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Abstract
The Parallel Distributed Processing (PDP) framework has significant potential for producing
models of cognitive tasks that approximate how the brain performs the same tasks. To date,
however, there has been relatively little contact between PDP modeling and data from cognitive
neuroscience. In an attempt to advance the relationship between explicit, computational models
and physiological data collected during the performance of cognitive tasks, we developed a PDP
model of visual word recognition which simulates key results from the ERP reading literature,
while simultaneously being able to successfully perform lexical decision—a benchmark task for
reading models. Simulations reveal that the model’s success depends on the implementation of
several neurally plausible features in its architecture which are sufficiently domain-general to be
relevant to cognitive modeling more generally.
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Introduction
Comprehending meaning from text—visual word recognition—is a pervasive and
fundamental cognitive process that is studied by researchers using a wide variety of
methodologies. In broad strokes, cognitive scientists seek to characterize the component
processes involved, cognitive neuroscientists seek to map those processes onto neural
signatures, and computational modelers seek to make explicit the interactions that occur
between the representations involved. Each of these methodologies has strengths that can
supplement the weaknesses of others, and often important discoveries are made when two or
more of them are combined—for example, when psychophysiology provides a time course
for proposed cognitive processes or when a computational model shows that a particular
cognitive architecture can in fact produce the pattern of results it has been formulated to
explain.
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Interplay between cognitive science and computational modeling in the domain of visual
word recognition has involved the parallel development of two prominent but very different
modeling frameworks: one utilizing learned representations and a uniform set of
computational principles—the parallel distributed processing (PDP) approach (e.g.,
Seidenberg & McClelland, 1989; Plaut, McClelland, Seidenberg, & Patterson, 1996)—and
another which de-emphasizes learning and relies on different types of computations in
different functional pathways—the so-called “dual-route” or “dual-process” approach (e.g.,
Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; Perry, Ziegler, & Zorzi, 2007). Each of
these approaches has its own strengths and weaknesses, but in aggregate both of them are
highly successful in simulating a number of results from behavior and neuropsychology. For
example, one compilation of effects that recent models have been successful in simulating
(Perry et al., 2007), includes 13 items, from diverse tasks such as lexical decision, reading
aloud, and many variants of priming, as well as several items pertaining to performance in
dyslexia. However, there is one area in which even the most sophisticated of current models
is lacking, as agreed upon by proponents of both the PDP and dual-process frameworks
(e.g., Harm & Seidenberg, 2004; Perry et al., 2007), as well as advocates of other modeling
techniques in other domains (e.g., Bayesian modeling; see Griffiths, Chater, Kemp, Perfors,
& Tenenbaum, 2010). That area is contact with data from cognitive neuroscience and
neurophysiology. It is widely hoped that more contact with cognitive neuroscience can
provide constraining data on appropriate internal dynamics for models, and that more
contact with data from neuroscience can improve the neural plausibility of models largely
based on behavior.

Interestingly, this need for more contact with cognitive neuroscience in computational
investigations of visual word recognition has coincided with a need for more contact with
computational models in similar investigations conducted using the Event-Related Potential
(ERP) methodology. It has begun to be commonly noted that theories about the
representations and computations involved in reading stemming from ERP data have
become specific enough that it would be desirable to test them by instantiating them as
computational models (e.g., Barber & Kutas, 2007; vanBerkum, 2008). For example, a
recent series of ERP studies pertaining to the “obligatory semantics” view of visual word
recognition has presented data cast as strongly consonant with PDP models, while less
supportive of dual-process models (Laszlo & Federmeier 2007, 2008, 2009, 2011). These
studies have focused on the N400 ERP component, which, as discussed in more detail
below, is thought to be a functionally specific marker of attempted semantic access (see
Kutas & Federmeier, in press, for review). It has now been shown several times that even
meaningless items with little resemblance to lexically represented items can engage the
semantic access thought to be indexed by the N400, both in sentences (Laszlo &
Federmeier, 2009) and in unconnected streams of text (Laszlo, Stites, & Federmeier, in
press)—that is, an attempt to access semantics appears to be obligatory for all orthographic
inputs, even consonant strings like XFQ. Further, the N400s elicited by meaningless illegal
strings respond to manipulation of lexical characteristics such as orthographic neighborhood
size (i.e., Coltheart’s N, the number of words that can be created by changing one letter of a
target item; Coltheart, Davelaar, Jonasson, & Besner, 1977) and neighbor frequency in a
manner both quantitatively and qualitatively similar to that demonstrated by words (Laszlo
& Federmeier, 2011). These data have been taken as supportive of PDP models in that they
seem to reveal a language processing system which 1) does not require an item to have a
lexical representation, or even be similar to an item with a lexical representation, in order to
make some contact with semantics and 2) performs what appear to be indistinguishable
computations on different input types, regardless of factors like lexicality or the regularity/
consistency of spelling-sound correspondences. Further, the degree to which an attempt at
semantic access occurs for meaningless items appears to be strongly related to their
similarity to items with associated semantics (i.e., words, acronyms), a result which is
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consonant with the fact that the distributed representations preferred by PDP models tend to
associate similar inputs with similar outputs, to a degree determined by the amount of
overlap between representations.

In contrast, the ERP results seem to be less supportive of dual-process models, insofar as
such models include lexical mediation between orthographic input and semantics (e.g., Perry
et al., 2007), making it difficult or impossible for items such as consonant strings, which are
neither lexically represented nor similar to items that are, to contact semantics. Note that a
lexically mediated system could potentially be made to allow illegal strings contact with
semantics by lowering the threshold of lexical activation that needs to be met in order for
semantics to be activated. That is, the many lexical entries that overlap slightly with illegal
strings could be activated weakly, and the aggregation of this weak activity over many units
could be allowed to be passed forward to semantics. However, such a system is no longer
strongly lexicalized, in that the internal representations that mediate between orthography
and semantics are now essentially distributed—that is, many units participate in the
representation of each input, and the strength of activation in those units is proportional to
the degree of overlap with the input. This will be true not just for nonwords but also for
words as, of course, words overlap with other words to differing degrees.

Another potential mismatch between the ERP results pertaining to meaningless, illegal
strings and dual-process models occurs because of one of the core properties of dual-process
models: orthographic inputs tend to differentially engage separable processing streams
depending on the regularity of their spelling-sound correspondence. This characteristic
seems incongruent with the repeated finding that items with irregular spelling-sound
correspondences (acronyms, consonant strings), elicit waveforms that are qualitatively and
quantitatively quite similar to those elicited by items with regular spelling sound
correspondence (words, pseudowords) up to and including the N400 portion of the ERP
(Laszlo & Federmeier 2007).

The fact that these ERP data have been explicitly cast as supportive of one particular
theoretical framework invites an attempt to test the obligatory semantics view by trying to
simulate key ERP data in a PDP model of the type they are claimed to support. An attempt
to test the obligatory semantics view by instantiating its assumptions in an explicit
computational model would be useful not only in advancing a theoretical position present in
the ERP literature—it would also provide new information about the degree to which the
internal dynamics of a reading model constructed with PDP principles match the internal
dynamics of the groups of neurons that are actually performing the task in the brain.
Currently, there is limited constraint on the internal dynamics of cognitive reading models,
as they are all based almost entirely on behavioral data, which is fundamentally end state
data. That is, while strong inferences about internal processing can and have been made on
the basis of, for example, RT or naming latency data, these data do not provide direct
evidence about the processes occurring between when an item is presented and when a
response is made—only data about the final consequences of those processes. ERPs, in
contrast, can be collected continuously between when an item is presented and when a
response is made, and can, in fact, be collected even when no overt response is made.
Further, ERPs can be divided into well-specified components, which have been robustly
replicated as reflecting particular cognitive functions.

