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Summary
Stochasticity is a hallmark of cellular processes and different classes of genes show large
differences in their cell-to-cell variability (noise). To decipher the sources and consequences of
this noise, we systematically measured pairwise correlations between large numbers of genes,
including those with high variability. We find that there is substantial pathway variability shared
across similarly regulated genes. This induces quantitative correlations in the expression of
functionally related genes such as those involved in the Msn2/4 stress response pathway, amino-
acid biosynthesis, and mitochondrial maintenance. Bioinformatic analyses and genetic
perturbations suggest that fluctuations in PKA and Tor signaling contribute to pathway-specific
variability. Our results argue that a limited number of well-delineated “noise regulons” operate
across a yeast cell, and that such coordinated fluctuations enable a stochastic but coherent
induction of functionally related genes. Finally, we show that pathway noise is a quantitative tool
for exploring pathway features and regulatory relationships in un-stimulated systems.

Introduction
Isogenic populations of cells grown in the same environment show diversity in size, shape,
cell cycle position, and gene expression. Evidence of such variability, or “molecular noise”,
was reported in early studies of bacterial persistence during antibiotic treatment, λ phage
burst size, and bacterial chemotactic behavior (Bigger, 1944; Delbruck, 1945; Spudich and
Koshland, 1976). In addition to these early examples, cell-to-cell variability is increasingly
being identified as a ubiquitous property of cellular networks, contributing meaningfully to
the operation of many systems such as HIV latency and the response to chemotherapy
(Burnett et al., 2009; Spencer et al., 2009).

Single cell studies documented two clearly distinct sources of cell-to-cell non genetic
variability. First, the fundamentally stochastic nature of transcription and translation are a
source of variation at the level of a single gene or transcript. Second, global differences in
cellular physical properties such as size, energy state, or concentrations of key
transcriptional, translational or metabolic components generate cell-to-cell variability
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(Thattai and van Oudenaarden, 2001; Blake et al., 2003; Raser and O’Shea, 2004; Pedraza
and van Oudenaarden, 2005, das Neves et al., 2010).

Much less studied as a source of noise are fluctuations that are generated within a given
pathway and propagate to its members, but do not percolate globally within the cell. Studies
in the mating and galactose pathways in yeast (Colman-Lerner et al., 2005; Volfson et al.,
2006), in addition to competence and sugar sensing in bacteria (Suel et al., 2006; Dunlop et
al., 2008) have suggested that such pathway-specific fluctuations can have crucial
phenotypic consequences.

Assays for decomposing noise have been instrumental in determining fluctuations that are
specific to a single gene (intrinsic, uncorrelated) and those experienced by multiple genes
(extrinsic, correlated). In these assays, intrinsic and extrinsic fluctuations are quantified by
measuring the covariance between identical promoters in the same cell (Thattai and van
Oudenaarden, 2001; Swain et al., 2002; Elowitz et al., 2002; Raser and O’Shea, 2004).
Uncorrelated variation in expression of these two promoters reflects intrinsic noise resulting
from stochastic fluctuations in the process of gene expression itself. In contrast, extrinsic
noise is defined as the correlated variation in the expression of the two genes resulting from
either global or pathway-specific fluctuations. While studies in yeast and bacteria
demonstrated that intrinsic noise was dominant for weakly expressed genes and documented
the determinants of such noise (Ozubdzk et al., 2002; Blake et al., 2003; Raser and O’Shea,
2004; Golding et al., 2005; Raj et al., 2005; Newman et al., 2005; Becskei et al., 2005;
Taniguchi et al., 2010), the contribution of extrinsic noise to gene expression heterogeneity
varies greatly across protein types and has not been systematically studied. Furthermore, the
impact of pathway-specific versus global fluctuations on extrinsic noise remains unclear.

In this paper, we probe the contribution of global versus pathway-specific sources to the
expression noise of a broad array of S. cerevisiae genes. We show that while all genes
experience a modest amount of noise due to generic cellular factors, a substantial subset of
genes experience high extrinsic noise produced by pathway-specific fluctuations. This noise
is shared across similarly regulated genes, and induces quantitative correlations which we
use to identify co-regulated groups of genes. We further show that this correlation measure,
which is derived from steady-state measurements in un-stimulated cells, is a quantitative
metric of the sensitivity of a given gene to its upstream pathway, and is therefore predictive
of the response of a gene to environmental perturbations. Using this approach, we identify
distinct noise ‘regulons’ involved in the general stress response, mitochondrial regulation,
and amino acid biosynthesis. Genetic perturbations to the PKA and Tor pathway
quantitatively alter noise-induced correlations, implicating these pathways as important
causative noise sources in budding yeast.

