Genomic sequence of IGLV1S2, a human immunoglobulin variable lambda gene belonging to subgroup I

F.Bernard, P.Chuchana, J.-P.Frippiat, L.Buluwela¹ and M.-P.Lefranc

Laboratoire d'Immunogénétique Moléculaire, URA CNRS 1191, Université Montpellier II, Sciences et Techniques du Languedoc, CP012, Place E.Bataillon, 34095 Montpellier Cedex 5, France and ¹Department of Biochemistry, Charing Cross and Westminster Medical School, University of London, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK

Submitted October 31, 1990

EMBL accession no. X53936

Only three genomic sequences of human immunoglobulin variable lambda genes have been published (reviewed in ref. 1). We report the second genomic sequence of a V λ gene belonging to subgroup I. A clone (cosmid 8.3) was isolated by screening a cosmid library made from the human tumor cell line COLO 320 HSR DNA (2) with the V λ II probe pV λ 2EK0.3 (3). The cosmid 8.3 clone contains a V λ gene which was identified by cross hybridization to that probe at low stringency. This IGLV gene was shown by sequencing, to belong to subgroup I according to reference 1, and was designated as V λ 1.2 or IGLV1S2 since it represents the second genomic sequence of a V λ I subgroup gene (4) ('IGLV1S' stands for 'human immunoglobulin lambda variable gene belonging to subgroup I', 'IGLV1S2' stands for V λ 1.2 following the Human Gene Mapping recommendations (HGM9)). The translation of the sequence shows a peptide leader of 19 codons with a 109 base pair intron. The heptamer-nonamer recombination signal sequences are underlined. The IGLV1S2 gene encodes a V λ region with a 6 amino acid CDR1 region as this is observed in the V λ I LOC, MEM, NEWM and HA proteins (see ref. 1). The analysis of the deduced protein sequence of IGLV1S2 shows that the protein NEWM (5) is most probably encoded by the IGLV1S2 gene.

REFERENCES

- 1. Chuchana, P. et al. (1990) Eur. J. Immunol. 20, 1317-1325.
- 2. Buluwela, L. et al. (1988) EMBO J. 7, 2003-2010.
- 3. Brockly, F. et al. (1989) Nucl. Acids Res. 17, 3976.
- 4. Alexandre, D. et al. (1989) Nucl. Acids Res. 17, 3975.
- 5. Chen, B.L. et al. (1974) Biochemistry 13, 1295-1302.

GCAG	GCAC	TACG	ACAA	тсто	CAGO	: ATG	GCC	TGG	тст	сст	стс	стс	стс	ACT	с тс	стс	GCT	CAC	TGC	ACA	G G	TGAC	TGGA	TACA	GGTC	CAGG	GAG	GGGO	CCTGG	103
						М	A	W	S	Ρ	L	L	L	T	L	L	A	н	C	т			+1							
AAGO	CTA	TGGA	TICT	TGCT	ттст	CCTG	TTGTO	стсти	AGAAG	CCG/	ATA	ATGAT	GOCT	GTG	гстст	TCCC/	ACTTO	CCAG	GG '	TCC -	tgg (GCC (CAG -	TCT (STC (GTG /	ACG (CAG (CCG	210
																			G	S	W	A	Q	S	V	V	т	Q	Ρ	
222	TCA	GTG	TCT	GGG	GCC	; CCA	GGG	CAG	AGG	GTC	ACC	ATC	тос	TGC	ACT	GGG	AGC	AGC	тсс	AAC	ATC	GGG	GCA	GGT	TAT	GAT	GTA	CAC	TGG	300
Р	S	v	S	G	A	Ρ	G	Q	R	v	т	I	S	C	т	G	S	S	S	N	I	G	A	G	Y	D	v	н	W	
Кр	Kpn I																													
TAC	CAG	G CAG	стт	· 00/	GGA	ACA	GCC	∞	AAA	СТС	СТС	ATC	TAT	GGT	AAC	AGC	AAT	CGG	ccc	TCA	GGG	GTC	CCT	GAC	CGA	TTC	TCT	GGC	TCC	390
Y	Q	Q	L	P	G	т	A	Ρ	κ	L	L	I	Y	G	N	S	N	R	Ρ	S	G	۷	Ρ	D	R	F	S	G	S	
AAG	тст	r GGC	: ACC	; TC/	GCC	: тсс	CTG	GCC	ATC	ACT	GGG	стс	CAG	GCT	GAG	GAT	GAG	GCT	GAT	TAT	TAC	TGC	CAG	тсс	TAT	GAC	AGC	AGC	CTG	480
κ	S	G	Т	S	A	S	L	A	I	Т	G	L	Q	A	Ε	D	E	A	D	Y	Y	©	Q	S	Y	D	S	S	L	
AGT	GG1	т тад	ACAG	TGCI	ICCA(GCCG	GGGT	GGAA	CTGA	GACA	AGAA	<u>oc</u> ac	TTOC	rocti	CTGO	CAGG	AGGG	TGAG	œ											555
S	G																													