The N400 component, for a particularly relevant example, is strongly tied with attempted
semantic access. The designation of the N400 as a semantic component is based on a variety
of converging results, including its functional properties, its neural generators, and the
functional anatomy of components which precede it. The N400 is known to respond to a
wide variety of semantic manipulations such as congruity with sentence and discourse
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context (Kutas & Hillyard, 1984; van Berkum, Hagoort, & Brown, 1999), semantic
association (Nobre & McCarthy, 1995), and item concreteness (Kounios & Holcomb, 1994),
to name only a few, while not being sensitive to other types of linguistic manipulations, such
as those of syntactic constraint (Kutas & Hillyard, 1983), or font size (Kutas & Hillyard,
1980). Converging evidence from intracranial EEG (Nobre & McCarthy, 1995), MEG
(Halgren, Dhond, Christensen, Van Petten, Marinkovic, & Lewine, 2002), and the Event-
Related Optical Signal (EROS; Tse, Lee, Sullivan, Garnsey, Dell, Fabiani, & Gratton,
2007), as well as patterns of diminished N400 in brain damage (Hagoort, Brown, & Swaab,
1996) all point to a primary source of the N400 in the left anterior temporal lobe, a region
strongly linked with semantic processing (e.g., Nobre & McCarthy, 1995; McCarthy, Nobre,
Bentin, & Spencer, 1995). Finally, the N400 has been argued to occur not only in the correct
brain areas, but also in the correct temporal window, to subserve semantic access, based on
both the neural generators and functional properties of the sensory and form-based
components that precede it (see Grainger & Holcomb, 2009, for extensive review). In sum,
the functional specificity of the N400 component is a particularly useful property for model-
building, as its clear link with semantic processing permits a direct comparison with
semantic representations and processes in a model.

The goal of the present work is to test the assumptions of the obligatory semantics view of
N400 processing in a PDP model that continuously simulates N400 amplitude. Three
particular considerations are of importance. First, can such a model produce N400-like
dynamics at all—that is, can we produce a PDP model the semantic activation of which
resembles the morphology of the N400 component? To our knowledge there are no other
implemented computational models of N400 processing, so this is not assured. We chose to
link N400 amplitude with amount of activation in the semantic layer of representation in our
model, on the basis of the N400’s strong link in the literature with semantic access (as just
discussed) as well as findings that, at least in the context of reading unconnected text, N400
amplitude represents the number of semantic features being activated in response to a
particular input. (e.g. Laszlo & Federmeier, 2007, 2011). Larger (more negative) N400s are
elicited by items which might be expected to activate more semantic features, such as items
higher in concreteness (e.g., West & Holcomb, 2000), or items with larger orthographic
neighborhood sizes. The morphology of the N400 is well-characterized as essentially a
curve which rises monotonically to a single peak, and then decreases monotonically
throughout the remainder of its time course—Figure 1 displays several N400 potentials
representative of those we sought to simulate. To be successful, the mean amount of activity
in the model’s semantic layer must develop similarly, without, for example, additional
oscillations. In this fashion, the model is constrained not only to reach some end state in a
manner consistent with the data (as is the case in behavioral models), but also to perform in
a manner consistent with the data throughout its evolution over time.

The second consideration is: will the dynamics of the semantic layer in the model further
mirror critical results supportive of the obligatory semantics view? In seeking to answer this
question, we chose to focus our simulations on data from the single-item ERP corpus
(Laszlo & Federmeier, 2011), as it is both uniquely appropriate for computational modeling
and also representative of the key data in support of obligatory semantics. The availability of
single-item ERPs enables items analysis (e.g., items multiple regression), in addition to the
more typical parametric analysis available from ERP reading studies. This makes the single-
item ERP corpus a particularly appropriate target for computational modeling, as it is
advantageous to model items effects, not just item aggregated, factorial effects, whenever
possible. For the model to be successful, in addition to showing the broad characteristics of
the N400, it must also produce simulated N400s that are consistent with the critical findings
from the single-item ERP corpus (described in detail below).
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Finally, it is important that the model also be able to perform the behavioral task of lexical
decision., as lexical decision is among the most common benchmark tasks for computational
reading models. Literate adults, though they do not receive extensive training on performing
lexical decisions while learning to read, are able to make them quite easily in a lab setting.
In imitation of this situation, the model is never explicitly trained on lexical decision but is
asked to make lexical decisions on the basis of a simple thresholding procedure after
training is complete. Attempting to implement this additional capability in the model helps
to ensure that, insofar as it is able to simulate results previous models do not—from the
domain of ERPs-- it is also able to simulate the fundamental behavioral data that decades of
visual word recognition modeling have been built on. Without this additional ability, the
ERP model would not truly be tied to its thematic predecessors (e.g., Harm & Seidenberg,
2004; Plaut et al., 1996, Seidenberg & McClelland, 1989), which would be unfortunate
given the significant insights those models have provided into visual word recognition.
Simulating both electrophysiological and behavioral data is a more challenging task than
simulating the ERP data alone, but a worthwhile one: it lays a foundation for a much more
complete, holistic model than ignoring the behavioral data would. Further, challenging the
model to perform lexical decision instantiates an incremental approach to computational
modeling (Perry et al., 2007) by extending a preliminary ERP model that focused on the
ERP data alone (Laszlo & Plaut, 2011). A criterion for model success was that, by the end of
processing each input, the model be able to produce a signal that could reliably differentiate
meaningful items (words and acronyms) from non-meaningful items (pseudowords and
illegal strings.)

In developing a model of ERP data, we considered it critical to incorporate some of the most
general properties of the neurons which produce the ERP signal. The vast majority of the
brain-generated electrical potential measured at the scalp is produced by the synchronous
firing of excitatory and inhibitory post synaptic potentials by cortical neurons arranged in an
open-field configuration (see Fabiani, Gratton, & Federmeier, 2007, for review). Thus, we
departed from previous reading models by trying to handle excitation and inhibition in the
model in a manner more true to what is understood about the neural configuration of
excitation and inhibition (see, e.g., Crick & Asunama, 1986). This was accomplished in
three ways. First, we separated excitation and inhibition in the model, such that individual
units could have excitatory outgoing projections or inhibitory outgoing projections, but
never both, as is true of cortical neurons. This arrangement can be observed in Figure 2,
which presents a schematic of the ERP model. Second, we limited the distribution of
inhibitory connections, such that they could occur only within, but never between, levels of
representation in the model. This decision was motivated by the fact that connections
between cortical areas are largely excitatory, with inhibitory connections occurring largely
within a given cortical area. This feature of the model is also visible in Figure 2. Finally, we
severely limited the number of inhibitory units in the model—each excitatory layer has only
a single associated inhibitory unit—in accordance with the finding that the large majority of
neurons in the cortex are excitatory (e.g., White, 1989). Each of these neurally plausible
adjustments to the way excitation and inhibition are handled in the model represent a
departure from previous reading models (e.g., Harm & Seidenberg, 2004), in that inhibition
is typically unconstrained in such models, with individual units able to have both positive
and negative outgoing connections, inhibitory connections allowed between levels of
representation, and, because excitation and inhibition are not separated, essentially equal
numbers of excitatory and inhibitory units.

In what follows, we first present the relevant phenomena from the single-item ERP corpus in
some detail, in order to directly motivate the simulations that follow. Then, in two
simulations, we explore a number of questions pertaining to the ability of a PDP system to
successfully simulate the ERP data. First, we attempt to determine whether a PDP system
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can produce internal dynamics which resemble ERP morphology at all. If this is
accomplished, we then seek to determine whether such a system can produce the results
thought to be supportive of the obligatory semantics view of N400 processing: namely a
strong effect of orthographic neighborhood size which acts similarly for lexical and non-
lexical items. Importantly, if the model is able to correctly simulate the key ERP findings, its
ability to perform lexical decisions is assessed as an additional metric of success. Finally,
the contribution of the separation of excitation and inhibition in the model to the model’s
ability to simulate the ERP data is examined.

