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Abstract
In the diagnosis of preinvasive breast cancer, some of the intraductal proliferations pose a special
challenge. The continuum of intraductal breast lesions includes the usual ductal hyperplasia
(UDH), atypical ductal hyperplasia (ADH), and ductal carcinoma in situ (DCIS). The current
standard of care is to perform percutaneous needle biopsies for diagnosis of palpable and image-
detected breast abnormalities. UDH is considered benign and patients diagnosed UDH undergo
routine follow-up, whereas ADH and DCIS are considered actionable and patients diagnosed with
these two subtypes get additional surgical procedures. About 250,000 new cases of intraductal
breast lesions are diagnosed every year. A conservative estimate would suggest that at least 50%
of these patients are needlessly undergoing unnecessary surgeries. Thus improvement in the
diagnostic re-producibility and accuracy is critically important for effective clinical management
of these patients. In this study, a prototype system for automatically classifying breast microscopic
tissues to distinguish between UDH and actionable subtypes (ADH and DCIS) is introduced. This
system automatically evaluates digitized slides of tissues for certain cytological criteria and
classifies the tissues based on the quantitative features derived from the images. The system is
trained using a total of 327 regions of interest (ROIs) collected across 62 patient cases and tested
with a sequestered set of 149 ROIs collected across 33 patient cases. An overall accuracy of 87.9%
is achieved on the entire test data. The test accuracy of 84.6% obtained with borderline cases (26
of the 33 test cases) only, when compared against the diagnostic accuracies of nine pathologists on
the same set (81.2% average), indicates that the system is highly competitive with the expert
pathologists as a stand-alone diagnostic tool and has a great potential in improving diagnostic
accuracy and reproducability when used as a “second reader” in conjunction with the pathologists.
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I. Introduction
A. Background

The continuum of intraductal breast lesions, which encompasses the usual ductal hyperplasia
(UDH), atypical ductal hyperplasia (ADH), and ductal carcinoma in situ (DCIS), are a group
of cytologically and architecturally diverse profilerations, typically originating from the
terminal duct-lobular unit and confined to the mammary duct lobular system [1]. These
lesions are highly significant as they are associated with an increased risk of subsequent
development of invasive breast carcinoma, albeit in greatly differing magnitudes. Clinical
follow-up studies indicate that UDH, ADH, and DCIS are associated with 1.5, 4-5, and 8-10
times of increased risk respectively compared to the reference population for invasive
carcinoma [2]. Data from recent immunophenotypic and molecular genetic studies support
the notion that both ADH and all forms of DCIS represent intraepithelial neoplasias
characterized by morphological changes that result from clonal alterations in genes and thus
carry a risk of variable magnitudes for invasion and metastasis [1]. On the other hand, there
is currently no evidence to classify UDH as a precursor lesion.

The total number of new cases of intraductal lesions diagnosed each year in U.S. is predicted
to be about 250,000. The current standard of care is to perform percutaneous needle biopsies
for diagnosis of palpable and image-detected breast abnormalities. Patients diagnosed UDH
are advised to undergo routine follow-up; while those with ADH and DCIS are operated by
excisional biopsy followed by possible other surgical and therapeutic procedures. Thus,
depending on the results of the percutaneous biopsy, the management of patients diagnosed
UDH and ADH/DCIS may significantly vary.

B. Diagnostic accuracy and reproducibility
The pathology diagnoses are typically made according to a set of criteria defined by the
World Health Organization (WHO), using formalin fixed paraffin embedded tissue
specimens, which are stained with a mixture of hematoxylin/eosin (H&E). Of note, no single
criterion is absolute. Thus, subjective assessment and weighing the relative importance of
each criterion is performed to categorize the lesions. This, as several studies have clearly
demonstrated, results in poor interobserver agreement, particularly when standardized
criteria (and group training) are not used [3]. While the standardized criteria are generally
easy to identify for most lesions, there are borderline cases where it becomes difficult to
determine with absolute certainty whether a lesion belongs to one subtype or the other. The
relative weightage given by a pathologist to each of the criteria is difficult to assess and
leads to a diversity of opinions among consulting pathologists. In our preliminary studies we
assessed the level of concordance among nine academic and community pathologists in
classifying intraductal lesions [4]. The overall interobserver agreement among the nine
pathologists for diagnosing 81 borderline lesions was fair with a Kappa value of 0.35.
Amongst the 33 lesions of UDH, 27 lesions of ADH and 11 lesions of DCIS classified by
maximum agreement, complete agreement was achieved only for 6 UDH and 3 DCIS cases.