Results
A strategy for measuring covariance in protein expression using a single fluorescent
protein

To define the role of pathway specific noise in gene expression, we sought to identify
groups of co-regulated genes which exhibit significant extrinsic noise. To determine the
relative contributions of intrinsic and extrinsic noise in the expression of a diverse set of
genes, we adapted a noise decomposition strategy utilizing isogenic diploid cells expressing
either one or two copies of the same fluorescently-tagged protein (FP). This single color
approach avoided problems with equivalence between different color FPs and allowed us to
take advantage of existing libraries of S. cerevisiae strains in which each protein is
expressed as a carboxy-terminal GFP fusion from its endogenous promoter and natural
chromosomal position (Howson et al., 2005). To validate this approach which has
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previously been used in low throughput (Volfson et al., 2006), we compared one and two
color noise decompositions of a titratable galactose expression system driven by the small
molecule estradiol (see supplemental methods). The strain expressing two copies of pGAL1-
YFP exhibited a unimodal distribution whose mean was twice as fluorescent as the strain
expressing only one copy (Figure 1A). Consistent with previous reports, extrinsic noise of
pGAL1 was significantly higher than its intrinsic noise (Volfson et al., 2006; Figure 1B).
The need for variance measurement in two populations of cells (rather than a single
measurement in the two color assay) resulted in more cumulative experimental error in the
one FP strategy (Figure 1C). However, the extrinsic noise values estimated by the two
techniques were linearly correlated (R2 = 0.99, Figure 1C).

Intrinsic noise scales with protein expression level, whereas extrinsic noise shows a more
complex pattern

We constructed isogenic diploid strains each harboring one or two copies of 456 highly
expressed GFP-tagged proteins. Using this single-color approach and flow cytometry, we
computed intrinsic and extrinsic noise decompositions in the expression of these proteins
(Figure 1D, S1, Table S1). After correcting for cell size variability (Supplemental
information), our data confirmed that at low expression levels, noise is dominated by
intrinsic fluctuations in agreement with previous work (Raser and O’Shea, 2004; Newman et
al., 2005; Taniguchi et al., 2010). Indeed, the coefficient of variation for intrinsic noise
(CVint) declines according to an inverse square-root relationship as mean expression
increases, as would be expected from fluctuations resulting from uncorrelated stochastic
processes such as production and destruction of mRNA and protein, or random partitioning
of cellular components during cell division (Paulsson, 2004; Huh and Paulsson, 2011). The
overall trend of intrinsic noise was well captured (R2=0.88) by a two parameter model
CVint= α +β/(μ)0.5, where α represents the plateau of intrinsic noise observed in the data and
β the influence of the mean (μ). In contrast, extrinsic noise fits more poorly to the same
model functional form (R2=0.35). Most proteins exhibited extrinsic noise values around a
well-delineated CVext=0.09 “floor” (Figure 1D, inset). However, around 20% of the proteins
in the dataset (N=86) displayed elevated extrinsic noise. Therefore, noise in S. cerevisae can
be separated into local stochastic components that dominate at low expression, a moderate
level of global variation common to all genes due to variations in the overall transcriptional,
translational, and metabolic capacity of the cell, and substantial extrinsic noise of unknown
origin affecting only a subset of genes.

Promoters of high extrinsic noise proteins are enriched for specific transcription factor
binding sites

Examination of the proteins that exhibited the top 10% highest extrinsic noise revealed that
their respective gene promoters were enriched for several transcription factor binding
motifs. These included binding sites for the stress responsive transcription factors Msn2/4,
in addition to amino acid synthesis linked transcription factors such as Gzt4 and Met31/
Met32 (p-value<0.05). Further analysis of high noise genes revealed ‘AGGGG’, the
consensus Msn2/4 binding site (Schmit et al., 1996), as the most enriched 5-mer sequence.
The presence of specific transcription factor binding sites could reflect the presence of
pathway-specific noise that induces correlated fluctuations across a set of target genes.
Alternatively, it could reflect an enrichment of these pathways with genes that are
particularly vulnerable to shared global fluctuations. If the enrichment was due to global
fluctuations, then genes exhibiting high extrinsic noise would be expected to be strongly
correlated irrespective of their pathway membership. By contrast, if noise is pathway
specific, then correlations should appear only between genes that are members of the same
pathway.

Stewart-Ornstein et al. Page 3

Mol Cell. Author manuscript; available in PMC 2012 August 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Genes regulated by Msn2/4 show correlated steady-state expression
To discriminate between these two scenarios, and test whether noise-induced correlations
are predictive of pathway membership, we first focused on proteins whose gene promoters
are regulated by the Msn2/4 general stress response since several of its canonical members
(Pgm2, Hsp12, Tfs1) were present in the high noise category. We selected the extrinsically
noisy protein Pgm2-RFP as a specific reporter of the pathway, and verified that its
expression was dependent on Msn2/4 activity (data not shown). Since the single FP
approach to estimating covariance becomes increasingly error prone as the proteins diverge
in expression levels, we turned to a two-color strategy to measure the covariance of the most
abundant proteins in the GFP library (743 genes) with either Pgm2 or the “quiet” ribosomal
protein Rpl17B (Table S1, Figure 2A, B). To compare covariance without bias, we defined
the S-score as the covariance of two proteins, normalized by the query proteins’s (Pgm2 or
Rpl17B) extrinsic noise (see supplemental methods). The distribution of Pgm2 S-scores was
reproducible (R2=0.87) and right skewed, with the majority of proteins weakly correlated
with Pgm2 and only a subset showing high S-scores (Figure 2B). Furthermore, for proteins
in this set, the value of their Pgm2 S-Score was highly predictive of the presence of Msn2/4
binding sites in their gene promoters (17 of the top 20 genes have consensus ‘AGGGG’ sites
in their promoters, Figure 2C, S2B). In contrast Rpl17B S-scores showed a distribution that
was symmetrical and centered near one, reflecting the sensitivity of most cellular
components to this ribosomal gene. Furthermore, promoters of genes with high Rp17B S-
scores showed no enrichment for Msn2/4 binding sites (Figure 2C).