Target Phenomena: Event-Related Potentials
A detailed report of the methods and results of the single-item ERP corpus is available
elsewhere (Laszlo & Federmeier, 2011). However, for clarity, we describe here the nature of
that data set and the key results that will act as target phenomena for the simulations
presented below. 120 participants in the single-item ERP study viewed an unconnected list
of words (e.g., HAT), pseudowords (e.g., KOF), acronyms (e.g., DVD), and meaningless
illegal strings (e.g., NHK), while monitoring the stream for English proper names (e.g.,
SARA, DAVE). No response was required for the critical item types, in order to keep the
critical ERPs free from response related components. This task, as well as the item types
presented, replicated Laszlo & Federmeier, 2007. Acronyms were backsorted on the basis of
a post-test such that only acronym items that individual participants were familiar with were
included in that participant’s averaged waveforms. Event-Related Potentials were formed by
averaging at each of the scalp electrodes time-locked to the onset of each of the critical
items. In the case of single-item ERPs, averaging was done over participants only, not over
items. More typical, item-aggregated ERPs (representing, for example, the response to all
words) were formed by averaging over both items and participants.

One of the most striking findings in the single-item data is that individual lexical
characteristics (e.g., orthographic neighborhood size, neighbor frequency), tend to be much
stronger predictors of N400 amplitude than lexical type (e.g., word or pseudoword). This is
demonstrated in Figure 3, in the case of orthographic neighborhood size. As is evident in
Figure 3, items with high N (words, pseudowords) elicit larger N400s than items with low N
(acronyms, illegal strings), and this is true regardless of lexicality. That is, though
pseudowords are presumably not semantically represented, they elicit similar N400s to
words, because of their similarity on N—the same is true when comparing acronyms and
illegal strings. This can be quantified as a main effect of N on N400 mean amplitude, but no
effect of lexicality and no interaction between the two (see Laszlo & Federmeier, 2011, for
details of statistical analysis.).

The second critical finding we consider in the simulations below is that, at an items level,
the slopes relating N400 mean amplitude to orthographic neighborhood size are qualitatively
and quantitatively quite similar for lexical and non-lexical items—this is, of course,
reflected as the lack of interaction between N and lexicality in the factorial analysis. This
result is visible in Figure 4 (reproduced from Laszlo & Federmeier, 2011), which displays a
scatter plot of items N400 mean amplitude versus orthographic neighborhood size along
with single regression trendlines for lexical and non-lexical items. Note that the distributions
of N400 mean amplitudes for lexical and non-lexical items are almost completely
overlapping, as are the trendlines depicting the relationship between orthographic
neighborhood size and N400 mean amplitude for the two lexical types. Thus, the N effect is
quite similar for lexical and non-lexical items. In addition, automated stepwise regression
analysis of the single-item ERP corpus revealed that N is, by far, the strongest predictor of
unique N400 variance of those lexical variables considered (length, N, neighbor frequency,
number of lexical associates, and frequency of top associate were all considered in Laszlo &
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Federmeier, 2011; subsequent analysis has extended the list to include bigram frequency,
concreteness, imageability, number of senses, and noun verb ambiguity; Laszlo, unpublished
data). The prominence of the N effect, combined with other findings indicating that, unlike
effects of variables such as concreteness or written frequency, it is maintained both with
repetition and in sentence context (Laszlo & Federmeier, 2007, 2008, 2009), altogether
make it particularly relevant for simulations exploring the obligatory semantics view of the
N400.

Simulation 1
Methods

The architecture of the ERP model is depicted in Figure 2. A 15-unit visual input layer
represents the visual features of each of 3 letters in 5 non-overlapping slots. The visual input
layer feeds into a 20-unit orthographic autoencoder, which was pre-trained to reproduce the
visual input on a copy of the 15 input units. The autoencoder feeds through a 50-unit hidden
layer to a 50-unit semantic layer with an associated 30-unit semantic cleanup layer. At the
semantic layer, relatively sparse, arbitrary semantic representations were trained to be
associated with the visual inputs, in accordance with the fact that, for morphologically
simple words in English, orthography-semantics mappings are largely arbitrary. Semantic
targets consisted of random bit patterns over the 50 semantic units—that is, semantic
features were not learned but were arbitrarily assigned, with the constraint that each unit be
active in at least one semantic target. Either 3 or 7 features were active in semantics for each
target. The numbers 3 and 7 were chosen simply so that semantic representations would be
fairly sparse (i.e., 6% of features active for a representation with 3 features, 14% active for a
representation with 7 features). Two different numbers of features were chosen so that
effects of semantic concreteness could be explored in future versions of the model using the
same materials: the N400 is known to be sensitive to semantic concreteness (Kounios &
Holcomb, 1994). Weights on connections between levels of representation were constrained
to be positive-only. Each layer of representation (except for the cleanup and input layers)
has one associated inhibitory unit, connected as depicted in Figure 2.

For excitatory units, the standard logistic (sigmoid) function was used to compute unit
activations. For the inhibitory units, a multi-linear activation function was used, with a slope
of 1 from inputs of zero through an inflection point, and a slope of 2 from the inflection
point onward (see Figure 5). The multi-linear activation function was used in order to
approximate the presence in the brain of separate populations of inhibitory neurons with
varying temporal response properties—that is, the fact that some inhibitory neurons respond
more quickly with stimulation than others (e.g., Traub, Miles, & Wong, 1989; Benardo,
1994.) As is visible in Figure 5, the multi-linear activation function is formally identical to
the sum of 1) a linear activation function that begins immediately with even small amounts
of input and 2) an identical linear activation function that does not begin until some
threshold of activation is passed (the “elbow”). Because it takes time for activation to build
up in the network, the result is that the steeper portion of the inhibitory function is not used
until later in network time than the shallower portion. In this way, even though the network
only has one inhibitory unit at each level of representation, that one unit is able to
approximate the function of separate units with different temporal properties. The inhibitory
activation function is unbounded—allowing the single inhibitory unit associated with each
level of representation to produce significant inhibition—and the location of the inflection
point in activation space for each inhibitory unit is a fixed parameter in the model. Output
units (i.e., units in the semantic layer or the orthographic output layer in the autoencoder) are
additionally constrained such that their activation decays towards zero as the inverse square
root of their raw, logistic activation. Thus, units that are strongly activated tend to stay
strongly activated, while units that are weakly activated tend to decay towards zero
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activation. This procedure is reminiscent of a k-winners-take-all function (O’Reilly, 1996a),
in that it allows only the units with the strongest activations to remain active, and quiets all
the rest, but differs in that the number of units that are able to remain active is dynamic.

Training was accomplished by back-propagating cross-entropy error through time
(Rumelhart, Hinton, & Williams, 1986; Hinton, 1989). Additional constraints were added to
the back-propagation procedure to assure that excitatory weights were always positive and
inhibitory weights were always negative. First, the minimum outgoing weight of excitatory
units is a fixed parameter in the model such that in the present implementation of the back-
propagation algorithm, no weight change is made that would cause a weight to be smaller
than its fixed minimum. Second, inhibitory weights were fixed to random, negative values at
the beginning of training and were not updated subsequently. Thus, it was impossible for
connections designated as excitatory to have negative values, or for connections designated
as inhibitory to have positive values.

