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Abstract
Mouse phenotype data represents a valuable resource for the identification of disease-associated
genes, especially where the molecular basis is unknown and there is no clue to the candidate
gene’s function, pathway involvement or expression pattern. However, until recently these data
have not been systematically used due to difficulties in mapping between clinical features
observed in humans and mouse phenotype annotations. Here, we describe a semantic approach to
solve this problem and demonstrate highly significant recall of known disease-gene associations
and orthology relationships. A web application (MouseFinder; www.mousemodels.org) has been
developed to allow users to search the results of our whole-phenome comparison of human and
mouse. We demonstrate its use in identifying ARTN as a strong candidate gene within the 1p34.1-
p32 mapped locus for a hereditary form of ptosis.
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Introduction
The primary reason for generating and studying animal models, is the ability to gather
insights to our understanding of human disease and gene function. The mouse, with its fully
sequenced genome, almost complete genetic orthology with the human, and numerous
genetic manipulation tools has become the principal model organism for such purposes
(Rosenthal and Brown, 2007).

A wealth of readily accessible mouse phenotype data already exists thanks to the researchers
who have generated and characterised mouse mutants, and the manual curation of the
literature and submitted data carried out by the Mouse Genome Informatics (MGI) group of
the Jackson Laboratory and stored in their Mouse Genome Database (MGD; Blake et al.,
2011). At the time of writing, MGD contains 26945 phenotyped mutant alleles representing
11356 markers, including heritable phenotypic markers, deletions, inversions and other
complex genomic mutations, in addition to mutations in 8124 protein coding and RNA
genes. Hence, phenotype data is already available for a large proportion of mouse genes
although, for many, the published phenotypes focus on a specific area of research rather a
broad phenotypic characterisation of the mutant.. Throughout this decade, phenotype data
will be made available for all mouse protein-associated genes due to the efforts of the
International Mouse Phenotyping Consortium (IMPC; http://www.mousephenotype.org;
Abbott, 2010). The IMPC will implement a high-throughput phenotyping pipeline to
characterise strains carrying the null mutations produced by the systematic efforts of the
International Knockout Mouse Consortium (IKMC; Ringwald et al., 2011; Skarnes et al.,
2011). The results of this will be available from the IMPC portal, as well as the Mammalian
Phenotype Ontology (MPO; Smith and Eppig, 2009) annotated data being deposited at MGI
as part of a merged dataset with the mouse phenotype data from publications and
submissions. The approach taken by the IMPC or performing the same wide spectrum of
phenotype assays on every line will hopefully provide more comprehensive coverage of the
mouse phenome than the current approach of curating literature reported observations.

Until recently, systematic use of mouse phenotype data by the human clinical and research
communities to identify candidate disease genes and gain knowledge of protein function has
been a rarity, despite the potential power of such an approach. For example, Kitsios et al.,
2010 identified mouse models for human genome-wide associations, which provide
concordance of evidence and novel insights into the roles of the candidate genes. Another
study identified candidates for autism spectrum disorders using mouse phenotype data, some
of which overlapped with the results from a global copy number variation study (Meehan et
al., 2011).

Where associated or candidate genes already exist for a human disorder, it is trivial to
recover the mouse ortholog and any associated phenotype data. Similarly, if some
knowledge of function or pathway involvement is known for the disease then searches for
genes with these functions or pathway involvement can reveal candidates.

However, for many disorders only the observed phenotype is known and here the ability to
identify equivalent phenotypes in model organisms with a known genotype becomes critical.
The main impediment to this is the lack of direct mappings between the terms used for
human disease and mouse phenotypes (Schofield et al., 2010). MGI address this issue by
manually curating disease associations for published mouse models. However, this is a huge
effort and is likely to be unscalable for the IMPC project. In addition, most publications
involving mouse models are focussed on a particular disease and do not address whether a
mouse could be a good or even better model for another disease. The systematic phenotype
analysis performed by Meehan et al. identified several models in the MGD databases that
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had not previously been associated by the manual curation effort. Clearly, there is a
requirement for computational methods for associating mouse models with human diseases,
and systematic analysis of both human and mouse datasets.