Correlations induced by steady-state fluctuations are predictive of dynamic response to
stimulus

The S-score metric reports on local sensitivity in the expression of a gene to the activity of
an upstream regulator using a simple linear model (Supplementary material). The
applicability of such a model should be extendable to larger input perturbations when genes
respond linearly to changes in activity of the transcription factors. This is plausibly the case
for stress responsive genes, which have been observed to exhibit graded induction profiles
(Giorgetti et al., 2011; also our own observations with HSP12 and PGM2, unpublished). To
test whether the low amplitude variability resulting from noise at steady-state, as captured
by an S-score, is quantitatively predictive of the response of a gene to changes in the
environment, we compared the Pgm2 S-score of a protein with the protein’s expression in
response to a mild heat shock—37°C for 30min. In general, we find a strong positive
correlation (Pearson correlation 0.74, p-value= 3.69e-130) between these two quantities
(Figure 3A). Interestingly, the subset of genes such as HSP82, SSA4, and SSA1 whose
expression (quantified by protein abundance) responded strongly to heat shock while
exhibiting low S-scores were targets of the heat shock transcription factor Hsf1 in addition
to Msn2/4. These results argue that extrinsic noise at steady-state is shared across the
members of the Msn2/4 stress response pathway. The presence of this pathway-specific
noise defines a well-delineated Msn2/4 unit, easily separable from heat shock genes, with
the S-score representing a quantitative measure of a component’s pathway membership.

Noise in MSN2/4 general stress pathway is predictive of survival in stress conditions
Cell-to-cell variability has been implicated in population survival of yeast (Smith et al.,
2007; Blake et al., 2006) and cancer cells (Singh DK et al., 2010) exposed to acute
environmental stressors. In terms of the general stress response, genetic (Sadeh et al., 2011)
and environmental (Yamamoto et al., 2008) perturbations that activate Msn2 were shown to
result in increased survival in severe stress conditions. As a result, we hypothesized that
higher stochastic expression of Msn2/4 target genes allows for enhanced resistance to stress.
This model requires, first, that Msn2 activation is sufficient to provide resistance to stress.
Indeed, we find that overexpression of Msn2 provides resistance to heat shock, and that
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most importantly, this resistance is graded and proportional to the expression level of the
Msn2 target genes such as HSP12 (Figure S3A). To pinpoint the physiological
circumstances under which natural variation in Msn2 is protective, we imaged exponentially
growing cells expressing Pgm2-YFP and determined basal Pgm2 levels in individual cells.
We then re-examined the same cells after severe heat stress (50°C for 20min on a hot plate)
and determined their viability using the dead cell marker Propidium Iodide (PI). For a very
low density exponentially growing population (OD~0.05), we did not observe a statistically
significant correlation between basal Pgm2-YFP levels and enhanced survival (Figure S3B).
However, interestingly, cells grown to late exponential (OD=0.5) exhibited a quantitative
correlation between survival and basal Pgm2 expression level. Specifically, if the Pgm2-
YFP distribution is divided into quartiles, and cells within each of these quartiles scored for
viability with PI staining, then 23.51% (95% CI = 21.45–25.66%) of cells in the bottom
quarter of Pgm2 were inviable (Figure 3B). In contrast, only 18.84% (95% CI = 16.96–
20.84) of cells in the top quarter of the Pgm2 distribution were inviable (N=1608),
amounting to a 20% increase in survival (Figure 3B). These data establish an intricate
connection between phenotypic diversity and stress resistance.

Multiple noise regulons containing a coherent set of genes exist in S. cerevisiae
What other noise regulons, in addition to targets of Msn2/4, might exist in a yeast cell? To
address this question more globally, we picked 44 proteins (in addition to Pgm2) whose
expression exhibited high extrinsic noise to tag with mCherry (see Supplemental Material).
We then measured their covariance with a set of 182 GFP-tagged proteins spanning a range
of pathways, noise, and expression levels (Table S3). To group proteins according to their
noise patterns, we computed the correlations across the dataset to produce a 182 square
matrix which was then hierarchically clustered, revealing four major groups (Figure 4A).
GO term analysis indentified three of these blocks as corresponding to stress response,
mitochondrial, and amino acid biosynthesis functional categories (Figure S4). The fourth
block, which dominates the upper left quadrant, was a more heterogeneous mix which may
represent generic cellular noise. Other smaller groups could also be identified, including a
group containing three out of the four histone proteins present in the dataset (Htz1, Hta2,
Htb2) in addition to Tcb3 and YMR295C, two cell cycle regulated proteins (Spellman et al.,
1998).