In order to keep the scale of the model small, there are only 10 letters in its vocabulary:
seven consonants (SNCBDPT) and three vowels (OIU). Of the possible 1000 strings of
letters that could be formed with 10 letters in three slots (10 ^ 3), we designated 62 as
“words” and 15 as “acronyms.” Words were constrained to have a CVC structure, and
acronyms could have any letters in the 1st or 3rd position, but were constrained to have a
consonant in the 2nd position—this was done to create a structural difference between the
representations of words and acronyms and also to ensure that the orthographic
neighborhood sizes of acronyms would be smaller than that of words, as is true in the single-
item ERP corpus. Within the limited vocabulary of the model, words had a within-set N of
6.83, and acronyms had a within-set N of 0.8.

Before semantic training commenced, the autoencoder was trained to reproduce the
orthography of each of the 77 semantically represented (i.e., word and acronym) items (see
the Results section, below). This was done to ensure that, even before semantic training
began, the network had some knowledge about the orthographic structure of input items. By
forcing the network to condense, and reconstruct, orthographic representations prior to the
onset of semantic training, the autoencoder ensures that orthographic structure will be
emphasized in subsequent processing. The model learns, during autoencoder training, that
inputs with interior consonants are dispreferred, through the simple fact that more words—
items with interior vowels—are presented than acronyms—items with interior consonants.
This information is important to the model, as without it illegal strings tend to produce too
much semantic activation, by virtue of their structural similarity with acronyms. A related
consequence of pre-training particular orthographic structures is that acronyms form strong
internal representations in the model, without which they would be unable to activate
semantics sufficiently because they are dissimilar to and less frequent than words. In
essence, what the model learns by pre-training on orthographic structure it is that internal
consonants are dispreferred, and thus should generally not pass much activation forward,
except in the specific cases with robust representations in the autoencoder—that is, except
for acronyms.

After autoencoder training was complete, the semantic training phase began, during which
time the network was trained to activate the correct (although arbitrary) semantic features
for each of the 77 semantically represented items, wh ile simultaneously being trained to
keep all features in semantics “off” for a large set of “wordlike” nonwords. The wordlike
nonwords consisted of the 1155 (77 items * 15 input features) items that could be formed by
flipping one bit in the input representations of the 77 semantically represented items. That is,
by changing a single one in an input representation to a zero, or vice versa. Although there
were more wordlike nonwords than semantically represented items in the training corpus,
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each word was presented to the network during training 50 times more frequently than each
nonword. One way to think about training on wordlike nonwords is that it approximates
training the network to not link semantics with “mistakes,” much like training a learning
reader that a word misspelled by one letter is not the same as the word itself.

On each training trial, the visual input for one of the items in the training corpus was
clamped on, and activation was allowed to propagate through the network for 12 time steps
with no accumulation of error. Targets continued to be presented for a subsequent four time
steps, during which time error was accumulated. At the end of 16 time steps, the trial ended,
the network was reset to its initial state, and the next trial began. Words and acronyms were
50 times more likely to be selected as the input for each trial than wordlike nonwords. A
single training epoch consisted of 1232 (77 + 1155) trials, however not every item was
necessarily trained in each epoch as words and acronyms were more likely to be selected
than nonwords (e.g., a single word could be selected 50 times, meaning that not every item
would be selected in every 1232 trial epoch). After 9000 epochs of training in this fashion,
the network was tested on 441 items: the 62 words and 15 acronyms it was trained on, in
addition to 279 illegal strings (nonwords with central consonants) and 85 pseudowords
(nonwords with central vowels) to which the network was not exposed during training. The
target for all illegal strings and pseudowords was for all semantic units to remain off.

Results
Autoencoder—The orthographic autoencoder was trained to reproduce the visual inputs
corresponding to the 62 words and 15 acronyms on a copy of the input units. For the
autoencoder, as for subsequent analyses pertaining to the model’s semantic performance, an
output is considered correct if the Euclidean distance between the output representation
produced for an item and the target representation for that item is lower than the distance
between the output and the target for any other item. After 3000 epochs of training, the
autoencoder’s performance was perfect (100%).

Semantics—After 9000 epochs of training, the network was 93% (411/441 items) accurate
in producing either correct semantics (in the case of words and acronyms) or silence in the
semantic layer (in the case of pseudowords and illegal strings). Of the 30 errors, 15 occurred
for pseudowords, and 15 occurred for illegal strings—all items that were actually trained
(words and acronyms) were correctly linked with semantics. Figure 6 displays the mean
activation in semantics over time for words, acronyms, pseudowords and illegal strings—
that is, the data corresponding to the item aggregated ERPs displayed in Figure 3. Two
important features of the data are visible in Figure 6.

First, by the end of the processing epoch, the model has successfully separated words and
acronyms from pseudowords and illegal strings, meaning that a simple threshold on mean
semantic activation is sufficient for separating semantically represented items from non-
represented items in 90% percent of cases. That is, the model can accurately make lexical
decisions based on a single, set activation threshold, despite having never been explicitly
trained on lexical decision. In particular, with an activation threshold of 0.0579, 100% of
words and acronyms are correctly accepted, and 88% (319/364) of pseudowords and illegal
strings are correctly rejected.

Second, as in the N400 data, words and pseudowords tend to elicit more activity in
semantics than do acronyms and illegal strings. To investigate the relationships between N,
lexicality, and mean semantic activation in the model, we conducted a simultaneous multiple
regression on mean semantic activation with N, lexicality, and the N × lexicality interaction
as predictors. Mean semantic activation for an item in the model was computed as the
average amount of activation elicited by that item across all 16 time steps. This analysis
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revealed that, just as in the ERPs, there is a large main effect of N on mean semantic
activation in the model (β = .0085, 95% confidence interval .0069 < β < .101), and no
interaction between N and lexicality (β = −.0031, 95% confidence interval −.0065 < β < .
0002). Unlike the ERP data, however, in the model there was a reliable main effect of
lexicality (β = .05, 95% confidence interval .0332 < β < .0712). This is a direct result of
aiming to produce a model capable of performing lexical decision—as, of course, if words
and pseudowords (or acronyms and illegal strings) elicited identical mean amounts of
semantic activation they would be impossible to tell apart on that signal.

We followed up the multiple regression with a focused analysis of N effects in the model, as
these effects are particularly prominent in the ERPs. In the model, the single regression of N
on mean semantic activation is strongly reliable for both represented items (words and
acronyms: r = .40, r2 = .16, p < .0001) and non-represented items (pseudowords and illegal
strings: r = .48, r2 = .23, p < .0001). If the regression is computed over all items (i.e.,
collapsed over lexicality), the amount of variance explained is comparable to the 30.6% of
variance uniquely explained by N in the ERPs (r = .61, r2 = .37, p < .0001. Figure 7 presents
the model regression data comparable to the ERP regression data presented in Figure 4. Note
that, just as in the ERP data, the slopes of the trendlines representing the relationship
between N and mean semantic activation the model are very similar for represented vs.
nonrepresented items (.005 vs. .008, respectively), though the intercepts are different,
representing the model’s ability to perform lexical decision.

Discussion
Simulation 1 served several goals. First, it helped to determine whether a PDP reading
model with neurally plausible architecture could produce dynamics on its semantic output
layer that resembled the N400 ERP component. In this the model was successful: the time
course of mean semantic activation for words, pseudowords, acronyms, and illegal strings in
the trained model strongly resembled N400 morphology in several critical ways. Namely,
semantic output was delayed slightly from the onset of stimulus presentation (i.e., from the
time when input was clamped on in the model)—just as the N400 does not onset
immediately when a stimulus is presented. When activation began to arise in semantics, it
did so in a way consistent with N400 morphology, by monotonically rising and falling into a
stable state which was predictive of lexicality. This characteristic in the model is, in fact, not
only consistent with N400 morphology but also with the morphology of subsequent
components: the Late Positive Complex (LPC), which follows the N400, often displays a
relatively tonic level of activation which has been shown to be predictive of the lexicality of
the item which elicited it (e.g., Laszlo & Federmeier, 2009; Laszlo, Stites, & Federmeier, in
press).

