t

tn

XNE

n~1

exp
ti{t

tn

� �
Iftivtg

� �
, ð8Þ

where �ccn represents the maximum neurotransmitter concentration

at synapses from the nth presynaptic contact. The indicator

function Iftwtig is equal to 1 if twti and zero otherwise [5,7].

Reparametrization in terms of relative channel contributions
Recall that the CB approximation to the DD current is valid

only for voltages near the reversal potential of the current.

Therefore, for any given potential, the DD model (Eq. 5) cannot

be written as a CB model by simply replacing the DD currents

by their CB approximations. However, it is still possible to

investigate whether the dynamics from the DD model are

qualitatively different to those of the CB model by rewriting Eq.

5 so that the relative contributions of the channels to the change

in membrane potential are the same. To do so, start by

multiplying the right hand side of the DD model by a

normalization current �aa, and divide each of the currents by �aa;

do the same for the CB model using a normalization

conductance �gg. As a consequence,

Table 2. Parameters and Constants.

Name Value Units Description

Physical constants

q 1.60217733|10{19 C Elementary charge

k 1.3806582|10{20 mJ/K Boltzmann’s constant

Membrane properties

TC 22 oC Room Temperature oC

T 273.15+TC
oK Absolute temperature

vB~kT=q 25.43 mV Boltzmann’s potential

vN 70 mV Reversal potential for Naz

vK 290 mV Reversal potential for Kz

vL 260 mV Reversal potential for membrane leak z

Rm 100.0 MV Membrane resistance

C 0.1 nF Membrane capacitance in adult
Drosophila MN5 [84]

Channel kinetics

Transient Na from Adult Drosophila DmNav1 [42]

vm 229 mV Half-activation

gm 2.0 Gating charge of activation

K-delayed rectifier from Drosophila Shab [38]

vw 21 mV Half-activation

gw 2.0 Gating charge of activation

�ttw 10 ms Max. activation time constant

sw 0.6 - Symmetry of activation time constant

Maximum current amplitudes and conductances

�aaN 10.0 nA NaT maximum current amplitude

�aaK 25 nA Kd maximum current amplitude

�aaL 0.5 nA Leak maximum current amplitude

�ggN 0.2 mS NaT maximum conductance

�ggK 0.5 mS Kd maximum conductance

�ggL 0.01 mS Leak maximum conductance

Normalized model

j~�aaK=C 100 nA/nF 20.4 Scaling factor for physiologically
relevant dv=dt

Q~�ggK=(2vBCm) 1.96 mS/nF

aK ~gK 2.5 nA Maximal current amplitude for
potassium relative to �aaN .

aN ~gN 1 nA Normalized maximal current amplitude
for Kd

aL~gL 0.05 nA Normalized maximal current amplitude
for Kd

doi:10.1371/journal.pone.0034636.t002

Same Channels, Different Excitabilities
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dv

dt
~

�aa

C
JS{JN{JK{JLð Þ, ð9Þ

with Jx~Ix=�aa, for x[fN,K ,L,Sg. The remaining coefficients

leading each of the currents can then be set to be equal in both

versions of the model:

�aaN

�aa
~aN~gN~

�ggN

�gg
,

�aaK

�aa
~aK~gK~

�ggK

�gg
,

�aaL

�aa
~aL~gL~

�ggL

�gg
,ð10Þ

with �aa~2�ggvB. If JS represents synaptic input, the amplitudes for

the currents corresponding to each of the input axons can also be

set as

�aan=�aa~an~gn~�ggn=�gg, k~1,:::,NE :

The normalization term for the DD model could be �aaN , �aaK , �aaL,

�aaNz�aaKz�aaL, or any other convenient current; the same applies

for �gg in CB models. The choice �aa allows, however, different

interpretations for the model. For instance, �aa could be the sum of

all the amplitudes for DD and similarly for �gg, in which case the

coefficients in front of each current can be thought of as weighted

by a maximum total current (or conductance). Recall that the

maximum amplitude of each of the DD currents (alternatively,

maximum conductance for CB) can be thought of as multiple of

the number of channels mediating the current, so these

normalizations allow interpretations in terms of relative expression

of ion channels. For instance, if all the currents in the DD model

are divided by the maximum amplitude of the Naz channel (and

their CB counterparts are divided by �ggN ), then �aa~�aaN and the

ratios aN , aK , and aL in the right hand side of Eq. 9 can be

thought of as amplitudes relative to the number of Naz channels

in the membrane. Then, as indicated by Eq. 4,

aK~
MK

MN

P ð11Þ

where MK and MN are the numbers of Kz and Naz channels

and P is a constant. Therefore, aK is proportional to the ratio of

Kz to Naz channels. In other words, aK can be thought of as an

indicator of the relative expression of Kz delayed rectifier channels in

the membrane with respect to the expression of Naz channels.

Parameters and fits to experimental data
The channel kinetics used here are based on the biophysical

properties of delayed-rectifier Kz channels expressed in somato-

dendritic compartments encoded by the Shab gene in central

neurons of adult Drosophila [37–39], or one of its vertebrate

homologs (e.g. Kv2.1 [40]). The Naz channels can be thought of

as one of the protein products of the para/DmNav gene also present

in adult Drosophila [41,42] or one of its vertebrate homologs (e.g.