If the putative amino acid, mitochondrial, and stress responsive clusters are co-regulated as
the noise analysis predicts, then the promoters of the genes encoding these proteins should
be enriched for binding sites of the appropriate transcription factors. Drawing on published
ChIP data (Harbison et al., 2004), we determined that the amino acid biosynthesis group was
enriched for the amino acid regulatory transcription factors Gcn4, Met4, and Arg80/81, that
the mitochondrial group was enriched for members of the Hap2/3/4/5 complex which is
known to regulate heme synthesis and oxidative metabolism, and that the stress responsive
group was significantly enriched for Msn4 binding (Figure S4).

The presence of these well-delineated clusters indicates that members in the same cluster
show related patterns of covariances with the 182 proteins in the dataset. For example, the
covariances of Pgm2 and Tsa2 (encoded by two genes in the ‘stress’ group downstream of
Msn2/4) with the 182 test proteins were strongly linearly related (Pearson Correlation =
0.94, Figure 4B). A positive linear relationship also existed between the covariances of the
mitochondrial protein Cit1 with the 182 test proteins and those of the amino acid
biosynthesis protein Arg4 with the same proteins (Pearson Correlation = 0.65). Furthermore,
the covariances of Arg4 with the 182 test proteins were negatively correlated with those of
Tsa2 (Pearson Correlation = −0.58). These robust ‘off-diagonal’ interactions indicate that
this fluctuation-based analysis is capable of detecting pathways that are correlated by
specific upstream signaling, in addition to a shared transcription factor. It also suggests that
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at least part of the measured correlative fluctuations is generated upstream of the particular
transcription factors which regulate these groups of genes (see Supplementary Materials for
an extended analysis).

These results suggest that in addition to generic extrinsic fluctuations resulting from
variability in general cellular factors (noise floor), genes across a yeast cell are subject to a
small number of structured and pathway-specific extrinsic noise sources. Such noise sources
induce correlated fluctuations in the expression of pathway genes, and hence can be used to
assign genes to pathways, and as a measure of pathway activity. To explore this idea further,
we took advantage of the data representation in terms of a covariance matrix which renders
it interpretable in terms of standard dimensionality reduction techniques such as Principal
Component Analysis (PCA). By subjecting the covariance matrix to PCA, we can compute
the number of dimensions necessary to describe the noise patterns under unperturbed
conditions. PCA analysis revealed that ~80% of the variance in the data could be explained
by the first five principal components (Figure S4).

The principal components determined by PCA appeared readily interpretable in terms of
cellular pathways. For example, the contribution of the first principal component to each
gene, plotted in the same order as the clustered data, showed a strong peak spanning the
Msn2/4 stress responsive cluster and a broad negative region corresponding to the remaining
genes (Figure 4C). Comparison of the first principal component to published mRNA
expression data over a range of environmental conditions (Gasch et al., 2000) showed a
correlation (Pearson correlation > 0.4) to a range of stresses including heat shock and growth
on non-glucose carbon sources.

Growth on poor carbon sources, as well as heat shock, is known to inactivate the PKA
pathway resulting in Msn2/4 activation (Gorner et a., 1998; Gorner et a., 2002). To directly
test if the pattern of gene expression predicted by PCA analysis is consistent with PKA
inactivation, we overexpressed Pde2, a negative regulator of PKA activity and measured the
change in the expression of the 182 query genes. The log2 change in gene expression after
8hrs of Pde2 overexpression from an estradiol regulated galactose promoter correlated with
the first principal component (Pearson correlation 0.62, p-value 8.60e-21), showing a pattern
of stress gene expression that again mirrored the steady-state Pgm2 S-scores (Figure 4D).

Genetic analysis traces noise in regulons to PKA and TOR pathways
We next asked if fluctuations in PKA activity causally affect the fluctuations in the Msn2/4
pathway. since deletions or overexpression of PKA-related genes have dramatic phenotypic
effects on cellular physiology, making it difficult to tease out specific effects on noise, we
turned to heterozygous deletions of PDE2, RAS2, GPB1, and IRA2—core regulators of
PKA. The mean normalized covariance of Pgm2 and Hsp12 increased in RAS2/ras2 and
decreased in PDE2/pde2, GPB1/gpb1, and most significantly in IRA2/ira2 (Figure 5A, p-
values<0.05 in all cases). These results support the notion that alterations in PKA activity
affect the noise properties of the Msn2/4 cluster specifically, and may be a major driving
force for the correlations observed between its members. These results are further
corroborated by a simple linear model of gene expression which predicts that the covariance
of two proteins (e.g. Pgm2 and Arg4) which don’t share a transcription factor should change
linearly as a function of mean expression when one of the transcription factors (Msn2) is
titrated. On the contrary, under this model, the same titration of Msn2 should cause the
covariance between two downstream targets of Msn2, Hsp12 and Pgm2, to increase non-
linearly (Figure 5B). This non-linear effect is indeed observed when the upstream regulator
PKA is disrupted (Figure S5, and Supplemental methods). These results argue that
covariance measures within a pathway have an intricate, potentially information rich,
relation with mean expression.
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Extensive knowledge of Msn2/4 regulation was used to guide the identification of PKA as a
plausible noise regulator in the system. To investigate noise sources in other regulons, we
used a less biased screening approach based on the hypothesis that, much like our findings
for the Msn2/4 pathway, disruption of key regulators would result in quantitative changes in
covariances between pathway genes.