Since the model was successful in producing N400-like dynamics in its output, the second
goal was to explore the degree to which its simulated N400 activity resembled N400 activity
in the single-item ERP corpus. Here, there were both similarities and differences between
the model and the physiological data. Both the model and the physiological data displayed a
strong effect of orthographic neighborhood size, with N in fact explaining similar amounts
of variance in model and ERPs, and with no interaction between N and lexicality.
Additionally, in both the model and the ERPs, the slope of the regressions of N on mean
semantic activation (in the case of the model) or N400 mean amplitude (in the case of the
ERPs) were highly similar for lexical and nonlexical items. However, one difference
between model and ERPs emerged in these analyses: there was a main effect of lexicality in
the model, with words and acronyms eliciting more semantic activity than pseudowords and
illegal strings. This was not the case in the ERPs. Based on comparison with previous
simulations, it is clear that this difference is largely the result of the model’s ability to
perform lexical decision solely on the basis of semantic output—nearly identical models
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which do not perform the LDT show exactly the same pattern as the ERPs (Laszlo & Plaut,
2011). The fact that it was able to make accurate lexical decisions on the basis of a simple
fixed activation threshold—even without being explicitly trained on lexical decision-- is
important, as it demonstrates that the ERP model, which makes use of several neurally
plausible architectural features and was primarily designed to simulate ERP data, is not
completely divorced from the vast cognitive modeling literature on reading. Further, it
suggests that a neurally plausible model is also a cognitively plausible one.

In sum, the model was largely successful in simulating the phenomena it aimed to simulate,
and at demonstrating that a PDP model can simulate not only general properties of ERPs,
but also specific, key results pertaining to the obligatory semantics view of N400 processing.
In the model, even meaningless, illegal consonant strings elicited activation in semantics,
graded by the similarity of those strings to represented items in the training corpus.
Additionally, items regression analysis indicated that the relationship between N and mean
semantic activation was quite similar for semantically represented items and items with out
semantics. Each of these phenomena, when observed in the ERPs, have been interpreted as
being consistent with PDP models, and the present simulations indicate that such an
interpretation is warranted.

In light of the model’s successes in Simulation 1, a clear question for additional exploration
is: To what degree did the neurally plausible architecture of the ERP model contribute to its
success? We investigate this question in Simulation 2, in which the neurally plausible
features of the ERP model are removed. Specifically, the constraints on the separation of
excitation and inhibition are removed: units in the second set of simulations have no
constraints on the sign of their outgoing weights, or on the distribution of inhibitory
connections. In what follows, we will refer to this model as the unconstrained model, while
the version with excitation and inhibition separated will be referred to as the constrained
model. The critical issue to be determined by the unconstrained model is this: will the model
still display activation dynamics in semantics that resemble N400 morphology without its
neurally plausible features?

Simulation 2
Methods

The unconstrained model was identical to the constrained model with the following
exceptions: In the unconstrained model, there were no constraints on the sign of a unit’s
outgoing connections, with one consequence being that negative weights were allowed
between levels of representation. Thus, all units could have outgoing connections of any
sign. The unconstrained model received exactly the same amount of training as the
constrained model: 3000 epochs of training on words and acronyms for the autoencoder,
followed by 9000 epochs of training on words, acronyms, and wordlike nonwords for the
semantic output layer.

Results
Autoencoder—After 3000 epochs of training, the unconstrained autoencoder’s
performance was perfect (100%).

Semantics—After 9000 epochs of training, the unconstrained network was 90% (398/441)
accurate in producing correct semantics (in the case of words and acronyms), or in staying
silent (in the case of pseudowords and illegal strings.) Four errors were made for words, zero
for acronyms, 19 for pseudowords, and 20 for illegal strings. Figure 8 displays the item-
aggregated mean activation in semantics for words, acronyms, pseudowords, and illegal
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strings. It is clear from Figure 8 that semantic activation in the unconstrained network does
not resemble N400 activation in at least one important respect: In the unconstrained
network, there are two distinct peaks in semantics, one occurring quite early on in
processing. The first peak is absent in both the constrained network and the ERPs.

Like the constrained model, the unconstrained model is able to perform accurate lexical
decisions based on a set activation threshold. Using the same threshold as was adopted for
the constrained model, the unconstrained model is 87% accurate in discriminating lexical
from non-lexical items (384/441). Also like the constrained model, a simultaneous multiple
regression on mean semantic activation with predictors of N, lexicality and the N ×
lexicality interaction revealed a main effect of N (β = .0041, 95% confidence interval .0031
< β < .0050), a main effect of lexicality (β = .0425, 95% confidence interval .0312 < β < .
0538), and no interaction between the two (β = −.0015, 95% confidence interval −.0035 < β
< .0005). Focused single regression analysis reveals that, as in the constrained model, there
is a reliable correlation between N and mean semantic activation for both lexical items (r = .
31, r2 = .10, p = .0055) and non-lexical items (r = .41, r2 = .16, p < .0001). Trendline slopes
for lexical (.003) and non-lexical (.004) items are quite similar. If the regression is computed
over all items (i.e., collapsed over lexicality), the amount of variance explained is
comparable to the 30.6% of variance uniquely explained by N in the ERPs (r = .58, r2 = .34,
p < .0001).

Discussion
On the whole, the unconstrained model performs very similarly to the constrained model,
which is to be expected as they are nearly identical. What is especially important to note is
that the functional effects present in the unconstrained model are the same as those in the
unconstrained model: that is, both models display the ability to make lexical decisions, as
well as reliable effects of orthographic neighborhood size in the absence of an interaction
between N and lexicality. Where the results of the simulations differ is in the dynamics of
semantic activation—semantic activation in the constrained model strongly resembles the
morphology of the N400, while semantic activation in the unconstrained model does not.
This is a clear example of the benefits of linking a time course of processing from ERPs
with model dynamics: the ERPs rule out a model which exhibits all the appropriate
functional effects but which does not display the correct internal dynamics. Constraint on
internal dynamics of a model such as that which rules out the unconstrained simulation
would not be available from behavioral data alone. The unique contribution of the ERPs as
target phenomena is that they strongly constraint the internal dynamics of potential models
to a degree not possible from end state behavioral data.

One issue left unresolved by Simulation 2 is whether it was a lack of feedforward inhibition,
lack of within-level mixed connections (i.e., units with both positive and negative outgoing
weights), or both of these that are required to produce the dynamics in semantics observed in
the ERPs and in Simulation 1. We investigated this matter with two follow-up simulations:
the between simulation, which was identical to Simulation 1 but allowed inhibition between
levels of representation, and the within simulation, which allowed mixed-sign connections
within a level of representation. Neither of these simulations produced the appropriate
dynamics in semantics: in fact, both were quite poor at discriminating between item types
(i.e., the effect of N was absent in the between simulation, and extremely small in the within
simulation).1 Thus, neither limiting inhibition to within a level of representation or
restricting units in the sign of their outgoing connections alone is enough to produce the
dynamics observed in Simulation—both together are required.