Nav1.1–1.9 in vertebrates [43]). Synaptic currents are assumed to

be excitatory and mediated by fast cholinergic receptors, one of

the main mechanisms of excitation in invertebrate central synapses

[44] also present in the central, peripheral, and enteric nervous

systems of vertebrates [45–47]. In all the simulations presented

here, each of the input axons is assumed to have an average firing

rate of 7 Hz with gamma-distributed interspike intervals. Each

action potential from an input cell is assumed to activate (on

average) 10 synapses from its collateral terminals, each producing

an excitatory post-synaptic current [35]. Data for the channel

parameters was obtained by fitting digitized current traces

recorded under voltage clamp mode and reported in [39] and

[42]. Digitalization was done with custom code (Fig. S1 and

Table 2). Once the parameters for the channels are fixed, the only

free parameters left in both CB and DD models are the maximum

amplitudes and conductances, respectively. The differential

contribution of the channels to the excitability of the membrane

can then be directly assessed by considering the ratios of the

maximum amplitudes (DD) or conductances (CB) of the different

currents in the model. The parameters aL can be determined by

using the input resistance as illustrated in later paragraphs. C and

the maximum dv=dt are found directly from recordings.

Initial choices of parameters
The normalizing amplitude �aa can be found using y and Q, with

C to fit the maximum rate of change in the model to the one

obtained in recordings. This means one more parameter can be

fixed if �aa is either �aaN or �aaK . A particularly convenient choice used

here is �aa~�aaN , because the magnitude of y~�aaN=Cm matches the

magnitude of the desired maximum dv=dt. The combined

parameters y~�aa=C and Q~y=(2vB) from Eq. 9 can then be

used to constrain the model to represent different cell types

because they control the maximum dv=dt, which can be

determined from recordings. As a rule of thumb, the maximum

dv=dt should be less than 50 mV/ms for cardiac myocytes [48–50]

and pancreatic beta cells [51]. In neurons, the maximum dv=dt
may reach *300 mV/ms (see for instance, [52]). For instance, for

the model presented here, y can be set to about 100 nA/nF (with

Q~100=(2vB)). If the membrane capacitance is 0.1, then

�aaN = 10 nA. A starting value of aK = 3 (as rule of thumb between

2 and 10) leaves �aaK = 30 nA. Notice that if �aa~�aaK , the rule of

thumb can be applied by algebraically rearranging the terms,

Table 3. Parameters for simulations with time-dependent
stimulation or synaptic input.

Name Value Units Description

nAChRs from adult Drosophila central synapses [44]

�aan 10 nA Maximum mEPSC
amplitude

�ggn 0.2 mS Maximum
conductance of
mEPSCs

an~gn 0.4 - Normalized mEPSC
amplitude relative
to �aaK

vE 0 mV Reversal potential

aE 1 mM/ms Forward rate of
postsynaptic
activation

bE 0.2 1/ms Backward rate of
postsynaptic
activation

kE 10 - Average number of
activated synapses
per spike

ME [0,104] Number of
excitatory synaptic
axons

rE 7 Hz Input rate of each
excitatory axon

doi:10.1371/journal.pone.0034636.t003

Same Channels, Different Excitabilities
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which yields �aaK=CM = 300 nA/nF (because �aaK=CM~3�aaN=CM )

and aN = 0.33.

The comparisons between DD and CB models shown

subsequently are made assuming �aa~�aaN with maximum potassium

current amplitudes between 1 and 5 times larger than the maximal

amplitude of the sodium current, corresponding to relative level of

expression in the Kz channels aK~�aaK=�aaN within the interval

½1,5�. The range was determined by a global exploration of the

bifurcation structure of the models in codimension 1 using IS as

the bifurcation parameter. The analysis of the model will be

focused on the transitions into and out of repetitive spiking as

dictated by varying the relative contributions of the different

currents to the change in membrane potential.

Bifurcation analysis and associated membrane potential
behaviors

The steady state currents are obtained after excluding IS from Eq. 5

and replacing w by its steady state w?(v)~
1z exp gw(vw{v)=vB½ �f g{1

in the voltage-gated currents. The

resulting curve, called I? herein, is used to calculate the fixed

points (v�,w�) of the system. If (v(t),w(t))~(v�,w�), then neither v,

nor w change. Trajectories that pass through focus points are

spirals, which means the membrane potential oscillates when the

system is near a focus point. In contrast, the membrane potential

does not oscillate when the (v,w) is near nodes. Trajectories near

saddle node points initially move toward the saddle-node and

eventually diverge from it, which means that if (v,w) is near a

saddle-node, v will eventually move away from the v�-value of the

saddle-node. The cycles of the system represent sustained

oscillations in the membrane potential. Limit cycles are asymptot-

ically stable attractors. This means that the membrane potential

will go into sustained oscillations if the (v,w) is within the basin of

attraction of a limit cycle. Sustained oscillations are regarded as

repetitive spiking if their amplitude is w30 mV and their

maximum dv=dtw10 V/s. The system is bistable if it has two

attractors (e.g. a fixed point and a limit cycle).