C. Proposed approach
The proposed system is designed with the clinical management of patients in mind. Patients
diagnosed UDH on percutaneous biopsy undergo routine follow-up, whereas those
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diagnosed ADH or DCIS, i.e., actionable subtypes, get excisional biopsy. Once identified as
actionable, determining the true subtype of a lesion on percutaneous biopsy does not change
initial patient management much, whereas misclassifying UDH as an actionable lesion or
vice versa may have severe consequences. When a UDH case is misclassified as an
actionable lesion, patients undergo unnecessary surgical operations, which may in turn cause
additional complications and discomfort for the patient in addition to a considerable increase
in cost. When an actionable lesion is misclassified as UDH the patient gets undertreated. If
the lesion later develops into invasive carcinoma it may be too late for treatment by the time
the patient is diagnosed cancer. To sum up, any improvement in the classification of UDH
versus actionable subtypes on percutaneous biopsy will have two direct contributions on
clinical patient management: 1. When UDH is more accurately distinguished from
actionable cases on percutaneous biopsy, thousands of unnecessary excisional biopsies will
get eliminated. 2. When actionable cases are less often misclassified as UDH, possible
undertreatment for thousands of patients will be prevented. Thus, the proposed system will
make the most clinical impact when developed to address the binary classification of UDH
versus actionable subtypes during the percutaneous biopsy stage.

Clinical impact aside, the binary classification approach is more feasible from the system
training perspective as well. In order to train the system to perform multi category
classification, samples with reference standard from each subtype would be necessary. Since
there is currently no known morphometric, immunohistochemical, or molecular features to
distinguish ADH from low grade DCIS (LG-DCIS) [5] such a reference standard could not
be established for ADH and certain types of DCIS. On the other hand, with the help of
special immunostains most UDH can be identified from actionable subtypes. Thus, the
reference standard required for the training of the classifier for classifying UDH versus
actionable lesions can be established with a reasonable effort, whereas the same cannot be
said for the reference standard required for multicategory classification.

The proposed system is developed using a dataset of 327 regions of interest (ROIs) obtained
from 62 patient cases representing 3 different lesion subtypes. A clustering algorithm is
implemented to identify regions of cells in the H&E-stained breast microscopic tissues. This
was followed by a watershed-based segmentation algorithm, which identifies individual
cells. The segmented cells are used to derive size, shape, and intensity-based features
characterizing each ROI. These features along with the reference standard available at the
slide level are used to train a binary classifier. The system is tested using an independent set
of 33 cases with a total of 149 ROIs. The stand alone diagnostic performance of the
developed system is compared against nine expert pathologists on borderline cases. Methods
implemented for data collection, clustering, segmentation, feature extraction, and
classification are presented in Section II. Results are presented and discussed in Section III.
Conclusions and future research directions are provided in Section IV.

II. Methods
A. Image Dataset

Patient cases in the study database are collected, on a retrospective basis, from the Clarian
Pathology Lab (CPL), Indianapolis, IN, according to the approved Institutional Review
Board (IRB) protocol for this study. H&E-stained serial section of each tissue specimen are
examined by a surgical pathologist using the WHO published criteria to confirm the initial
diagnosis associated with that particular archival tissue specimen. Cases evaluated this way
are grouped into two categories by the pathologist: well-defined and borderline. All cases
based on the pathologist’s own judgement, that require careful analysis before reaching
diagnosis is considered borderline irrespective of the initial diagnosis available in the
pathology report. Well-defined cases are assigned to corresponding subtypes (UDH or
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DCIS) without further evaluation. For borderline cases truthing is performed by a panel
involving 9 boardcertified academic and community pathologists. Since most UDH is
positive to high molecular weight keratin (HMWK), immunostained serial sections of each
tissue specimen are obtained using ADH-5 multiplex immunohistochemistry staining,
Biocare Medical LLC (Concord, CA). Lesions on each case are marked and the pathologists
are instructed to only evaluate the marked area on the immunostained specimens as per their
usual diagnostic criteria and assign diagnoses of UDH, ADH, and DCIS to each case.
Reference standard, for each borderline case evaluated by the panel, is established by
maximum agreement.