1The details of these follow-up simulations are available from the first author on request.
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General Discussion
The present simulations represented an exploration into the feasibility of simulating ERP
reading data in a PDP model. We examined the specific case of visual word recognition data
from the single-item ERP corpus—data that has explicitly been cast as conforming to PDP
principles. Because ERPs represent summed excitatory and inhibitory post-synaptic
potentials, we implemented basic principles of cortical excitation and inhibition in the
architecture of the model. Specifically, in our constrained model, we did not allow
individual units to have both excitatory and inhibitory outgoing connections, we limited the
number of inhibitory units, and we only allowed relatively short-range inhibition. The
constrained model was able to successfully simulate a number of key effects from the
single-item ERP corpus, most importantly very similar effects of orthographic neighborhood
size on items which had been trained (words and acronyms) and items which had not been
trained (pseudowords and illegal strings), in the absence of an interaction between N and
lexicality. The correspondence between these features of the simulations and the same
effects in the ERPs represent converging evidence for the obligatory semantics view of
N400 processing. In addition, the model was able to make accurate lexical decisions based
on a set activation threshold, thus extending and broadening the scope of preliminary
modeling work focused on the ERP data only (Laszlo & Plaut, 2011). The constrained
model simulated all these phenomena in the context of internal dynamics which resembled
the morphology of the N400 ERP component. As discussed above, when excitation and
inhibition were no longer handled in a neurally plausible fashion, the model was still able to
produce many of the key functional results (e.g., the effect of N, accurate lexical decisions),
but no longer displayed dynamics in semantics that were consistent with the ERPs. Thus, the
veridical manner in which excitation and inhibition were handled in the constrained model
were at least partly responsible for producing N400-like dynamics—a result that is
encouraging although perhaps not surprising given the neural source of the N400 signal. The
fact that a functionally adequate model was ruled out on the basis of striking differences
between its internal dynamics and those present in the ERPs is representative of the unique
contribution that ERP data can make as target data for simulations of visual word
recognition.

The internal dynamics of the constrained model were consistent with the obligatory-
semantics view of N400 processing in critical respects. As predicted by the obligatory-
semantics view, nonwords in the model made clear contact with semantics. This was true
even for illegal consonant strings, which were never trained to be linked with semantics and
which had low neighborhood sizes within the model’s vocabulary. This observation in the
model is consistent with the interpretation that N400 effects observed for illegal strings (e.g.,
Laszlo & Federmeier, 2010, Laszlo, Stites, & Federmeier, in press) represent the obligatory
contact that illegal strings make with semantics. In contrast, this behavior in the model is
inconsistent with theories of the N400 that suggest it responds selectively to items with
regular spelling-sound correspondances (e.g., Deacon et al., 2004), or theories which suggest
that N400 processing takes place only after an input has been uniquely identified as a
particular lexical item (e.g., Hagoort, Baggio, & Willems, 2009). In fact, insofar as the
model constitutes evidence that contact with semantics is made prior to unique lexical
selection, it is more generally inconsistent with models outside of the ERP literature which
implement a strong “lexical stage”, such as the Entry Opening Model (see Forster & Hector,
2002). Instead, the evident contact with semantics made even by illegal strings in the model
constitutes converging evidence for both the obligatory semantics view in particular and
cascaded models of visual word recognition more generally (e.g., Plaut & Booth, 2000).

One important difference between the behavior of the constrained model and the ERPs was
the mean difference in activation between lexical items and nonlexical items. This difference
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is a consequence of the model’s ability to perform lexical decisions accurately solely on the
basis of mean semantic activation—it does not exist in similar models which do not perform
lexical decision (Laszlo & Plaut, 2011). Though insisting that the model to perform lexical
decision as a criterion for success caused it to deviate from the observed ERP dynamics—
especially at the end of the processing epoch— the model’s ability to perform lexical
decision while still simulating the several key ERP effects constitutes an improvement over
previous work (Laszlo & Plaut, 2011). Because the model was ultimately given the task of
performing lexical decision and participants in the single-item study were not—instead
monitoring the stimulus stream for proper names, one obvious question is whether a
lexicality effect might emerge on the N400 if participants were performing lexical decision.
In fact, we have conducted such a study, where participants were presented with the exact
same items used in the single-item study, but were asked to make modified lexical decisions
about them (responding that names, words, and acronyms were “familiar” and pseudowords
and consonant strings were not; Laszlo, Stites, & Federmeier 2010). Interestingly, when
using the standard mean amplitude over a broad time window analysis technique typically
employed in ERP studies, no effect of lexicality was observed on the N400 even in that
study, again appearing only on the LPC (Laszlo, Stites, & Federmeier, 2010; in press). In the
model, the difference in mean semantic activation between lexical items and nonlexical
items is most pronounced at the end of the processing epoch, when the model has come to a
relatively stable level of activation (see Figure 6). One potential interpretation of the
modeling data is thus that the processing occurring during the N400 terminates with a stable
representation of the semantics of an item (or its lack of semantics), and this representation
is fed forward to LPC processing as a basis on which, for example, lexical decisions can be
made (see Laszlo, Stites, & Federmeier, in press). Because the stable difference between
lexical and nonlexical items occurs primarily at the end of N400 processing, and because
LPC processing follows the N400 directly in time and tends to have a quite similar scalp
distribution, the stable differences between lexical and nonlexical items that the model
suggests are part of terminal N400 processing could easily be missed or obscured by the
LPC—especially given the fact that N400 effects are typically analyzed via component
mean amplitude, a measure that could easily miss small effects that occur only in a limited
portion of the epoch on which the mean is taken. It is particularly difficult to disentangle
N400 and LPC effects because of their temporal contiguity and similar scalp distributions
—-- what would be needed to investigate the hypothesis about the N400 outputting a stable
semantic signal to the LPC would be high density ERP recordings of responses to the same
items investigated here, analyzed at fine temporal intervals.

That the model has suggested the existence of subcomponents of N400 processing that may
previously have been obscured by typical ERP data analysis techniques is a good example of
how models can help to move theories in the ERP literature forward, just as ERP results
constrained the internal dynamics of the model in the current simulations. This sort of
reciprocal relationship between modeling and cognitive neuroscience is an important reason
to interweave modeling with cognitive neuroscience investigations even more tightly in the
future. In service of this goal, it is important to note that the neurally plausible architecture
employed here is not specific to reading models—it could naturally be employed in
cognitive models of essentially any phenomenon. All that is required is setting appropriate
constraints on the sign of outgoing weights in any model, and limiting the number of
available inhibitory units.

The model constitutes a step forward in the goal of linking ERP data, neuroscience, and PDP
modeling. However, there still remains a substantial amount of work to be done both in
increasing the neural plausibility of the model, simulating more nuanced characteristics of
the ERP data, and making more contact with the behavioral literature. In terms of neural
plausibility, the model makes use of back-propagation to reduce error during training and
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effect learning. However, back-propagation is considered unlikely as a mechanism of neural
learning (e.g., O’Reilly, 1996b). Thus, in moving forward, it will be advantageous to
investigate the degree to which the ERP model can produce appropriate results if trained
with a more biologically plausible learning algorithm, such as Contrastive Hebbian Learning
(Ackley, Hinton, & Sejnowski, 1985), which at least in some cases provides similar
solutions to back-propagation (e.g., Xie & Seung, 2003), while avoiding many of back-
propagation’s biologically implausible properties. Intermediate algorithms, which combine
the power of back-propagation with the neuronal validity of Hebbian learning (e.g.,
O’Reilly, 1996a), may prove useful in bridging the gap between the two techniques.

Another possibility for immediate improvement of the model’s neural plausibility is found
in the way fast and slow inhibition is approximated in the model. Currently, a single
inhibitory unit provides both fast and slow inhibition, through use of the multilinear
inhibition function. However, in the cortex, single inhibitory neurons do not vary drastically
in their time constants. Instead, separate populations of neurons provide fast and slow
inhibition (Traub, Miles, & Wong, 1989; Benardo, 1994). In future versions of the model, it
would be quite simple to have separate inhibitory units with separate time constants—for
example one fast inhibitory unit and one slow inhibitory unit. This can easily be
accomplished by implementing different time constants of integration on different inhibitory
units, or by implementing different slopes on the activation functions of different inhibitory
units.