The system in Eqs. 5–6 has at least one asymptotically stable

attractor for parameters within the physiologically meaningful

range. In other words, there should be either a fixed point or a

limit cycle (sustained oscillation) that the system goes back to. If all

the fixed points are unstable, there is no resting membrane

potential and sustained oscillations are expected to occur (a limit

cycle is expected to exist [6,7,53]). The v-value of an asymptot-

ically stable fixed point can be regarded as a resting potential

(especially if near 260 mV). Asymptotically stable focus points are

such that the membrane potential oscillates toward the resting

value. In contrast, the membrane potential converges to

asymptotically stable node points monotonically (without oscillat-

ing). Recall that a bifurcation occurs when either the number, the

type, or the stability of the fixed points or cycles of the system

change [54]. That is, a bifurcation indicates a qualitative change in

the behavior of the system; for instance, a transition between rest

and sustained spiking. Note therefore, that the analysis presented

here links patterns of relative ion channel expression with

bifurcation structure.

Bifurcations
The points shown in bifurcation diagrams are color-coded

based on the characteristics of the eigenvalues of each fixed point.

Asymptotically stable fixed points are represented with small solid

dots. Unstable fixed points are represented with circles. (IS,v�) pairs

corresponding to focus points are shown in black. The pairs (IS,v�)
corresponding to node points are shown in blue. (IS,v�) from saddle-

node points are shown in green.

Andronov-Hopf (AH) bifurcations occur when a focus point

changes in stability. Subcritical and supercritical AH bifurcations

are associated to bistable and monostable systems, respectively.

Systems like Eqs. 5–6 that undergo a subcritical AH bifurcation,

typically loose or gain an unstable limit cycle. In the former case,

the membrane is typically bistable, with a limit cycle and a stable

fixed point separated by an unstable cycle. At the bifurcation the

unstable cycle closes into the fixed point and dissappears, leaving

an unstable focus and the limit cycle around it. Prior to the

bifurcation the system could go to rest or into repetitive spiking

depending on its initial conditions. After the bifurcation, the

system is monostable and its only asymptotic behavior is the

sustained oscillation (repetitive spiking). In Saddle-node (SN)

bifurcations the number of fixed points changes between 3 and

1 (or viceversa) and are associated with non-monotonic I?(v)
curve. Repetitive spiking may emerge through a SN bifurcation if,

for example, the remaining point is unstable and a limit cycle

remains as the only attractor of the system. A fold limit-cycle (FLC)

bifurcation is such that two cycles appear or disappear (similar to

SN). One cycle is unstable and surrounds the stable fixed point.

The other cycle is stable and surrounds the unstable cycle. The

unstable cycle delimits the basins of attraction of the fixed point

and the limit cycle. FLC bifurcations occur near subcritical

Andronov-Hopf bifurcations.

The values used in the simulations presented here can be found

in Table 2. Deviations from the parameter set used in the tables

are noted in the figures.

Numerical solvers
Numerical simulations shown in this manuscript were per-

formed using the solver integrate.odeint (lsoda from the FOR-

TRAN library odepack) available from the Python module scipy

(Python Software Foundation, http://www.python.org).

Results

Conductance-based currents are first-order local
approximations of electrodiffusion currents

The CB and DD formulations are mathematically related. To

see it, consider the Taylor series of the hyperbolic sine around 0

truncated to first-order: sinh (bx)~ sinh (0)zbx cosh (0)&bx.

This means that Eq. 1 can be approximated around vs as follows:

I&
~aasT

ffiffiffiffiffiffiffiffiffi
SeSi

p
zs

2vB

v{vsð Þ: ð12Þ

The quotient in front of the voltage difference in Eq. 12 is a

conductance (mS), which can be rewritten as

�gg~
~aasT

ffiffiffiffiffiffiffiffiffi
SeSi

p
zs

2vB

: ð13Þ

The CB expression for current from Eq. 2 is thus a first-order

approximation of the DD current near the reversal potential vS (see

Fig. 1 (a) and green trace for IL in Fig. 2 ). If the membrane input

resistance (Rin) is known, the relationship between the maximum

conductance and the maximum current in Eq. 13 allows

calculation of �aaL. To do so, assume �ggL&1=Rin and calculate the

amplitude of the leak current as �aaL&2vB�ggL~2vB=Rin using the

relationship between the DD and CB currents described in Eq. 13.

To obtain some intuition about the role of the leak current, and

in particular �aaL (or �ggL), in shaping the asymptotic behavior of v, it

is useful to consider a reduced version of Eq. 5 that only includes
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the leak current:

C
dv

dt
~{�aaL sinh

v{vL

2vB

� �
& {�ggL v{vLð Þ, ð14Þ

where C is the membrane capacitance ( Fig. 1 b). Assuming v0 as

an initial condition, the first equality in Eq. 14 (DD) gives a

membrane potential of the form

v(t)~vLz2vB ln
1z exp c{btð Þ
1{ exp c{btð Þ

� �
, ð15Þ

where c~ ln tanh (v0{vL)=(4vB)½ �f g and b~�aaL=(2vBC). The

solution corresponding to the CB approximation on the right of

Eq. 14 is

v(t)&vLz(v0{vL) exp {
gL

C
t

	 

: ð16Þ

It can be readily seen in both cases ( Fig. 1 b) that �aaL (or �ggL)

modulates the time constant that governs the return of v in Eq. 14

to its resting value, vL. This explains why a larger leak current

would lead to faster return to the resting potential. Larger values of

�aaL yield smaller membrane time constants, which results in faster

convergence toward rest (see [55–58]). Note the convergence to vL

is slightly different for the two models.