Although the amino acid biosynthesis and mitochondrial genes formed well-delineated and
distinct clusters in our dataset, off- diagonal interactions are observed between the two
groups (Figure 4A). Therefore, we treated these clusters as one large group for this analysis.
We crossed a strain expressing Arg4-GFP (an amino acid biosynthesis gene) and Cit1-
mCherry (a mitochondrial TCA cycle gene) to a collection of 188 diploid strains deleted for
one copy of a range of signaling related factors, including kinases and transcription factors
(Table S4). We then measured the expression of Arg4 and Cit1 and the covariance between
them in each such heterozygous strain (Figure 6A). Here again, heterozygous deletions
showed negligible growth phenotypes and limited impact on average gene expression,
therefore presenting us with the opportunity to probe noise without strong confounding
effects (Springer et al., 2010). In the mean-covariance space, most heterozygote strains fall
on a straight line where increases or decreases in expression result in proportional changes
in covariance, a behavior that is expected of multivariate Poisson random variables
(Holgate, 1964). There are, however, a few outliers. For example, TCO89/tco89
heterozygous deletion substantially increases the mean and the Arg4/Cit1 covariance. Tco89
is a Tor component, and Tor is known to regulate nitrogen metabolism and mitochondria
(Reinke et al, 2004). More interestingly, heterozygous deletions of a cluster of genes, such
as RTG1, SLN1, CMD1, and PPQ1, increased Cit-Arg4 geometric mean but reduced their
covariance, violating the expected relationship between mean and covariance and showing a
‘noise phenotype’. This is plausibly the case because these genes play a substantive role in
modulating pathway fluctuations.

To further dissect the role of the TOR pathway in the noise phenotype of the amino acid
biosynthesis regulon, we measured the covariance between the biosynthetic protein Arg4-
mCherry and the set of 182 GFP query strains in heterozygous deletions of RTG1, RTG3,
and TCO89. Heterozygous deletions of RTG1 and TCO89 resulted in significant and
specific increase of Arg4 covariance with members of the amino acid cluster. In contrast,
heterozygous deletion of RTG3, a RTG1 binding partner, had no significant effect on amino
acid S-scores consistent with observations in the initial screen (Figure 6B). Interestingly, the
increase in covariance observed among the amino acid biosynthesis proteins in the RTG1/
rtg1 background stands in contrast to the decrease observed in the covariance between Arg4
and Cit1 in the same strain. This suggests that in the RTG1/rtg1 strain, there is a de-
correlation between the mitochondrial and amino acid regulons, and an enhanced coherence
within the members of the amino acid regulon.

Concomitant with increased Arg4 covariance in TCO89/tco89, members of the amino acid
regulon showed increased mean expression. Interestingly, however, these genes did not
show any appreciable mean increase in the RTG1/rtg1 background, demonstrating that
fluctuations-induced correlations contain information complementary to mean expression. In
this case, RTG1 is involved in a negative feedback loop with TOR through nitrogen
metabolic processes (Liu and Butow, 1999). Disruption of this loop is shown here to
increase noise, in accordance with a role of negative feedback in attenuating fluctuations
disproportionate with its effect on mean expression. Overall, these results argue that much
like Msn2/4 responsive genes, amino acid biosynthesis genes are correlated at the single cell
level by upstream regulators. In this case, our data implicate the Tor pathway as a major
noise source.
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Discussion
Stochasticity and noise are universal features of cellular systems and a key source of non-
genetic diversity in populations of cells and organisms. Here, we have defined a strategy for
dissecting the contributions of different processes to noise in S. cerevisiae. We find that, in
accordance with previous reports, intrinsic noise is strongly predicted by expression level.
Variability in global transcriptional and translational capacity between cells also impact
gene expression. These sources of noise affect the expression of all genes and manifest as an
extrinsic noise floor. In addition to such global sources of extrinsic variability, genes are
also subject to specific noise that is generated within the pathway in which they operate.
When noise is pathway exclusive, it should induce covariances among members of the
pathway, defining structured “noise regulons”. We have shown that this is indeed the case
across a yeast cell, and that genes that are members of a noise regulon are also functionally
related. Noise regulons further map onto well-defined cellular pathways such as the general
stress response, amino acid biosynthesis and mitochondrial regulation.