Through this procedure 20 well-defined and 12 borderline DCIS, 24 ADH, and 39 UDH
cases are identified. After re-grouping ADH and DCIS cases under the actionable category,
the study database contains 39 UDH and 56 actionable cases. Once the study database is
constructed, a research associate, supervised by a pathologist, manually identified regions of
interest on each slide. These are generally regions that show proliferation of cells. Of the
total of 95 cases available, 33 cases (about 30%) containing 149 ROIs are randomly selected
by stratified sampling and sequestered as the test set. The remaining 62 cases containing 327
ROIs are used for training. H&E-stained serial section of each tissue specimen is fixed on a
scanning bed and digitized using Aperio (Vista, CA), ScanScope digitizer at 40×
magnification. The resulting whole-slide images each with size up to 5GB are stored in the
Scanscope Virtual Slide (SVS) format. A snapshot of a sample image is shown in Figure 1
along with the ROIs identified on this slide.

B. Segmentation
H&E stain colors the basophilic structures consisting of nuclear and cytoplasmic regions
with blue-purple hue, the protein rich structures consisting of extracellular regions with hues
of pink, and red blood cells (RBCs) and regions with necrosis with hues of red. Images of
two sample ROIs, one for UDH and the other one for DCIS, are shown in Figures 2a and 2d.

Pathologists use cytological descriptors such as cell size, shape, composition, nuclear
spacing etc., evident in the H&E stained tissue specimens for diagnosis. Therefore, cell
segmentation would be the first step toward automated analysis of histopathological slides.
This is implemented in two steps in this study. In the first step cell regions are segmented by
clustering the pixel data and in the second step segmented cell regions are further processed
by a watershed-based segmentation algorithm to identify individual cells.

1) Cell region segmentation—The ROI images are first converted from the RGB color
space to the La*b* color space. La*b* is a perceptually uniform color space, i.e., a change
of the same amount in a color value produces a change of about the same visual importance.
The La*b* color space also separates the luminance and the chrominance information such
that L channel corresponds to illumination and a* and b* channels correspond to color
opponent dimensions.

Pixel data are modeled by a 4-component Gaussian mixture model (GMM). One component
is used for each of the following four cytological regions: cellular (nuclear and cytoplasmic),
extra-cellular, regions with hues of red and illumina. The expectation maximization (EM)
algorithm [6] is implemented using the a*, b* channels to estimate the parameters of the
GMM model. The resulting mixture distribution is used to classify pixels into four
categories. Those classified into the cellular component are further clustered in the L
channel by dynamic thresholding [7] to eliminate blue-purple pixels with relatively less
luminance. The remaining pixels are considered cell regions and images containing these
regions are used in the next stage.
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The EM algorithm is run only once with a dataset containing few million pixels, which are
obtained by randomly sampling 10,000 pixels from each ROI image in the dataset. The same
GMM model is used for segmenting all ROI images without rerunning EM for each image.
Since each slide might contain several ROIs, estimating the distribution offline and using it
across all the ROI images saves significant online execution time. Figures 2b and 2e show
the segmentation maps of the cell regions in sample ROI images associated with a DCIS and
a UDH case respectively.

2) Individual cell segmentation—Segmentation maps of cell regions obtained in the
previous part are converted to gray level images before they are used in this stage. Since
most segmented regions contain multiple overlapping cells with cells only vaguely defined
due to the presence of holes inside them, connected components in these images do not
necessarily represent individual cells. These images are first preprocessed using hole filling
and cleaning steps suggested in [8]. Overlapped cells result in blobs in the segmentation
map. To separate these blobs properly so as to identify individual cells, we used a watershed
algorithm based on immersion simulations [9]. In this approach a gray-level image is
considered a topographic relief where the gray level of a pixel is interpreted as its elevation.
The water flows along a topographic relief following a certain descending path to eventually
reach a catchment basin. Blobs in the image can be separated using this concept by
identifying the limits of adjacent catchment basins and then separating them. The lines
separating catchment basins are called watersheds. The implementation of this algorithm is
available through the ImageJ platform [10]. This specific implementation uses the local
maxima in the Euclidean distance map as seed points. These seed points are dilated as far as
possible either until the edge of the particle or the edge of the region of another growing
seed point is reached. We used the Matlab®(Natick, MA) interface to ImageJ to use this
implementation alongside our own algorithms. Once all catchment basins are identified and
separated with this approach, the region defined by a catchment basin is considered a cell
region. These are easily identified in the resulting image by identifying connected
components. Figures 2c and 2f show the segmentation maps of the individual cells in sample
ROI images associated with a DCIS and a UDH case respectively.