The first step to automation is capturing the phenotype data in a computable form using
ontologies and controlled vocabularies. The mouse community is already in a good position,
as MGD and many other mouse databases use the well-established MPO. Although termed
“Mammalian”, MPO has primarily been used to capture mouse phenotypic data at MGD and
rat phenotypic data at the Rat Genome Database (RGD; Twigger et al., 2007). Other model
organism databases, such as ZFIN (Sprague et al., 2008) for zebrafish and FlyBase (Tweedie
et al., 2009) for Drosophila, do not use a “pre-composed” species-specific phenotype
ontology but rather use a “post-composed” Entity-Quality (EQ) approach. In this, the Q
variable comes from the Phenotype and Trait Ontology (PATO) and the E variable from one
of the Open Biomedical Ontologies (OBO) such as Gene Ontology (GO), ZFA (zebrafish
anatomy) or FBbt (Flybase anatomy ontology). For example, motor neuron degeneration is
represented in the mouse by MP:0000938 (motor neuron degeneration) and in zebrafish by
the combination of ZFA:0009052 (motor neuron) and PATO:0000639 (degenerate). The
latter approach is termed a post-composed approach, as the terms are joined post curation to
form a human readable text description (Washington et al., 2009; Gkoutos et al., 2009).

Use of ontologies to capture human phenotype data is a more recent activity, stemming from
the development of the Human Phenotype Ontology (HPO; Robinson et al., 2008). Like
MPO, HPO uses a pre-composed approach; e.g., HP:0007373 (atrophy/degeneration
involving motor neurons) would be used for the motor neuron degeneration example above.

The mixed use of pre- and post-composed approaches and different ontologies would appear
to hinder any cross-species phenotype querying. Lexical (text matching) based approaches
can be used as demonstrated in PhenomicDB (Groth et al., 2006) and PhenoHM (Sardana et
al., 2010) but will require non-trivial solutions where the same concept is described with
different words (synonyms) or where the same word can refer to different concepts
(homonyms) in the human and model organism communities. For instance, to a human
reader MP:0000573 (enlarged hind paws) and HP:0001833 (large feet) clearly represent
largely equivalent biological concepts, but to a computer using a purely lexical approach this
association would be lost. In addition, the full semantic power of the ontologies is lost using
a lexical approach. For example, the phenotypic consequence of the same genetic
abnormality may be related but subtly different in diverse species; e.g., PAX6 mutations
result in “small eyed” mice, “opaque cornea” in humans, a “malformed retina” in zebrafish,
and “eyeless” Drosophila. A lexical, computational approach could not identify these related
phenotypes but a semantic approach, using the structure and relationships of the phenotype
ontologies and logical definitions, will identify that all involve “eye abnormalities”.
Similarly, the human clinical community and the various model organism resources can
annotate the same phenotype at different resolutions. This will present problems to a lexical
approach but can be solved by the subsumptive power of an ontology approach.

A more logically rigorous approach to compare phenotypes in different species is to use a
set of species-agnostic ontologies as the building blocks for logical definitions of terms in
pre-composed species-specific ontologies. This approach is implemented by (i) generating
EQ statements (known as logical definitions or equivalence axioms) for each of the terms
used in the pre-composed phenotype ontologies such as MPO and HPO, and (ii) linking
between the ontologies used in the EQ statements. Most of the ontologies used in the logical
definitions are applicable to both species, but anatomy presents a special problem so the task
is simplified to linking across the species-centric anatomical ontologies. Taking our example
above of enlarged hind paws and large feet, the logical definition of the MPO term involves
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the PATO term “increased size” (PATO:0000586) and Mouse Anatomy term “foot” (MA:
0000044) while the HPO logical definition involves the same PATO term and the human-
centric Foundational Model of Anatomy term “foot” (FMA:9664). In this case, MA has
already been made species-agnostic to some extent by referring to the foot of the hind limb
rather than hind paw, so it is obvious that the MA and FMA terms refer to the same concept.
However this is often not the case and we tackle this problem by using a bridging multi-
species anatomy ontology to map between the individual species anatomy terms. Methods to
generate these bridging ontologies, range from manually-assisted, automated matching, e.g.,
the UBERON unified metazoan anatomy ontology (Mungall et al., 2010), to relations based
on the nearest common evolutionary ancestor of the structure in question, e.g, the Vertebrate
Bridging Ontology (Ravensara et al., 2011).