Different behaviors for the same ion channel expression
As noted earlier, direct substitution of the DD or CB

formulations into Eq. 5 may result in different excitability profiles.

These differences can be examined from a macroscopic perspec-

tive using bifurcation analysis for different choices of the relative

contribution of the Kz current with respect to Naz, aK~�aaK=�aaN

(with fixed aL). To do so, aK is fixed and the fixed points of the

system and their types are found as a function of the external

current IS (Fig. 2 a–b). In general, as aK increases, the shape of the

fixed point curve as a function of v changes from non-monotonic

to monotonic in both models, but monotonicity emerges in CB

models for smaller aK . The two models display, however,

important differences in regard to the number and type of their

fixed points depending on the relative levels of ion channel

expression.

If the relative contribution of Kz and Naz channels is the same

(aK~1, first curve from left to right in Fig. 2 a–b), both DD and

CB models have three fixed points when IS = 0. In the DD model,

the two fixed points with lowest and highest v-values correspond to

asymptotically stable focus points, the remaining one corresponds

to a saddle point. The system is thus bistable: the smallest v-value

corresponds to the resting membrane potential and the largest v-

value corresponds to a depolarization block potential. In an

experiment, this would mean that the membrane potential could

be block-depolarized from its resting value by a brief but large

enough pulse of current, or taken back to rest by down-shifting v

with a negative short pulse of current. The number of fixed points

Figure 2. Bifurcation diagrams and trajectories. DD (solid) and CB (dashed). Panels (a) and (b) show the fixed points (by type) as a function IS ,
for relative expressions of Kz channels aK = 1,2,2.5,3,4,5. The fixed point curve for aK = 2.5 is shown in cyan. (c,d,e) Steady state currents, action
potential, and its underlying currents, respectively, with (aN ,aK ,aL) = (1,2.5,0.05). IK , IN , IL, and Itot~IKzINzIL are shown, respectively, in red, blue,
green, and black. The time course of an action potential after a 35 mV shift from rest and its underlying currents are shown in (d) and (e), respectively.
The black dot and the surrounding circle mark the resting potentials for the DD and CB models are illustrated.
doi:10.1371/journal.pone.0034636.g002
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decreases from 3 to 1 for larger stimulus amplitudes (SN

bifurcation); the fixed point that remains is stable. Experimentally,

this is a case in which square pulses of current injection would

depolarize the membrane, perhaps generating a pulse that would

end at a depolarized membrane potential. In this case no stimulus

would result in repetitive spiking (see for instance Fig. 1 in [59] and

Fig. S2). In contrast, in the CB model has only one stable fixed

point for IS = 0. The only stable fixed point disappears in a SN

bifurcation as IS increases, leaving behind an unstable point and a

limit cycle (not shown). As a consequence, the CB model predicts

sustained spiking for large enough IS if aK~1.

If the maximum Kz current amplitude is twice as large as the

maximum Naz current amplitude (aK = 2), the DD model has

three fixed points at IS = 0 and the CB model has only one (second

curve from left to right in Fig. 2 a–b and Fig. S3). In this case, the

fixed point curves of the two models are non-monotonic as a

function of v. Importantly, the transition into repetitive spiking

with square pulses of current will occur in this case near a saddle

node bifurcation in the DD model, and through a FLC bifurcation

in the CB model (see inset in Fig. 2 b inset, Fig. S4, and Text S1).

If the expression of potassium channels is higher, say aKw3
( Fig. 2 a–b, lower 3 curves), then both models have only one fixed

point for all IS considered here (the fixed point curves are

monotonic as functions of v). In all of these cases there are

sustained oscillations that emerge through a FLC bifurcation (near

Hopf points). These dynamics are like those observed in

experiments where an up-going ramp current stimulus produces

small subthreshold oscillations before repetitive spiking starts [60].

A similar phenomenon occurs if a large enough stimulus

amplitudes, when repetitive spiking disappears with an oscillation

toward a depolarization block.

The DD and CB models also exhibit different sequences of fixed

point bifurcations as IS increases for each of the aK ’s under

consideration. For instance, for aK = 4 (second curve from right to

left in Fig. 2 a–b), the sequence of fixed points in the DD model

includes stable nodes (ca. IS = 0), then stable foci that become

unstable and later turn into unstable nodes, then turn into unstable

foci again that become stable (ca. IS = 11), etc. In contrast, the CB

model has stable nodes first (IS = 0), then stable foci that become

unstable and then stable again without turning into nodes (ca.

IS = 13), etc.

In sum, unstable nodes and foci appear earlier in the DD model

(with respect toCB) as IS increases (Fig. 2 a–b) and the minimal

current stimulus that evokes repetitive spiking, Icyc, is smaller for

the DD model in comparison to the CB model, for aKw1:1. The

range of IS for which repetititive spiking occurs is also smaller for

DD models than for CB models for any given aKw1:1.

Experimentally, this means that the CB model requires larger

depolarizations from rest in comparison with the DD model in

order to show an action potential (see Figs. S4 and S5). In

addition, the above observations highlight potentially different

mechanisms underlying transitions into or out of repetitive spiking

as a function of the relative expression of ion channels. Taken

together, past paragraphs show that, in general, the dynamical

systems that result from using DD and CB formulations in Eqs. 5–

6 are non-topologically equivalent despite having identical populations

of voltage-gated channels. In other words, the DD and CB models

yield membranes with different electrophysiological signatures despite of

having identical channel expression.