What is the underlying source of these noise regulons? The existence of large groups of
correlated genes in populations of isogenic cells is unlikely to result from external
inhomogeneity in the growth environment of the cells as similar noise values have been
independently measured under different conditions including in a chemostat-controlled
environment and by flow cytometry or microscopy (Raser and O‘Shea, 2004; Newman et
al., 2005). The specificity of the gene groups and the nutrient rich growth conditions for our
experiments also argue against the possibility that correlated noise is the result of distinct
internal states due to variations in metabolism or energy state among cells. As a result, we
believe that such regulons, consisting of fluctuation-correlated genes, reflect biologically
relevant modular structures that might exist to maintain useful but controlled diversity
across a population. Such a ‘bet-hedging’ strategy might be instrumental in allowing a
population of cells to successfully navigate unanticipated changes in its environment
(Thattai and van Oudenaarder, 2004). A scheme based on a coherently fluctuating program,
rather than on a set of discordantly fluctuating individual genes, would constitute a robust
implementation of a successful bet-hedging program. The noise regulons we have identified,
which are coherently coordinated within one cell but variable across a population, might
represent such a scenario. In particular, it is interesting to note the presence of the MSN2/4
pathway which promotes survival in the face of acute stress as one such noise regulon. It is
also interesting to note the absence of programs (for example an HSF1 regulon) that mediate
long term adaption and recovery from stress (Yamamoto et al., 2008).

Regardless of the source or functional repercussions of pathway noise, we have shown that
noise measurements can be used as a critical non perturbative tool for tracing co-regulation.
In particular, our data demonstrate a correlation between fluctuations at steady-state and
dynamic induction of genes in response to environmental stimuli for stress responsive genes.
This relationship between noise at steady state and dynamic response has previously been
observed in the context of bacterial chemotaxis (Park et al., 2010). Our results argue that the
quantitative relationship between local fluctuations and pathway induction is likely to hold
in much more general contexts. This is further supported by analyses illustrating that noisy
genes in S. cerevisiae also exhibit high expression variability across conditions (Lehner,
2010). Overall, this positions molecular noise as a quantitative phenotype for probing
pathway regulation (Dunlop et al., 2008). The ability of noise to probe cellular organization
is appealing as it does not require external perturbations. Thus, no knowledge of when, how,
or what induces the pathway of interest is necessary. Furthermore, no severe genetic or
physiological perturbations are required, avoiding pleiotropic effects. Importantly, noise
measurements allow for the identification and dissection of distinct pathways that have
overlapping responses to the same set of inputs. For instance, stress-mediated induction of
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HSF1 and MSN2/4, which are components of two distinct pathways (heat shock and general
stress response respectively), induce overlapping genes making them challenging to
disentangle based on mean expression levels alone. Nonetheless, noise-based measurements
in terms of the S-scores distinguished between the components of the two systems.

While steady-state noise measurements contain a wealth of information about cellular
organization, there is no assumption that cellular wiring should be constant across conditions
or time. Therefore, perturbations could be easily incorporated into this general analysis
framework. For example, applying a similar covariance analysis to a network as it evolves in
response to an input might allow a mapping of network connections as they dynamically
occur. Genetic perturbations such as heterozygous deletions are particularly well-suited for
noise analysis. First, heterozygous deletions are simple to apply universally and amenable
for high-throughput screening strategies. Furthermore, previous studies in the yeast S.
cerevisiae (Springer et al., 2010), also corroborated by our data, indicate that the mean
output of pathways is robust to copy number of pathway constituents. Therefore, changes in
noise patterns in these deletions may carry information that is not present in the mean
expression and suggests that quantitative noise measurements may be a fruitful strategy for
studying complex regulatory interactions.

Experimental Procedures
Yeast Strains/protocols

All yeast strains used for these experiments are derived from W303, BY4741, or BY4742.
Isogenic diploid strains containing one or two copies of a given protein were constructed by
mating the GFP collection strains to a Synthetic Genetic Analysis (SGA) strain, sporulating
and mating the resulting haploids back into the GFP collection (see supplemental methods).
Individual reporter strains were constructed by homologous insertion of an RFP protein
(mCherry or mKate2) at the C-Terminal end of the open reading frame with a URA3 marker
immediately 3′. Reporter strains marked with mCherry (or mKate2) were crossed to strains
from the GFP library (Open Biosystems), with a selection step for diploids in SD-Ura/-His.
For deletion analysis, strains were constructed with one gene tagged with mCherry (URA3),
and one with GFP (HIS3). These SGA strains were mated into subsets of the deletion
collection and heterozygous diploids selected in SD-Ura+G418 (500ug/ml). Overexpression
of PDE2 was accomplished by placing PDE2 under the control of a GAL1 promoter in an
SGA strain expressing an estradiol inducible construct, this strain was mated to GFP strains
and diploids selected as described above. Expression of PDE2 was induced by the addition
of 100nm estradiol (Sigma) for 8hrs before measurement.