This logical definition approach generated promising results in identifying gene candidates
and animal models of human disease using 11 manually annotated diseases with known
genes (Washington et al., 2009). Recently, a cross-species network built from the phenotype
ontologies, logical definitions and UBERON has been shown to recall orthologues, genes
involved in the same pathway and gene-disease associations (Hoehndorf et al., 2011).

We now have HPO annotations of almost all clinical OMIM entries representing Mendelian
diseases and logical definitions available for a large proportion of the HPO and MPO terms.
We can therefore extend our approach to nearly all known Mendelian diseases. Here, we
present this extension using new semantic matching software (OWLSim) and report high
recall of known disease genes. We describe a new web tool (MouseFinder), which allows
anyone to mine the results of this analysis for the identification of new candidates for human
disease and present some intriguing examples of this.

Implementation
HPO annotations of OMIM diseases, and the HPO ontology itself, were downloaded from
http://www.human-phenotype-ontology.org/index.php/downloads.html. Known OMIM
disease to gene associations are recorded in morbidmap and were downloaded from
http://www.omim.org/downloads. MPO was obtained from
http://obo.cvs.sourceforge.net/viewvc/obo/obo/ontology/phenotype/
mammalian_phenotype.obo. MPO annotations of mouse models (MGI_PhenotypicAllele.rpt
and MGI_GenePheno.rpt), MGI asserted disease models (ALL_OMIM.rpt) and OMIM
human gene to MGI gene mappings (HMD_OMIM.rpt) were downloaded from the MGI ftp
site (ftp://ftp.informatics.jax.org/pub/reports). Note, we used the MGI_GenePheno.rpt file,
recently made available by MGI, rather than the larger MGI_PhenoGenoMP.rpt file used by
most of the previously published studies. The latter file contains all phenotyped models
including those with multiple genes mutated where it will be unclear which mutation is
causative, conditional mutations which need further crossing to disrupt the gene and
mutations of non-gene markers and complex/cluster/region markers (includes deletion
regions, inversions).

All files were downloaded on August 7th, 2011, processed, and the contents stored in a
simple database schema. The database stores the mappings from HPO annotated Mendelian
diseases recorded in OMIM, through to mouse genes via orthology and thence to mutant
allele and mouse model phenotype annotations. 5035 OMIM diseases (1858 with known
gene association(s) and 3177 with no known gene) and 1791 OMIM genes with HPO
annotation, along with the MPO annotations of 24904 mouse models and 8124 mouse genes,
are stored in the database (Figure 1). In addition, 2624 associations between OMIM diseases
and particular models from MGI curation of the literature are also captured (Figure 1).
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OWLTools (freely available from http://owlsim.org) was used to prepare OWL
representations of the human and mouse phenotype annotation at the genotype and the gene
level. OWLTools provides convenience methods on top of the java OWL API (Horridge
2009), and includes the OWLSim package used for all the semantic comparisons described
here. OWLSim uses the same metrics as described in Washington et al., 2009, and is, in fact,
largely a re-implementation of the same system using a different underlying ontology model.
Our previous approach was implemented on top of a relational database system called OBD,
whereas, OWLSim is implemented on top of the OWL API and does not require an
underlying database to run the semantic comparisons. This makes OWLSim easier to set up,
and faster to run.