C. Feature Extraction
This section discusses feature extraction methods implemented for quantitative
characterization of ROIs in H&E stained slides. Pathologists tend to rely heavily on
morphological features such as cell size, shape, and nucleoli apperance. Three different sets
of statistical features are computed for each ROI to model these histological descriptors.
Perimeter is used for cell size, the ratio of major to minor axis of the best fitting ellipse is
used for cell shape, and the mean of the gray level intensity is used for nucleoli apperance.
For comparison, summaries of the set of features used by the pathologists for classifying
intraductal breast lesions and those employed in the computerized system are reported in
Tables I and II, respectively. There are several hundred connected components present in
each segmented image. Once the perimeter, the ratio of major to minor axis, and the mean of
the gray level intensity are computed for each connected component identified in an ROI,
statistical features involving the mean, standard deviation, median, and mode are computed
to obtain features at the ROI level. Thus, each ROI is characterized by a total of 12 features
(3 × 4).

D. Classifier Training
Each slide contains multiple regions of interest and a positive (actionable) diagnosis is
confirmed when at least one of the ROIs in the slide is identified as positive. For a negative
diagnosis (UDH) the pathologist has to rule out the possibility of each and every ROI being
actionable. The objective here is to develop a classifier to optimize classification accuracy at
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the slide level. Traditional supervised training techniques which are trained to optimize
classifier performance at the instance level yield suboptimal performance in this problem.

The problem of learning with multiple instances (MIL) was first defined in the context of a
drug activity prediction application [11]. In our earlier work we have developed a MIL
approach based on the convex-hull idea and performed experimental studies on two different
computer-assisted detection applications which demonstrated that our approach significantly
improves detection accuracy when compared to other MIL techniques proposed in the
literature [12]. Since this approach was developed for problems where only positive samples
are characterized by multiple instances, it was not directly applicable to the
histopathological classification problem where negative cases also contain multiple
instances. In a more recent work we have proposed an extension of this approach by
defining a pair of asymmetric loss functions for positive and negative samples in a large-
margin framework and presented results on a dataset containing 40 histopathology slides (20
UDH and 20 DCIS) that showed competitive performance with the state-of-the-art [13].

In what follows, we first provide a brief overview of the large margin principle [14] and then
briefly discuss our earlier work on MIL in [13]. The words sample and instance refers to a
pathology slide and ROI respectively. As such slide/sample and ROI/instance are used
interchangeably throughout this text.

1) Margin maximization with single instance per sample—Notation: When each
sample is characterized by a single instance the following notation holds. 
denotes a training dataset with N samples where  is an instance (d-dimensional
feature vector) characterizing sample i and  is the corresponding known label.
In the large margin approach the classifier function f(x) = w · x+w0 is optimized by solving
the following optimization problem with respect to w and w0.

(1)

where (·)+ = max(0, ·) represents the hinge loss function, and C is the cost preassigned to the
misclassification associated with xi.

2) Margin maximization with multiple instances per sample—Notation: In the
MIL framework we use the following notation:

(2)

where  is the feature vector characterizing the jth ROI in slide i, Mi is the number of ROIs
in slide i and  contains the label information, which is available at the slide
level only.

The MIL extension of the problem in (1) can be obtained by defining different loss functions
for positive and negative samples such that a positive sample is penalized only when all of
its instances, i.e., all ROIs in that slide, are classified negative, whereas a negative sample is
penalized when at least one of its instances is classified positive. Next, we define two new
loss functions for positive and negative samples.
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Loss function for negative samples
For negative cases loss is incurred when at least one of the ROIs in a slide is classified as
positive. Thus, we replace the hinge loss function used in (1) with its multivariable
counterpart defined by

(3)

where . This ensures that the loss incurred by a negative slide i is zero only
if all ROIs in the slide are correctly classified as negative.