Rest-to-spiking transitions
The choice of aK = 2.5 results in DD and CB models that are

readily seen as not topologically equivalent because their I?(v)
curves are non-monotonic and monotonic, respectively (cyan

curves in Fig. 2 a–b, and Fig. 2 c–e). As a consequence, the

dynamical behaviors of the two models are qualitatively different

as well. For this reason, a more detailed comparison between DD

and CB models is carried out from herein with aK = 2.5.

First, note that gating causes the divergence between the steady

state I{V relationships of the CB and DD formulations to be

more noticeable for Kz currents than for Naz currents [14,61].

To compare the dynamics in the two models, it is useful to

consider the trajectory described by the system when an action

potential occurs (Fig. 2 d). If the membrane potential is

depolarized 35 mV from rest the action potentials in the two

models are comparable in amplitude and duration, and they both

go back to very similar resting potentials. However, the

nonlinearities from the DD formulation can be observed in faster

upstroke and initial downstroke, relative to the CB model. A closer

inspection of the Naz and Kz currents shows an earlier activation

in the DD model relative to the CB model ( Fig. 2 e). This time

delay in the activation of the voltage-gated currents is accentuated

for larger values of aK , especially for the Naz current (see Fig. S5).

Different behaviors for the same stimulus current
Qualitatively different behaviours can be observed in the CB

and DD models as a function of IS . For instance, IS = 383 pA

yields a bistable DD model (Fig. 3b), but its CB counterpart is

monostable (Fig. 3d). In contrast, IS = 675 pA yields monostability

in the form of repetitive spiking for the DD model (Fig. 3c), but

bistability for CB (Fig. 3e). Both models display repetitive spiking

for large enough values of IS and both models block-depolarize at

some point. However, these sustained oscillations emerge and stop

through different mechanisms in the two models for a given IS .

Ramp stimulation
Ramp stimulation (see UTD protocol and Fig. 4a) has the

advantage of not causing the artificial one-dimensional v-shift

caused by square pulse stimulation, allowing the study of rest-to-

spiking transitions while all the state variables of the system are

changing. Importantly, the recruitment current in these conditions

may be smaller than the Icyc predicted for constant IS (this is called

slow passage through Hopf [62], Fig. 4b–c). Further, the mechanisms

by which repetitive spiking starts when IS is a constant (i.e. square

pulse stimulation) are different in comparison to those predicted

for ramp currents. For illustration, consider a case where a Top

stimulus slightly larger than the recruitment current in the CB

model (Fig. 4b–c, Icyc&383 pA for DD and 608 pA for CB, Top

amplitude = 705 pA). In this case, repetitive spiking starts after a

relatively long delay in the CB model. The reason is that the ramp

allows both variables of the system to change, thereby moving the

system toward one of its attractors. At the start of the ramp, the

system moves toward its nearest stable fixed point, which is a

focus. Shortly before the Top amplitude is reached, the fixed point

undergoes an AH bifurcation in which the focus becomes unstable,

leaving a limit cycle as the only attractor of the system (see also Fig.

S6). As a consequence, when the AH bifurcation occurs, the

system starts oscillating away from the fixed point and toward the

limit cycle. Note that repetitive spiking does not start through the

FLC bifurcation as for constant IS (compare to Fig. 3a,e) because

the system stays close to the stable fixed point during the ramp.

When the bistability regime starts (FLC), the system remains

within the basin of attraction of the fixed point. Sometimes the

current during the up-ramp becomes large enough to induce a

depolarization block, but decreasing IS from there during Down

may induce repetitive spiking. The amplitudes that result in block

with a ramp current can also be different from the depolarization

block stimulus predicted by the analysis in which IS is constant.
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From comparing the response profiles to UTD stimulation with

different maximal amplitudes and while keeping the same ramp

durations (Fig. 5a–b), it is possible to generalize the observation

that sustained spiking in the DD model starts for smaller maximal

current amplitudes in comparison to the CB model. The two

models show two kinds of hysteresis: (1) with respect to the

recruitment and de-recruitment current amplitudes, and (2) with

respect to the recruitment and de-recruitment firing rates. As a

rule of thumb for slow ramps, the recruitment current is more

likely to be smaller than the de-recruitment current with a larger

recruitment firing rate larger in comparison to the de-recruitment

rate (see Fig. 5 and also Fig. S6c,f); the trend reverses for steep

ramps (compare traces with low and high Top amplitudes in

Fig. 5a–b). Also, the current at which spiking ceases during Up can

be different than the current for which spiking starts during Down

(upper traces of Fig. 5a).

There is thus some qualitative agreement in the predictions of

the behavior of the DD and CB models for constant IS and ramp

stimulation. As predicted for constant IS , the recruitment current

for the DD model is smaller relative to that of the CB model and

within a smaller range (Fig. 4b–c and Fig. 5a–b).

Different responses to the same synaptic input
The general differences in excitability described previously

should also hold when IS represents synaptic input. Two questions

of particular importance for the study of motor neuron behavior,

and for network models in general, are whether recruitment with

excitatory synaptic input occurs for smaller synaptic drive in the

DD model in comparison to the CB model.