OWLSim was used to compare each of the HPO annotated OMIM gene or disease records
against all the MPO annotated mouse genes or mutant lines. Pairwise comparisons were
performed using a merged OWL file of PATO, UBERON, MPO plus logical definitions,
HPO plus logical definitions and a mapping of HPO and MPO lexical matches. The logical
definitions for HPO and MPO are available at
http://phenotype-ontologies.googlecode.com/svn/trunk/src/ontology/mp/mp-equivalence-
axioms.obo and
http://phenotype-ontologies.googlecode.com/svn/trunk/src/ontology/hp/hp-equivalence-
axioms.obo respectively. For a particular human and mouse comparison, each of the HPO
annotations is compared to each of the MPO annotations and scored using either Information
Content (IC) or Jaccard Similarity (SimJ) measures.

SimJ scores similarity as the ratio of shared attributes to total attributes. In the case of
OWLSim, the attributes being compared are inferred attributes (for a full technical
description see owlsim.org):

where ap is the inferred attributes of phenotype p.

The IC of a description is the negative log of the number of features annotated with that
description over the total number of annotations in the dataset.:

In the case of OWLSim, IC is calculated for the Least Common Subsuming (LCS)
phenotype of the HPO-MPO pair which is the most specific set of all shared attributes (the
algorithm to identify the LCS is, again, more fully described at owlsim.org). The IC method
provides a measure of how unusual or “surprising” the set of attributes in common is and the
higher the score, the less frequent is the LCS. Thus, a match in which the combination of
attributes in common is rare, or involves highly specific terms, will score more highly than
those involving more frequent or less granular terms.

For each human-mouse comparison, we aggregate the measurements of individual HPO-
MPO best matching pairs to give:

i. avgIC – average IC score across all the pairs

ii. maxIC – maximum IC score across all the pairs
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iii. avgSimJ – average SimJ across all the phenotype pairs

iv. maxSimJ – maximum SimJ across all the phenotype pairs

The mappings of human diseases/genes to mouse models/genes along with the various
measures of semantic similarity were stored in the same database for further analysis of the
results and are displayed in the MouseFinder tool.

Recall of known disease genes and models from mouse phenotype data
To test the potential of OWLSim human to mouse phenotype matches to recall genuine
disease associations, we took advantage of OMIM morbid map which records known
disease causative genes. In our database, 1858 of the 5035 OMIM disease records have a
disease association with one or more of 1791 human genes (Figure 1). Where mouse models
involving mutants of these genes have been phenotyped, we should be able to recall these
disease associations with high specificity and sensitivity using just the phenotype
comparison methodology. The subset of OMIM records with an associated gene with a
mouse ortholog that has been phenotyped includes 1514 OMIM diseases and 1989 distinct
disease to gene associations for 1253 unique human genes.

Figure 2 shows the results from the OWLSim phenotype comparison of HPO annotated
human diseases and MPO annotated mouse mutant lines for recall of any of the associated
gene(s) for the 1514 OMIM diseases. 58% of associations were recalled with most
appearing in the top 50 hits. The maxSimJ metric performed best, followed by maxIC,
avgIC and then avgSimJ. Figure 2 also shows the results of a 1000 random runs. For each
random run, n mouse models were randomly selected for each OMIM disease and assessed
for a mutation in the known disease associated gene to calculate the expected level of recall
in the top n hits if there was no biological association between the HPO annotated diseases
and MPO annotated mouse models. This was repeated 1000 times and the average result
plotted on Figure 2. In all cases, OWLSim is recalling the disease gene associations at
significantly higher levels than random. For example, the 53% recovery of the disease-gene
associations in the top 10 hits by maxSimJ has a p value < 10−325 assuming a binomial
distribution.

Another test of the effectiveness of OWLSim is to utilise the manual, literature curation the
MGI group performs to assert that particular mouse lines are models of a human diseases.
For these associations we again assessed our success at recalling these models (Figure 3).
65% of these models could be retrieved, with most appearing in the top 50 hits. 20% were
recalled as the top or joint top hit using maxSimJ. Again the recall is much higher than that
shown by 1000 runs where mouse models were randomly chosen for each disease.