Growth and fluorescence measurements by flow cytometry
For noise and correlation measurements (Figures 1 and 2) cells were grown to saturation in
96-shallow well plates (Costar) and then diluted into fresh media, grown at 30C on orbital
shakers (Elim) for 12hrs to an OD of ~0.2, and subsequently diluted and grown for 8hrs to
an OD of ~0.05 before measurement. Larger scale correlation measurements (Figure 3) were
preformed in 384-well plates (Thermo).

All cytometry measurements were made on a Becton Dickinson LSRII flow cytometer,
along with an autosampler device (HTS) to collect data over a sampling time of 6–12
seconds, typically corresponding to 5000–10000 cells. GFP and YFP were excited at 488nm,
and fluorescence was collected through a HQ530/30 bandpass filters (Chroma), mCherry
and mKate2 were excited at 561 nm and fluorescence collected through 610/20 bandpass
filter (Chroma).
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Microscopy and image analysis
Cells expressing Pgm2-YFP were plated in SD complete onto ConcanavalinA coated 96
well glass bottom plates, allowed to settle and then washed twice with fresh media. Samples
were imaged on a Nikon TE-2000 inverted scope with arc-lamp illumination using
RFP(610/20nm) and YFP (530/30nm) chroma filters. To heat shock cells, the 96 well plate
was placed on a Elim plate shaker set at 50C for 20min. The media was then removed and
replaced with 80ul of TE+1ug/ml propidium iodide. Cells were then incubated for
10minutes at room temperature, and imaged. Non-viable cells were determined by bright
RFP staining. Images before and after heat shock were aligned using the ImageJ StackReg
utility, and cells segmented and fluorescence computed using custom Matlab code. Relative
survival probabilities and the associated errors were computed using a binomial model of
survival.

Flow cytometry Data analysis
All data was analyzed with custom Matlab software. Raw cytometry data were filtered to
remove errors due to uneven sampling and remove outliers using an MCD method
(Rousseau and Van Driessen, 1999). Variability in cell size was corrected using a linear
transformation from the side scatter parameter (see supplemental materials for detail).
Extrinsic noise was calculated from the one and two-FP strain measurements using the
following formula:

Here, a1 and a2 are indistinguishable alleles of the same gene. Var(a1) = Var(a2) is measured
in the one-FP strains. Var(a1 + a2) is measured in the two-FP strains. Extrinsic noise is then
given by the normalized covariance [Swain et al., 2002]

The “S-score” of gene b with respect to gene a1 is defined as . Here, G is given by

, where a1 and a2 are two alleles of the same gene tagged with different FPs.

TF binding site and GO term Analysis
To map S-score measures from flow cytometry data to cis regulatory motifs, we calculated
transcription factor binding sites in the 700 base pairs immediately prior to the start condon
using the database of motifs from the Swiss regulon (Pachkov et al., 2007). ChIP data were
obtained from (http://web.wi.mit.edu/young/regulatory_code/) based on the work of
Harbison et al. (Harbison et al, 2004). As the ChIP data has very weak representation of
Msn2 or Msn4 showing no enrichment at many canonical targets such as PGM2, HSP12,
TLS1, TFS1, or GSY1, we used transcription regulatory motifs to analyze data sets where
the stress response dominated (Figs. 1 and 2), and ChIP data for the more general analysis
(Fig. 3). The most recent GO term database was downloaded from SGD. For both data types
p-values for enrichment were calculated with a hypergeometic test (N=465 for ext. noise,
182 for covariance analysis). All analysis above was carried out using custom Matlab code.
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Clustering and Principal Component Analysis (PCA)
Hierarchical clustering with a correlation distance metric was performed in Matlab on a 45
by 182 matrix composed of the mean normalized covariances between query and array
genes. The row-wise correlations were then computed to produce a 182 by 182 correlation
matrix. PCA of this matrix was calculated using Matlab functions.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Pathway noise impacts S. cerevisiae stress and amino acid biosynthesis genes

• Single cell covariance measurements reveal functionally coherent noise regulons

• Genetic perturbations point to PKA and TOR as significant sources of
fluctuations