To compare the response profiles of the two models, simulations

were performed assuming IS represents fast excitatory synaptic

input ( Eqs. 7 and 8, and Table 1). The effects of synaptic drive on

the two models are compared by increasing the number of

synaptic contacts. The input axons, and hence their spiking

activity, were assumed to be the same for the DD and CB models.

On the postsynaptic end, the maximum amplitude, reversal

potential, activation and inactivation constants, average number of

active synapses, and the relative contributions of all channels,

including the ones mediating synaptic input, are all identical in

both models. The same excitatory synaptic input given to both

models (Fig. 6) produces similar fluctuations in their membrane

potential (Fig. 6a) with nearly identical synaptic currents except

those around spike times (Fig. 6b). Nevertheless, in agreement with

the earlier recruitment of the DD model shown in the previous

analysis, the DD model in the example illustrated in Fig. 6 fires

more action potentials than the CB model for the same number of

input synapses.

To generate examples of the response profiles for the two

models as a function of increasing excitatory input, the dynamics

of the DD and CB membrane potentials were simulated for

different numbers of excitatory axons (Fig. 7) assuming aK = 2.5.

Regular spiking responses (with relatively constant inter-spike

intervals) occur when approximately 250 inputs excite the DD

model. In contrast, the CB model starts producing regular spiking

with approximately 450 inputs. In other words, the smallest

number of activated excitatory synapses necessary to trigger

sustained spiking in the DD model under consideration is smaller

(by a factor close to 2) than the number of synapses needed to elicit

repetitive spiking in the CB neuron. Therefore, the same synaptic

input produced very different responses in these two model neurons

having the same populations of ion channels (Fig. 7).

The difference in the number of inputs required to recruit DD

or CB neurons could have an important impact on the output

properties and computations performed by small networks with a

few thousand neurons.

Figure 3. Bifurcation structure and dynamics of DD and CB models for aK~2:5. a. Bifurcation profiles. b–e. Dynamics of the DD (b,c) and
CB model (d,e) for different initial conditions, for two values of IS (vertical lines gray lines in a). The initial conditions are shown as empty dots near
the left axis and the fixed points are shown on the right portion of each diagram.
doi:10.1371/journal.pone.0034636.g003
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Figure 4. Dynamics of the model with DD currents and UTD stimulation. Panels a–c show, respectively, the current stimulus, membrane
potentials of DD, and CB models as a function of time. Epochs last 250 milliseconds each (slope *2.82 nA/ms), aK~2:5, maximum stimulus
amplitude 705 pA, and all other parameters as in Table 2.
doi:10.1371/journal.pone.0034636.g004

Figure 5. Response profiles of DD and CB models to UTD stimulation. Panels a and b show, respectively, the responses displayed by the DD
and CB versions of the system Eqs. 5 and 6. All simulations with aK = 2.5 with epochs lasting 250 ms and maximum stimulus amplitudes between 0.2
and 8 nA in increments of 0.5 nA.
doi:10.1371/journal.pone.0034636.g005
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Figure 6. DD and CB action potentials in response to fast excitatory synaptic input. (a) Membrane potential for the DD (black) and CB
(blue) models, and presynaptic spike times (vertical dashed lines). (b) Post-synaptic current. Parameters: NE = 150, kE = 10.
doi:10.1371/journal.pone.0034636.g006

Figure 7. Profiles of DD and CB responses to excitatory synaptic input. All simulations with aK = 2.5 with increasing numbers of excitatory
synapses assuming the average number of activated synapses per input axon k = 10.
doi:10.1371/journal.pone.0034636.g007
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Discussion

Advantages of the drift-diffusion model
The formulation of currents based on DD from Eq. 3 represents

a theoretical improvement over CB models. One consequence of

taking diffusion into account is that currents in the DD model

display rectification and other properties that cannot be observed

in CB formulations without increasing the dimensionality of the

system. Therefore, in comparison to CB models, DD formulations

give more realistic representations of excitable membranes that do

not require a large increase in computation. DD models could thus

advance our current understanding of dynamical behavior in

single cells and networks. For instance, the formulations shown

here can be used to infer patterns of synaptic connectivity from

knowledge about the input-output properties in cells or specific

information about correlation patterns in their activity as done in

[35]. In addition, the normalizations used in this article allow

estimations of relative patterns of channel expression.

As pointed out in the seminal work by Goldman [11], by

researchers in cardiophysiology (see for instance see Naz, and Kz

currents in [63]) and neurophysiology [14,15,64], the constant

field approximation describes the voltage-dependence of currents

better than the CB approach. Recall the Goldman constant field

approximation is a particular case of the DD formulation used

here. Evidence indicating that the DD approach is better in

general can be found in several reports containing IV relationships

with tails of hyperbolic sine shape. To mention a few instances, see

recordings from photoreceptors [65], calcium channels [66],

sodium channels [67] in Drosophila, snail neurons [68], in the

mammalian cortex [69], and even in glial cell recordings as

reported in [70]. The DD models have the advantage that

measurements can be made directly from the currents recorded

without extra calculations of maximal conductances. Such

conductances are obtained as slopes of the current-voltage

relationship, assuming current is the product of a conductance

and a voltage difference (electrical drift only). When using the DD

formulation, the maximal currents from voltage-clamp experi-

ments can be directly fit with the model because the leading

coefficients in the DD formulation are already in units of current

and no extra calculations are needed. This ‘‘out of the box’’

behavior is reassuring because it enables the direct translation

from recordings to computational models.