We can also test the recall using phenotype annotations projected onto the gene level rather
than disease and mouse model (genotype) level as used above. 1253 HPO annotated human
genes were compared to their MPO annotated mouse orthologs using OWLSim phenotypic
comparisons to assess whether the mouse ortholog was recalled at significantly higher levels
than expected by chance (Figure 4). Compared to the 1000 runs where the orthologs were
randomly chosen, the recall was significantly higher. This time the avgIC metric performed
best except for recall as the top hit or in the top 3. 78% of the orthologs could be recalled at
highly significant levels, e.g., the 48% found in the top 50 by avgIC has a p value < 10−325.
To give a measure of sensitivity versus specificity, Receiver Operating Characteristic (ROC)
analysis was carried out on the avgIC ordered data from this human-mouse gene analysis. A
highly significant area under the curve (AUC) value of 0.82 was obtained.
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Comparison with PhenomeNET
PhenomeNET (Hoehndorf et al., 2011) uses the same set of annotations, ontologies and
logical definitions to compare human and mouse phenotype data. Although there are
considerable similarities between the two approaches, the algorithms differ in a few key
respects. PhenomeNET relies exclusively on subsumption between classes when calculating
the least common ancestor: whereas, OWLSim makes use of other ontology relationships. In
addition, OWLSim can generate class expressions on the fly whilst PhenomeNET relies on
there being phenotype classes explicitly pre-coordinated in advance. PhenomeNET
calculates the average of all pairs of phenotypes: whereas, the default algorithm in OWLSim
is the average of best matches.

To compare the two approaches, we analysed the recall rates of known disease genes using
OWLSim and the data available from the PhenomeNET site (files generated on 16th

September 2011 at http://bioonto.gen.cam.ac.uk/phenomenet). As shown in Figure 5, the
recall rates using OWLSim were considerably higher except outside the top 500, as
OWLSim has a cutoff of 500 matches. The improved recall may be due to the algorithmic
approach used and/or the fact that our OWLSim analysis makes use of simple lexical
matching in addition to the ontological cross products; whereas, PhenomeNET uses a purely
semantic approach. In addition, PhenomeNET also covers yeast, zebrafish, C. elegans and
Drosophila phenotypes, and does not have the overhead of running the pairwise phenotype
comparisons and storing the results in a database.

MouseFinder web tool
Our web tool, MouseFinder (www.mousemodels.org), provides access to the phenotype
comparisons described above. Users can identify a particular OMIM disease by browsing or
searching by the disease name or OMIM ID, or by any of the associated genes or HPO
terms. Once a disease is selected, a ranked list of the matching mouse models is displayed,
ordered by avgIC as default (Figure 6A). Each row shows the allelic composition and
genetic background of the mouse model, along with the mutated gene and the rank and score
according to the chosen similarity measure. The disease, gene and mutant allele fields link
out to more detailed data on the OMIM and MGI websites. Further tabs show the models
ranked by maxIC, avgSimJ or maxSimJ, and the final tab reveals any known associated
OMIM genes from morbid map or known, published mouse models of the disease as curated
by MGI. Where a known OMIM gene exists, a red box in the gene symbol column indicates
its mouse ortholog. Similarly, any MGI asserted mouse models are indicated by a green tick
to the left of each row of results. The results can be restricted to hits involving matches to a
limited set of the HPO annotated terms using the HP button at the top of the window.

In the example shown in Figure 6 for Craniosynostosis, Type 1 (MIM# 123100), a model
involving the known causative gene (Twist1) is the top hit when ranked by avgIC. A MGI
curated mouse model involving Axin2 is the 10th best hit, as indicated by the green tick in
the screenshot. Expanding the detail for the top Twist1 match reveals further detail on the
HPO and MPO annotation of the disease and mouse model, along with the phenotype terms
and the IC and simJ measures for each paired match (Figure 6B). The MPO annotation of
the mouse model (premature suture closure) matches the craniosynostosis (premature
closure of the cranial sutures), turricephaly (high head resulting from premature closure of
the cranial sutures) and dolichocephaly (long head resulting from premature closure of the
cranial sutures) clinical features.
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Novel candidates for human diseases
The rationale for developing our approach and MouseFinder is, of course, to identify novel
candidates for human diseases. The recall analysis described above suggests that, for OMIM
diseases with no known gene, the real causative gene should be present high up in our
rankings. To explore this, we took the 468 OMIM diseases with a mapped locus but no
known causative gene and looked for MouseFinder hits in the top 10 results by avgIC where
the human orthologue maps to the correct genomic position. 9% of diseases had a candidate
mapping to the correct locus in the top 10 hits (Table 1). This success rate was well above
that seen in 1000 runs where the disease to locus mappings were randomised, strongly
suggesting MouseFinder is discovering candidates worthy of further study for these
uncharacterised diseases.