Loss function for positive cases
For positive cases loss is incurred when all of the ROIs in a slide are classified as negative.
In other words for correct diagnosis, it is sufficient to identify at least one ROI on a slide as
positive. If a point that lies within the convex hull of all the instances of a sample is
classified positive, this will indicate that at least one of the original ROIs is also classified

positive. Let λi s.t. , e · λi = 1 be the vector containing the coefficients of the convex
combination of all ROIs in slide i, and e be a vector of ones. Then the feature vector
characterizing slide i is defined by

(4)

where  is the data matrix containing feature vectors of all ROIs within slide i.
The loss function for a positive case in this new framework can be defined by

(5)

which is a function of both convex-hull coefficients λi and classifier coefficients w. More
detailed discussion on convexhull characterization of samples with multiple instances can be
found in our earlier work in [12]. With the new loss functions for positive and negative
samples added to the problem, the large-margin formulation becomes:

(6)

where Ω+ and Ω− are the corresponding sets of indices for the positive and negative samples
respectively, and the two constraints are imposed to ensure that the feature vector
characterizing a positive sample is always within the convexhull of its instances. This
problem can be optimized by iterating between two convex subproblems in an alternating
manner. The first subproblem optimizes for w and w0, while λi are fixed. The second
subproblem optimizes for λi while w and w0 are fixed. Since both subproblems are convex
the objective function in (6) is guaranteed to decrease after each iteration. Thus,
convergence can be established by defining a termination criteria, based on the change in the
value of the objective function between any two iterations.
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III. Results
In this section experiments are performed to validate the stand-alone performance of the
developed system. To avoid numerical problems during optimization it is a common
preprocessing step to normalize each feature to between -1 and 1. The parameters of the
classifiers are selected from a designated set of six different C+ and C− values by
considering all possible pairs (6 × 6 = 36 pairs) and selecting the pair that optimizes the
leave-one-slide-out (LOSO) cross validation performance of the classifier. LOSO cross-
validation splits the training dataset into k folds, where k is equivalent to the number of
slides. At each stage one slide is left out as validation data, i.e., all ROIs for that slide are
removed from the training data as validation data, and the classifier is trained with the ROIs
of the remaining k – 1 slides and tested on the ROIs of the left-out slide. This process is
repeated until all k slides are used for validation and the probabilities of all ROIs being
positive are obtained. There is only one slide for eachpatient in our study database. Thus,
each fold only contains data from a unique patient. In this regard, the LOSO approach used
in this study is the same as leave-one-patient-out (LOPO) cross validation. The classifier
performance is measured by the area under the receiver operating characteristic (ROC)
curve, or the so called Az value. The different operating points along the ROC curve are
obtained by comparing the classification results with the reference standard available for
each case at varying thresholds, θ, i.e., f(x) >= θ. Once the pair of classifier parameters that
maximizes the Az value is determined the classifier is trained with the entire training dataset
to obtain the classifier function f(x) = w · x + w0. The two features with the largest weights in
the optimized weight vector, w, are the mean of the mean intensity and the median of the
ratio of the major to minor axis of the best fitting elipse. The first one characterizes nucleoli
prominence and the second one cell shape.

Figure 3a shows the ROC curve obtained by LOSO on the training data along with the ROC
curve obtained on the test data. Az values of 0.92 and 0.93 are achieved respectively on the
training and test datasets.

Next, the classifier defined by the classification boundary, f(x) = 0, is evaluated for each
ROI on the test data. ROIs with f(x) > = 0 are classified positive, whereas those with f(x) < 0
are classified negative. Here x respresents the feature vector characterizing the ROI.
Classification at the slide level is rendered by classifying slides with at least one positive
ROI as actionable and those where all ROIs are negative as UDH. An overall accuracy of
87.9% (29/33) is achieved by the computerized system. We also compared the accuracy of
the system against the accuracies of the nine pathologists. These are the same group of nine
pathologists used to establish the reference standard for each case in the study database.
However this step is different than truthing in that pathologists were provided
immunostained serial sections of the specimens so that an accurate reference standard could
be obtained for each case. This time pathologists are only provided H&E stained serial
sections for evaluation and are instructed to classify each case as UDH, ADH, and DCIS.
Cases classified ADH or DCIS by the pathologists are grouped together under the actionable
category. The study with the pathologists is performed using only the borderline cases in the
test set (26 out of 33). The classification accuracies of the nine pathologists are presented in
Table III.