A complementary comparison between the DD and CB models

should be done, however, against experimental measurements.

One way in which it would be possible to decide whether to use

DD or CB models would be to compare the response profiles of a

cell membrane having blocked as many currents as possible,

except the transient Naz and delayed-rectifier Kz currents.

Preparations like the squid giant axon might be ideal in this regard

[14,15]. An alternative approach could be to use an exogenous

expression system to construct an excitable cell and test the two

models there. The idea in general is that the basic input-output

properties of the recordings should be fit with the two models

along with spike shapes and firing rates. The channel kinetics

should be determined from voltage-clamp experiments. To

determine the relative contribution of the channels, �aaN can be

estimated from the maximum dv=dt and C. The relative

contribution of the Kz current aK can then be found by matching

the shape of the total steady state current. The resulting

bifurcation profile (e.g. a fixed point curve like those from Fig. 2

a–b) would then be assigned to the recording. Once the bifurcation

profile that matches the data has been determined, the stimulus

currents giving repetitive spiking with both square pulses and with

ramps should be better predicted by either the DD or CB model.

In consideration of the more realistic representation of transmem-

brane current provided by the DD approach, the author

hypothesizes that the DD model would yield more accurate

predictions.

Mathematical relationship between the DD and CB
models

The whole-membrane behavior of the DD model shares many

of the properties of CB models in that it contains parameters that

can be found experimentally and displays dynamics observable in

excitable cells. As shown in previous paragraphs, the two models

are mathematically related: the CB formulation for current is a

linear approximation of the DD formulation around the reversal

potential for the current. In agreement with previous reports

[14,15], the divergence between the CB and DD currents near

typical resting potentials can be further decreased when channel

gating is taken into account. As a result, the DD and CB versions

of the system Eqs. 5–6 display some qualitatively similar behaviors

when observed macroscopically, but over different ranges of

parameters. However, the two models with identical ion channel

populations display qualitatively and quantitatively different

transitions in their behaviors (i.e. the CB and DD models are not

topologically equivalent).

Similar but not same excitabilities with the same channel
populations

The DD and CB models are compared by setting the relative

contributions of the channels to be identical in both models. One

of the most obvious differences between the DD and CB models is

their range for repetitive oscillations. In general, if the ratio

between the maximum Kz and Naz current amplitudes is larger

than *1.2, then the DD model responds with action potentials for

smaller external input currents found within a smaller range

compared with the CB model. The number of input axons that

causes sustained spiking is smaller, and within a narrower range in

the DD model in comparison to the CB model. The DD

membrane is thus more excitable, and responds within a smaller

input range, than the CB membrane. Further, if the excitability

type is defined as the kind of rest-to-spiking transition observed

while the external current increases smoothly (e.g. ramp), the DD

and CB models represent membranes with the same populations

of channels and different types of excitability (see for instance

Figs. 3 and 4).

Interestingly, both models display two different hysteresis-

related behaviors with ramping inputs. In very general terms,

the recruitment current is larger than the de-recruitment current if

the steepness of the ramps is shallow. In contrast, the recruitment

current is smaller than the de-recruitment current when the ramps

are very steep. For particular interest, the two models display what

has been reported as a slow passage through Hopf [71] in which a

ramp current triggers sustained oscillations for current amplitudes

smaller than Icyc, which can be predicted by bifurcation analysis

using the stimulus current as the bifurcation parameter. A

modified version of the slow passage through Hopf was also

observed in simulations of excitatory synaptic input, as the total

synaptic current that triggered spiking was also considerably

smaller than the Icyc of the system.

An important remark related to firing rate hysteresis

relevant for motor control. Note the only persistent current in

the model is the delayed rectifier Kz current. Therefore, the firing

rate hysteresis and bistability regimes observed in the CB and DD

models presented here are not the result of having persistent Naz

or Ca2z currents (see [72,73]), thus highlighting the importance of
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explicitly distinguishing firing rate hysteresis and bistability

behaviors from the presence of persistent inward currents in a

membrane.

Model specificity and extensions
The models are constructed based on Drosophila data. The

choice of the specific channels and animal model is based on the

large availability of whole-cell patch clamp recordings, which

provide measurements that can be directly used as model

parameters. In addition, the use of Drosophila data allows

interpretations in terms of specific channel genes. Since the

parameters used here are representative of central neurons in

Drosophila the post-synaptic currents are assumed to be mediated

by fast cholinergic receptors [44]. It should be noted, however,

that the biophysical properties of homologous channels in

vertebrates have also been characterized (for sodium channels

see [74]; potassium channels [37,40,75,76]; cholinergic neuro-

transmission [77]; central synapses mediated with glutamate

receptors [32,78,79]). Therefore, the approach taken here can

easily extended to represent other channels so the formulations of

membrane potential can be adjusted to model other systems.