An example of one of the candidates is shown in Figure 7. Here, a mouse model (Artntm1Jmi/
Artntm1Jmi with a genetic background of 129X1/SvJ * FVB/N) is the top hit for Ptosis,
hereditary congenital 1 (MIM# 178300). The causative locus for this disease has been
mapped to 1p34.1-p32 and ARTN, the human orthologue of Artn, maps to 1p34.1. The
clinical feature of congenital ptosis (drooping eyelids) matches the mouse phenotype of
blepharoptosis (drooping eyelids) and clearly warrants further investigation of ARTN as a
candidate for this disease. Ptosis is thought to result either from damage to the eyelid muscle
(levator palpebrae superioris), the superior cervical sympathetic ganglion, or the oculomotor
nerve (CNIII) which controls this muscle. ARTN is expressed in the nucleus of the
oculomotor nerve in the pre- and perinatal period along wth neurturin, persephin; all three
being members of the GDNF family (Quartu et al., 2007). Intriguingly, this mouse model
was published as proof that ARTN is a neurotropic factor for developing sympathetic
neurons (Honma et al., 2002) and the mice also show abnormalities in sympathetic ganglion
morphology (in the small superior cervical ganglion) and sympathetic neuron morphology.
This further strengthens the case for ARTN being the causative gene at this locus.

Conclusion and future directions
In this paper, we have described a novel approach and tool for the identification of candidate
disease genes for human disease. The recall of known disease gene associations at highly
significant rates demonstrates that we can start to fully utilise model organism phenotype
data for this purpose. As shown above for a form of hereditary ptosis, MouseFinder can
identify plausible candidates for the human disease using only the clinical phenotypic
features. It should be borne in mind that for many diseases we have no information available
regarding the protein function, biochemical pathway involvement or expression pattern of
the affected gene. In these cases, our phenotype approach represents a viable alternative to
the classical computational methods of candidate gene selection using Gene Ontology (GO)
or pathway enrichment studies, or expression data analysis. However, an integrated
approach using phenotype data alongside these other lines of evidence (when available), as
well as the mapped locus, would of course improve the success rates in identifying disease
genes. Future efforts will be focussed on developing this integrated analysis.

Despite the significant recall shown by all OWLSim analyses, there still remain some
known disease gene and mouse model associations that were not recovered when using
OWLSim to compare human and mouse phenotype annotations. At the genotype annotated
level, some 40% of known gene associations were not recalled, at the gene level 22% of
associations were missed, and for the MGI asserted models 35% were not recovered. This
could be for a number of reasons, including:

i. need for improvement in the recently developed ontologies and logical definitions.
Our analysis produces a tractable set of missed phenotype relationships that can be
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used for improvements by the groups developing HPO, MPO and the logical
definitions. In addition, methods are being developed to automatically evaluate and
improve the ontologies and logical definitions (Köhler et al., 2011).

ii. limitations of the OWLSim approach which we can investigate and improve in the
future.

iii. informative phenotype assays not yet having been carried out on the mouse model.

iv. under-representative annotation of the human disease and mouse models, e.g., for
4% of the disease genes we were trying to recall, the only MPO annotations for the
mouse orthologs were “no abnormal phenotype” or “embryonic or postnatal lethal”.
It will not be possible to recover these associations until more MPO annotation
becomes available as a result of further curation or experimental work to generate
further models and phenotype data.

v. for an unknown number of cases the mouse will prove not to be a good model for
the particular human disease.