In terms of simulating more nuanced aspects of the ERP data, the model’s training corpus in
the present simulations included words which essentially varied only in terms of
orthographic neighborhood size: they were all the same length, all the same frequency (as
each other, though they were more frequent than the wordlike nonwords they were trained
with), and though they differed in neighbor frequency, neighbor frequency was equivalent to
N in the corpus (since all items were the same frequency). Similarly, since semantic features
were assigned to each item randomly, there was no coherence to the semantic structure of
the corpus, meaning that there were no meaningful correlates in the model to variables such
as strength of lexical association. However, all of these variables have prominent effects in
the single-item ERP corpus (Laszlo & Federmeier, 2011)—we focused on N here only
because of the strength and robustness of its effects. In moving forward, it will be important
to develop a training corpus with lexical characteristics more similar to those of the items in
the single-item ERP corpus. The development of more realistic semantic representations, in
particular, will be critical if the model is to be extended beyond simulation of items in
unconnected lists, to simulation of ERP effects observable in sentence comprehension. The
N400 is known to be extremely sensitive to even very fine manipulations of factors such as
sentence constraint (e.g., Federmeier, Wlotko, De Ochoa-Dewald, & Kutas, 2007), making
sentence-level N400 effects an important venue for future modeling work. In addition to
more veridical semantic features, development of a sentence-level ERP model would require
a mechanism for accruing semantic context over time. A clear starting place for such a
mechanism would be to simply not reset semantic activations to zero between each stimulus
presentation, as was done in the current simulations.

Finally, just as it will be important to develop more detailed simulations of the abundance of
effects observable in the single-item ERPs, it will also be important to improve the
sophistication of the model’s cognitive simulations. Presently, it is able to make accurate
lexical decisions, but there are many more benchmark behavioral phenomena—some of
them even pertaining to more detailed aspects of lexical decision—that the model has not
attempted to address—for example, the frequency and consistency effects in lexical
decision, the word superiority effect, and semantic categorization effects. Increasing the
model’s behavioral sophistication will be critical to bringing it into better contact with past
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models of reading—a contact which is desirable because of the substantial insights into
representation and processing already available from the model’s thematic predecessors (e.g,
Harm & Seidenberg, 2004; Plaut, McClelland, Seidenberg, & Patterson, 1996; Seidenberg &
McClelland, 1989). For example, the model’s predecessors also consider the interaction of
phonological representations with semantics and orthography—with phonology’s role being
extremely important in interpretation of many behavioral findings (e.g., pseudohomophone
effects) as well as patterns of impairment in dyslexia. The ERP model currently has no
implemented phonology, but adding appropriate phonological representations is likely to be
important for expanding the model’s scope.

Acknowledgments
The authors acknowledge K. D. Federmeier and R.C. O’Reilly for their insightful discussion of the unique
challenges involved in simulating the ERP data. This Research was supported by NIMH T32 MH019983 to
Carnegie Mellon University and NICHD F32 HD062043 to S.L. Reprint requests should be directed to S.L.:
cogneuro@alum.mit.edu.

References
Ackley DH, Hinton GE, Sejnowski TJ. A Learning Algorithm for Boltzmann Machines. Cognitive

Science. 1985; 9:147–169.
Barber HA, Kutas M. Interplay between computational models and cognitive electrophysiology in

visual word recognition. Brain Research Reviews. 2007; 53:98–123. [PubMed: 16905196]
Benado LS. Separate activation of fast and slow inhibitory postsynaptic potentials in rat neocortex in

vitro. The Journal of Physiology. 1994; 476:203–215. [PubMed: 7913968]
Coltheart, M.; Davelaar, E.; Jonasson, J.; Besner, D. Access to the internal lexicon. In: Dornic, S.,

editor. Attention & performance IV. HIllsdale, NJ: Erlbaum; 1977. p. 535-555.
Crick, F.; Asanuma, C. The PDP Research Group. Certain Aspects of the Anatomy and Physiology of

the Cerebral Cortex. In: Rumelhart, DE.; McClelland, JL., editors. Parallel Distributed Processing:
Explorations in the Microstructure of Cognition Volume 2: Psychological and Biological Models.
Cambridge: MIT Press; 1986.

Fabiani, M.; Gratton, G.; Federmeier, KD. Event-related brain potentials: Methods, theory, and
application. In: Cacioppo, JT.; Tassinary, L.; Berntson, G., editors. Handbook of Psychophysiology.
3. Cambridge: Cambridge University Press; 2007. p. 85-119.

Federmeier KD, Wlotko E, De Ochoa-Dewald E, Kutas M. Multiple effects of sentential constraint on
word processing. Brain Research. 2007; 1146:75–84. [PubMed: 16901469]

Forster KI, Hector J. Cascaded versus noncascaded models of lexical and semantic processing: the
turple effect. Memory & Cognition. 2002; 7:1106–1117.

Grainger J, Holcomb PJ. Watching the Word Go by: On the Time-course of Component Processins in
Visual Word Recognition. Language and Linguistics Compass. 2009; 3:128–156. [PubMed:
19750025]

Griffiths TL, Chater N, Kemp C, Perfors A, Tenenbaum JB. Probabilistic models of cognition:
exploring representations and inductive biases. Trends in Cognitive Sciences. 2010; 14:357–364.
[PubMed: 20576465]

Hagoort P, Brown CM, Swaab TY. Lexical-Semantic event-related potential effects in patients with
left hemisphere lesions and aphasia, and patients with right hemisphere lesions without aphasia.
Brain. 1996; 119:627–649. [PubMed: 8800953]

Hagoort, P.; Baggio, G.; Willems, RM. Semantic Unification. In: Gazzaniga, M., editor. The Cognitive
Neurosciences. 4. Boston: MIT Press; 2009. p. 819-836.

Halgren E, Dhond RP, Christensen N, Van Petten C, Marinkovic K, Lewine JD, et al. N400-like
magnetoencephalography responses modulated by semantic context, word frequency, and lexical
class in sentences. Neuroimage. 2002; 17:1101–1116. [PubMed: 12414253]

Laszlo and Plaut Page 16

Brain Lang. Author manuscript; available in PMC 2013 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Harm MW, Seidenberg MS. Computing the meanings of words in reading: Cooperative division of
labor between visual and phonological processes. Psychological Review. 2004; 111:662–720.
[PubMed: 15250780]

Hinton GE. Connectionist learning procedures. Artificial Intelligence. 1989; 40:185–234.
Kounios J, Holcomb PJ. Concreteness effects in semantic processing: ERP evidence supporting dual-

coding theory. Journal of Experimental Psychology: Learning, Memory, & Cognition. 1994;
20:804–823.

Kutas M, Hillyard SA. Event-related brain potentials to semantically inappropriate and surprisingly
large words. Biological Psychology. 1980; 11:99–116. [PubMed: 7272388]

Kutas M, Hillyard SA. Event-related brain potentials to grammatical errors and semantic anomalies.
Memory & Cognition. 1983; 11:539–550.

Kutas M, Hillyard SA. Reading senseless sentences: Brain potentials reflect semantic incongruity.
Science. 1984; 207:203–205. [PubMed: 7350657]

Kutas M, Federmeier KD. Thirty years and counting: Finding meaning in the N400 component of the
event-related brain potential (ERP). Annual Review of Psychology. (In Press).

Laszlo S, Federmeier KD. Better the DVL you know: Acronyms reveal the contribution of familiarity
to single word reading. Psychological Science. 2007; 18:122–126. [PubMed: 17425530]

Laszlo S, Federmeier KD. Minding the PS, queues, and PXQs: Uniformity of semantic processing
across multiple stimulus types. Psychophysiology. 2008; 45:458–466. [PubMed: 18221447]

Laszlo S, Federmeier KD. A beautiful day in the neighborhood: An event-related potential study of
lexical relationships and prediction in context. Journal of Memory and Language. 2009; 61:326–
338. [PubMed: 20161064]

Laszlo S, Federmeier KD. The N400 as a snapshot of interactive processing: evidence from regression
analyses of orthographic neighbor and lexical associate effects. Psychophysiology. 2011; 48:176–
186.