• Correlated noise is a quantitative tool to probe regulatory relationships
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Figure 1. Extrinsic versus intrinsic noise decomposition across the proteome
(a) Histograms of the single cell fluorescence of populations of cells expressing either one
(red) or two (blue) copies of pGal1-YFP. The mean of the two distributions are separated by
one log2 unit.
(b) Total, intrinsic, and extrinsic noise plotted against log mean expression for seven levels
of induction of pGal1-YFP. Noise was quantified as the Coefficient of Variation (CV=σ/μ)
of the YFP distribution.
(c) Comparison of extrinsic noise values calculated using a two color (pGal1-YFP, pGal1-
mCherry) or one color approach.
(d) Intrinsic (cyan) and extrinsic(black) noise plotted against log2 mean expression for 465
genes. Inset: log2(CV2) plotted against log2(mean), running means (smoothing window of
30) for intrinsic(cyan), extrinsic(black), total (dark blue) noise.
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Figure 2. Stress genes inherit fluctuations from the transcription factors Msn2/4
(a) Schematic illustration of correlation analysis of GFP-tagged and RFP-tagged proteins
expressed within a single cell. Proteins encoded by genes regulated by the same upstream
factor (the transcription factor Msn2/4) show strong correlation while proteins regulated by
unrelated processes show weak correlation.
(b) Histograms of the Pgm2 (red) and Rpl17B (blue) S-scores for 750 of the most abundant
protein in the S. cerevisiae GFP collection.
(c) Percent genes with one or more STRE elements in their promoters (700 bp before the
start codon) versus quintiles of Pgm2 or Rpl17B S-score, error bars show standard error
based on a binomial model.
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Figure 3. Fluctuations in Msn2/4 target genes are predictive of response to stress
(a) Plot of the fold induction of a gene following heat shock against its Pgm2 S-value for
assayed genes. Genes with two or more Msn2 binding sites (‘AGGGG’) in the 700bp before
their start codon are colored blue.
(b) Survival of cells as a function of their basal Pgm2 levels. Pgm2-YFP expression was
determined for individual cells in mid-exponential phase (OD=0.5). Cells were then heat
shocked (50C, 20 min), and stained with propidium iodide to detect dead cells. The
probability of cell death was lower (18.84% (95% CI = 16.96–20.84)) in the top 25% of
Pgm2 expressing cells compared to the bottom quarter (23.51% (95% CI = 21.45–25.66%)).
Statistics were computed using a binomial test (N=1608 in each quartile, error bars show
95% CI).
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Figure 4. Noise measurements divide the genome into distinct regulons and inform an
understanding of the dimensionality of a cell
(a) A map of noise correlations among 182 proteins showing distinct blocks that share
patterns of covariance. Prominent among these are Amino Acid biosynthesis (magenta
outline), Mitochondrial (blue outline), and Stress responsive (red outline) clusters. A smaller
group of cell cycle regulated genes are also apparent (black).
(b) Scatter plots comparing the covariances of Pgm2, Tsa2, Arg4, and Cit1 with the 182
proteins show similar covariance patterns for two members of the same stress responsive
cluster (Pgm2, Tsa2), anti-correlated patterns for two members (Arg4 and Tsa2) of distinct
cluster, and the presence of ‘off-diagonal’ interactions between different clusters (Cit1 and
Arg4).
(c) A principal component analysis of the covariance dataset shows that five principle
components (PCs) can describe ~80% of the observed variance. Contribution of the noise in
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different genes to the first PC, PC1, is plotted in the order in which they appear in (a).
Values are smoothed using a sliding window of size 3.
(d) Expression of 184 GFP-tagged proteins in a Pde2 over-expression background. The
results are reported as a log2 of the ratio of GFP in the overexpression strain normalized to
that of the wild-type. Overexpression of Pde2 was achieved using an estradiol inducible
GAL1 promoter. Proteins are in the order in which they appear in (a). Induction values were
smoothed with a sliding window of size 3.
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Figure 5. Genetic perturbations tie the Msn2/4 noise regulon to PKA signaling and demonstrate
that mean expression of a pathway and covariance within a pathway have a complex
relationship
(a) Noise-induced covariance between Hsp12-RFP and Pgm2-YFP is altered in
heterozygous deletes of PKA pathway members, showing significant decreases in PDE2/
pde2, IRA2/ira2, and GBP1/gbp1 strains and an increase in the RAS2/ras2 strain. Error bars
represent standard error of means (n=6)
(b) Covariance of Pgm2 and Arg4 as a function of mean Pgm2 expression as the levels of
Msn2 are varied. Overexpression of constitutively active Msn2 to various levels results in a
log-linear increase in covariance between Arg4 and Pgm2 as a function of Pgm2, and non-
loglinear increase in covariance between Pgm2 and Hsp12, two proteins whose genes
promoters are targets of Msn2. Error bars represent standard error of means (n=3).
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Figure 6. Covariance measurements of heterozygous strains link noise in amino acid biosynthesis
to Tor signaling
(a) Covariance of the amino acid biosynthesis protein Arg4-mCherry and the mitrochondrial
protein Cit1-GFP plotted against the geometric mean of Arg4-mcherry and Cit1-GFP for
188 heterozygous deletion mutants. Values are displayed as log2 fold change over WT.
Strains referred to in the text are highlighted in cyan. Error bars in upper left show standard
deviation of replicate measurements.
(b) Change of Arg4 mean and covariance between Arg4 and members in the amino acid
biosynthesis group in RTG1/rtg1, RTG3/rtg3, and TCO89/tco89 heterozygous strains.
Values are displayed as log2 fold change over WT. RTG1/rtg1 and TCO89/tco89
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heterozygous deletions cause significant increases in covariance, while RTG3/rtg3 has no
significant effect on the covariance. TCO89/tco89 heterozygous deletion, but not RTG1/rtg1
heterozygous deletion, increases mean gene expression of amino acid biosynthesis genes.
Error bars represent standard error of means.
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