As highlighted by some of the papers in this special issue, this is an exciting time with rapid
developments occurring in mouse phenotyping through the IMPC (see Schofield et al) and
collection of human phenotype data through projects such as Orphanet (see Aymé et al).
These new projects will generate a wealth of new phenotype data as well as physical mouse
resources for the community to generate additional data. These initiatives can only improve
the recall rates, and we envisage accurate, integrated phenotype querying across species
becoming an essential tool for the clinical research community.
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Figure 1.
Schematic representation of the data used for the phenotypic comparisons described in this
study. The comparisons were either at the gene or disease/mouse model (genotype) level.
For the former, the original annotated data is projected to the gene level using the known
mutated genes in the mouse models or the known disease-gene associations. Gene level
comparisons are used as a positive control to assess how often we can recall the correct
orthologue using the phenotype data alone. The genotype level comparisons are used to
identify novel candidates for human disease utilising the recovery of the known disease-
gene associations as a means to analyse the success of the approach.

Chen et al. Page 11

Hum Mutat. Author manuscript; available in PMC 2013 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Recall of known disease genes using phenotype comparisons between human OMIM
diseases and mouse models for the 1514 diseases with gene associations described in OMIM
morbid map. The graph shows the recall using OWLSim and maxIC, avgIC, maxSimJ and
avgSimJ semantic measures as well as the results of 1000 runs where mouse models were
randomly recalled.
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Figure 3.
Recall of mouse models of human disease as asserted by the MGI group using phenotype
comparisons between human OMIM diseases and mouse models. The recall using OWLSim
and maxIC and avgIC semantic measures is shown as well as the results of 1000 runs where
mouse models were randomly recalled.
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Figure 4.
Recall of correct orthologue using phenotype comparisons between human and mouse
genes. The recall using OWLSim and maxIC, avgIC, maxSimJ and avgSimJ semantic
measures as well as the results of 1000 runs where mouse genes were randomly recalled is
shown.
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Figure 5.
A comparison of the OWLSim methodology used in this study with a similar approach
(PhenomeNET) for the recall of any of the known disease genes using phenotype
comparisons between OMIM diseases and mouse models. Both methods use the same
phenotype annotations and ontology mapping files between human and mouse data and
perform significantly better than a 1000 random runs.
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Figure 6.
OWLSim phenotype comparisons between human and mouse presented in the mouseFinder
web tool (www.mousemodels.org). OMIM diseases are chosen by name, OMIM ID,
associated gene or HP annotation. (a) For a particular disease the matched mouse models
ranked by phenotypic similarity are displayed. The similarity score used for ranking can be
selected from avgIC, maxIC, avgSimJ or maxSimJ. The final tab in the interface shows any
known genes for the disease from OMIM (indicated by a red box around the gene in the
ranked list) and any associated mouse models from MGI (indicated by a green tick next to
the match in the list). (b) Expanding any of the matched rows reveals the details on the
matched HPO and MP paired terms that were used to associate the disease and mouse
model.
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Figure 7.
MouseFinder results for Ptosis, hereditary congenital 1 (MIM# 178300) which has a mapped
locus of 1p34.1-p32 but no known gene. Here a mouse line involving a mutation of Artn is
the top hit by avgIC and the human orthologue ARTN is located at 1p34.1. The mouse model
exhibits the same phenotype of blepharoptosis (drooping eyelids) and in addition reveals
abnormalities in the small superior cervical ganglion. Damage to this ganglion is one of the
known causes of blepharoptosis.
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Table 1

Candidate genes for OMIM diseases with a mapped locus but no known associated gene(s)