Data fitting and modeling techniques
For theoretical interest, writing the model in terms of ratios

using the normalizing amplitude �aa~�aaN allows fixing one of the

maximal current amplitudes in the model while fitting the

maximum dv=dt to data. This way, the whole-membrane behavior

can be tuned in terms of the relative contributions of the different

channels guided by bifurcation theory, thus providing an

alternative to brute-force fitting algorithms and other statistical

approaches [80]. Furthermore, the conceptual improvement in the

formulation for single channels is extended to facilitate quantita-

tive agreement at the whole-membrane level.

The analysis and fitting procedures presented here can guide

studies geared toward understanding cellular responses recorded

in the laboratory under genetic and pharmacological manipula-

tions. In this respect, it is worth remarking that this is one of only a

few modeling efforts that incorporates data from an identified

neuron in a single model system in which both the ion channel

genes and their biophysics are known. Importantly, the results

shown here in regard to the differences between the DD and CB

models also hold if the models are adjusted to match the cellular

dynamics in other model organisms. For instance, if the

parameters are adjusted so that the membrane has the input

resistance and capacitance measured from a vertebrate cell of

interest, with fast-transient Naz and Kz delayed rectifier

channels (e.g. Nav1.2 and Kv2.1) and fast AMPA synapses, the

DD and CB models will display the same general qualitative

differences in excitability presented here. If the specific genes are

not known, the phenotypical behavior of currents can still be

associated with specific families of proteins grouped by function

(say, mediating fast-transient Naz currents), which can be

modeled with the approach shown in this article. Another

extension of this work could be made to incorporate neuronal

structure and address issues related to the targeting of channels to

specific submembrane domains. One further extension would

involve the construction of networks formed with different cell

types having realistic synaptic interactions to study the role played

by synaptic efficacy, number of input synapses, and other variables

on the input-output properties of networks.

Final remarks
The construction of the membrane models in this article rests on

the hypothesis that the relative presence of channels in the

membrane determines, to a large extent, what we could refer to as

the electrophysiological profile of a cell [27,81–83]. This theoretical

principle was used here to compare and contrast responses to

current injection and synaptic input of two membranes expressing

identified ion channel genes with known biophysical properties.

The non-topological equivalence between the DD and CB models

predicts qualitatively different behaviors for the same patterns of

channel expression. As shown here, the nonlinearities in the DD

formulation for transmembrane currents can fundamentally

change the spike-generating mechanisms and sensitivity to

external stimulation in the whole DD model. Of particular

importance, the two models generally display different spike-

generating mechanisms as a function of the input current, synaptic

or applied. As a consequence, the input and output firing rates of

DD and CB cells within network models will be very different on

any given architecture, potentially giving rise to very different

results and interpretations. These differences are important

because the intrinsic properties of neurons (and excitable cells in

general) shape the activity of cellular networks to which they

belong. Conversely, the network also influences the electrophys-

iological profile of single cells through the population of channels

that mediate synaptic input and also through other modulatory

influences. This is a subject that warrants a further and more

careful examination currently underway.

The results presented here highlight the importance of

exploring the different responses produced by two kinds of

extensions of the DD models presented here: spatially detailed

models and networks. These two extensions (and others) are likely

to yield very different results and predictions in comparison to

those from existing CB models, potentially prompting a reevalu-

ation and possibly, a re-interpretation of accepted theories

originated from network models of nervous function.

Supporting Information

Figure S1 Fitting of voltage clamp data from Shab
channels [39]. The data (black dots) were digitized from the

original publication and fitting was done with a python script. The

blue curves are fits to the data parameters

(vu,gu,ru,su)~(1,2,0:1,0:6). Middle, steady state activation from

the tail currents shown in the top panel (black dots), and average

from all recordings (white dots). The lower panel shows the time

constant fit.

(TIF)

Figure S2 Cholinergic Synaptic input.

(TIF)

Figure S3 Steady state currents for the DD and CB
models for aK[f1,2,3,4,5g. The top curve in each panel of

corresponds to aK~1, the bottom curve corresponds to aK~5,

and the vertical gray line indicates the total current is zero.

(TIF)

Figure S4 Trajectories of membrane potential with
different levels of depolarization from rest (vr). DD (solid)

and CB (dashed) for aK[f1,2,3,4,5g shown from left to right. The

upper panels show the membrane potential and fixed points for

the two models (DD solid lines and dots, CB dashed lines and

circles). The lower panels show the corresponding currents (IK , IN ,

IL, Itot in red, blue, green, and black, respectively, and IS~0). (a)

v shifted 26 mV. (b) v shifted 34 mV.

(TIF)

Figure S5 Profile of responses to square pulses of
different amplitude. The pulses lasted 200 milliseconds with
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aK = 2. The minumum pulse amplitude was 0.025 nA, the steps

where 0.5 nA.

(TIF)

Figure S6 Comparison of phase trajectories and instan-
taneous firing rate during UTD stimulation. Panels a and

c show, respectively, DD and CB trajectories in the phase plane

(w,v). The solid gray curves in panels represent the v and w-

nullclines in the absence of stimulation. The dashed gray line

represents the v-nullcline during Top. b and d Graphs of (dv=dt,v)
for DD and CB models, respectively. The horizontal line illustrates

the v-location of the fixed point. c and f Instantaneous firing rates

as a function of time. The horizontal lines illustrate the

recruitment and de-recruitment firing rates (blue and black,

respectively).

(TIF)

Text S1 Overview of the derivation of the expressions for

current driven by electrodiffusive transport and notes about

bifurcation analysis.

(TEX)
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