We believe that the accuracy of 87.9% achieved on all test cases and of 84.6% achieved on
borderline cases by the computerized system is quite promising. The accuracy on borderline
cases is better than the accuracy of the four pathologists and is in par with the accuracy
achieved by three of the remaining five pathologists. When we take a closer look at the four
cases misclassified by the computerized system, we see that three of them are UDH and one
is actionable. However, these are cases for which pathologists did not have complete
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agreement either. One case is classified UDH by five pathologists and actionable by the
remaining four. The other case is classified actionable by six pathologists and UDH by the
remaining three. The other two cases are classified actionable by seven pathologists and
UDH by the remaining two.

Finally, we compared the performance of the proposed MIL approach (MILSVM) with two
other MIL techniques from the literature, namely the MIL versions of the relevance vector
machine (MILRVM) [15] and AND-OR SVM [16]. Two traditional supervised training
techniques, namely RVM [17] and linear SVM [14] are also included in this comparative
analysis. All classifiers are tuned by LOSO using the training set and are validated with the
test set. The receiver operating characteristics (ROC) curves obtained for the five classifiers
are shown in Figure 3b along with the Az values achieved by each. The proposed approach
achieves an Az value of 0.93. The second largest Az=0.87 is achieved by SVM. Significance
analysis between the two ROC curves using the approach in [18] yields a p-value of 0.048,
which indicates the improvement is statistically significant.

IV. Conclusions
In this study a system for computerized analysis of breast microscopic tissues is developed
for improved classification of intraductal breast lesions. The system is developed with 62
cases and tested on 33 cases. An overall accuracy of 87.9% is achieved on the entire test set
involving 7 welldefined and 26 borderline cases. An accuracy of 84.6% is recorded on
borderline cases. This was slightly higher than the average accuracy of nine board-certified
pathologists (81.2%) evaluated on the same set. We believe that the stand-alone
classification performance of the developed system is highly encouraging. However, before
this system can be deployed in a clinical setting as a “second reader” its incremental value
has to be assessed. Before such a study can be effectively carried out, the computerized
system has to be improved such that its output is presented in a way that could easily be
interpreted by the pathologists. This will involve developing intermediate models to map
image features onto descriptors pathologists use for classification. Apart from making the
output of the system more interpretable, we will also increase the size of the study database
for more extensive testing of the developed system. Once these two goals are achieved, a
reader study involving a panel of pathologists with varying levels of experience will be
conducted to evaluate the incremental value of the computerized system as a second reader.
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Fig. 1.
The snapshot of the digitized scan of a H&E stained specimen with three ROIs.
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Fig. 2.
The segmentation of the cells for two sample ROIs obtained from a borderline UDH and
DCIS cases respectively.
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Fig. 3.
(a) ROC curves obtained for the training (62 cases by LOSO) and test sets (33 cases) using
the proposed approach (MILSVM). (b) ROC curves comparing MILSVM with other
techniques from the literature on the test set.
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TABLE I

Qualitative features used by pathologists for diagnosis.

Histological
Features

Description

Cell Size Small for UDH, small or medium-sized for ADH and
low-grade DCIS, large for high-grade DCIS

Cell Shape Ovoid and mixed for UDH, monotonous for ADH
and low-grade DCIS, large and pleomorphic for
high-grade DCIS

Nucleoli Indistinct for UDH, single and small for ADH and
low-grade DCIS, prominent and enlarged for highgrade
DCIS
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TABLE II

Morphological and pixel intensity features considered in computerized diagnosis.

Features Description

Perimeter The perimeter of each connected component is used
to characterize cell size.

Ratio of major to
minor axis

The ratio of major to minor axis for the best fitting
ellipse corresponding to each connected component
is used to characterize cell shape (ovoid vs. circular).

Mean of the gray
level intensity

The mean of the gray level intensity for each con-
nected component is used to characterize nucleoli
appearance. Nucleoli, if prominent and/or large, appears
darker than cytoplasmic regions in the cell.
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