MIM# Disorder Name Candidate Gene

131400 EOSINOPHILIA, FAMILIAL IL5

300062 MENTAL RETARDATION, X-LINKED 14 TIMP1

221820 GLIOSIS, FAMILIAL PROGRESSIVE SUBCORTICAL GFAP

159555 MYELOID/LYMPHOID OR MIXED LINEAGE LEUKEMIA MLL

178300 PTOSIS, HEREDITARY CONGENITAL 1 ARTN

156232 MESOMELIC DYSPLASIA, KANTAPUTRA TYPE HOXD11

156232 MESOMELIC DYSPLASIA, KANTAPUTRA TYPE HOXD13

600231 PALMOPLANTAR KERATODERMA, BOTHNIAN TYPE PTGES3

161950 IGA NEPHROPATHY 1 SGK1

105550 AMYOTROPHIC LATERAL SCLEROSIS AND/OR FRONTOTEMPORAL DEMENTIA 1 AGTPBP1

126900 DUPUYTREN CONTRACTUREDUPUYTREN CONTRACTURE 1, INCLUDED SALL1

102300 RESTLESS LEGS SYNDROME, SUSCEPTIBILITY TO, 1 KCNC2

153600 MACROGLOBULINEMIA, WALDENSTROM, SUSCEPTIBILITY TO, 1 NFKBIE

310460 MYOPIA 1 OPN1LW

601941 DIABETES MELLITUS, INSULIN-DEPENDENT, 6 MC4R

607317 SPINOCEREBELLAR ATAXIA, AUTOSOMAL RECESSIVE 4 UBE4B

603116 CDAGS SYNDROME MN1

609306 SPINOCEREBELLAR ATAXIA 26 CACNA1A

313850 THORACOABDOMINAL SYNDROME GPC3

129900 ECTRODACTYLY, ECTODERMAL DYSPLASIA, AND CLEFT LIP/PALATE SYNDROME1 DLX5

145410 OPITZ GBBB SYNDROME, AUTOSOMAL DOMINANT HYPERTELORISM WITH ESOPHAGEAL
ABNORMALITY AND HYPOSPADIAS G SYNDROME HYPOSPADIAS-DYSPHAGIA SYNDROME
OPITZ-FRIAS SYNDROME OPITZ-G SYNDROME, TYPE II TELECANTHUS W

TBX1

602483 AURICULOCONDYLAR SYNDROME LMNA

149000 KLIPPEL-TRENAUNAY-WEBER SYNDROME GDF6

300652 ANGIOMA SERPIGINOSUM, X-LINKED EBP

247200 MILLER-DIEKER LISSENCEPHALY SYNDROME MILLER-DIEKER SYNDROME CHROMOSOME
REGION, INCLUDED

HIC1

144120 HYPERIMMUNOGLOBULIN G1(A1) SYNDROMEIMMUNOGLOBULIN HEAVY CHAIN
REGULATOR, INCLUDED

KIAA1409

609625 CHROMOSOME 10Q26 DELETION SYNDROME FGFR2

109350 GASTROESOPHAGEAL REFLUX OLFM4

607498 MIGRAINE WITH OR WITHOUT AURA, SUSCEPTIBILITY TO, 3 POLH

607516 MIGRAINE WITH OR WITHOUT AURA, SUSCEPTIBILITY TO, 6 TROVE2

607516 MIGRAINE WITH OR WITHOUT AURA, SUSCEPTIBILITY TO, 6 TROVE2

613096 SPASTIC PARAPLEGIA 36, AUTOSOMAL DOMINANT; SPG36 TRPV4

300125 MIGRAINE, FAMILIAL TYPICAL, SUSCEPTIBILITY TO, 2 OPN1LW

148500 TYLOSIS WITH ESOPHAGEAL CANCER EVPL

161550 NASOPHARYNGEAL CARCINOMA CDKN1A
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MIM# Disorder Name Candidate Gene

601846 VACUOLAR NEUROMYOPATHY CNN1

309605 MILES-CARPENTER X-LINKED MENTAL RETARDATION SYNDROME EFNB1

142470 FETAL HEMOGLOBIN QUANTITATIVE TRAIT LOCUS 2 L3MBTL3

166760 OTITIS MEDIA, SUSCEPTIBILITY TO CUZD1

The candidates shown appear in the top 10 hits by OWLSim using the avgIC metric.
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