Laszlo, S.; Plaut, DC. Simulating Event-Related Potential Reading Data in a Neurally Plausible
Parallel Distributed Processing Model. Proceedings of the 33rd Annual Conference of the
Cognitive Science Society; Mahwah, NJ: Lawrence Erlbaum Associates; 2011.

Laszlo S, Stites M, Federmeier KD. Won’t Get Fooled Again: An Event-Related Potential Study of
Task and Repetition Effects on the Semantic Processing of Items without Semantics. Language
and Cognitive Processes. (In Press).

Laszlo, St; Stites, M.; Federmeier, KD. Task and Repetition Effects on the Semantic Processing of
Items Without Semantics. Psychophysiology. 2010; 47(Supplement 1):S28.

McCarthy G, Nobre AC, Bentin S, Spencer DD. Language-related field potentials in the anterior-
medial temporal lobe: I. Intracranial distribution and neural generators. Journal of Neuroscience.
1995; 15:1080–1089. [PubMed: 7869084]

Nobre AC, McCarthy G. Language-Related Field Potentials in the Anterior-Medial Temporal Lobe: II.
Effects of Word Type and Semantic Priming. Journal of Neuroscience. 1995; 15:1990–1098.

O’Reilly, RC. PhD thesis. Carnegie Mellon University; Pittsburgh, PA: 1996a. The Leabra model of
neural interactions and learning in the neocortex.

O’Reilly RC. Biologically Plausible Error-driven Learning using Local Activation Differences: The
Generalized Recirculation Algorithm. Neural Computation. 1996b; 8:895–938.

Perry C, Ziegler JC, Zorzi M. Nested incremental modeling in the development of computational
theories: The CDP+ model of reading aloud. Psychological Review. 2007; 114:273–315.
[PubMed: 17500628]

Plaut DC, McClelland JL, Seidenberg MS, Patterson K. Understanding Normal and Impaired Word
Reading: Computational Principles in Quasi-Regular Domains. Psychological Review. 1996;
103:56–115. [PubMed: 8650300]

Plaut DC, Booth JR. Individual and developmental differences in semantic priming: Empirical and
computational support for a single-mechanism account of lexical processing. Psychological
Review. 2000; 107:786–823. [PubMed: 11089407]

Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature.
1986; 323:533–536.

Laszlo and Plaut Page 17

Brain Lang. Author manuscript; available in PMC 2013 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Seidenberg MS, McClelland JL. A distrbuted, developmental model of word recognition and naming.
Psychological Review. 1989; 96:523–568. [PubMed: 2798649]

Traub RD, Miles R, Wong RK. Model of the origin of rhythmic population oscillations in the
hippocampal slice. Science. 1989; 243:1319–1325. [PubMed: 2646715]

Tse CY, Lee CL, Sullivan J, Garnsey SM, Dell GS, Fabiani M, et al. Imaging cortical dynamics of
language processing with the event-related optical signal. Proceedings of the National Academy of
Sciences of the United States of America. 2007; 104:17157–17161. [PubMed: 17942677]

van Berkum JJA, Hagoort P, Brown CM. Semantic Integration in Sentences and Discourse: Evidence
from the N400. Journal of Cognitive Neuroscience. 1999; 11:657–671. [PubMed: 10601747]

van Berkum JJA. Understanding Sentences in Context: What Brain Waves Can Tell Us. Current
Directions in Psychological Science. 2008; 17:376–380.

Xie X, Seung HS. Equivalence of Backpropagation and Contrastive Hebbian Learning in a Layered
Network. Neural Computation. 2003; 15:441–454. [PubMed: 12590814]

West WC, Holcomb PJ. Imaginal, Semantic, and Surface-Level Processing of Concrete and Abstract
Words: An Electrophysiological Investigation. Journal of Cognitive Neuroscience. 2000; 12:1024–
1037. [PubMed: 11177422]

White, EL. Cortical circuits: Synaptic organization of the cerebral cortex, structure, function, and
theory. Boston: Birkhauser; 1989.

Laszlo and Plaut Page 18

Brain Lang. Author manuscript; available in PMC 2013 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Highlights

• Parallel Distributed Processing reading model with neurally inspired
architecture.

• Model simulates Event-Related Potential component amplitude continuously.

• Excitation and inhibition are separated in the model, as in the cortex.

• Separation of excitation and inhibition is critical to model’s success.
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Figure 1.
Representative single-item ERPs averaged over 120 participants, but not over items. The
middle parietal electrode site, where N400 effects are most prominent, is displayed. Typical
N400 morphology is visible in the 300–500 ms N400 window (boxed), for the words DOG,
BUS, and FISH. In this figure, as in all ERP figures, negative is plotted up.
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Figure 2.
Schematic of the ERP model. Lines with empty circles indicate excitatory connections, lines
with filled circles indicate inhibitory connections. INH stands for “inhibitory,” and each
INH bank consists of only 1 unit. Note that no units have both excitatory and inhibitory
outgoing connections, and that inhibition is always within, never between, levels of
representation.

Laszlo and Plaut Page 21

Brain Lang. Author manuscript; available in PMC 2013 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Orthographic neighborhood size effect in item-aggregated ERPs. Item types with high N
(words, pseudowords) elicited larger N400s than item types with lower N (acronyms, illegal
strings).
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Figure 4.
Orthographic neighborhood size effect in single item ERPs. N400 mean amplitude is
computed over the middle parietal electrode site in the 300–500 ms post stimulus onset
epoch. Lexical items (words and acronyms) are represented by filled dots, non-lexical items
(pseudowords and illegal strings) are represented by empty dots. Note that the slopes
representing the relationship between orthographic neighborhood size and N400 mean
amplitude are quite similar. Reproduced from Laszlo & Federmeier (2011).
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Figure 5.
The sum of an immediate, linear inhibition function (left) and a delayed, linear inhibition
function (center) is a multilinear (“elbowed”) function (right.) In the model, inhibition is a
function of input activation, not time, so its relationship to truly time dependent inhibition is
only approximate. The slopes displayed here are the actual slopes used in the simulation
(i.e., a slope of 1 to the inflection point, and a slope of 2 after.) The inflection point in the
model’s inhibition function is a fixed parameter. Both “Amount of Inhibition” and “Time”
are in arbitrary units.
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Figure 6.
Orthographic neighborhood size effect in item-aggregated model output. Item types with
high N (words, pseudowords) elicit larger simulated N400s than item types with lower N
(acronyms, illegal strings). Notice also that, by the end of the epoch, semantically
represented items (words, acronyms) are separated from non-represented items
(pseudowords, illegal strings), meaning that the model can accurately make lexical
decisions. N for items in the model is computed only on the basis of the model’s vocabulary.
Units of mean semantic activation are arbitrary. Though there is no formal relationship
between model time and real time, the first tick of model time does correspond to stimulus
onset, and the end of the model’s processing epoch corresponds roughly to the end of the
N400 and onset of the LPC in the ERPs.
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Figure 7.
Orthographic neighborhood size effect in single item model mean semantic activations.
Lexical items (words and acronyms) are represented by filled dots, non-lexical items
(pseudowords and illegal strings) are represented by empty dots. Note that the slopes
representing the relationship between orthographic neighborhood size and mean semantic
activation in the model are quite similar, though the intercepts differ. N for items in the
model is computed only on the basis of the model’s vocabulary. Units of mean semantic
activation are arbitrary.
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Figure 8.
Item-aggregated time course of semantic activation for words, pseudowords, acronyms, and
illegal strings in the unconstrained model. The dynamics of activation the unconstrained
model are much less similar to N400 morphology than those of the constrained model.
Though there is no formal relationship between model time and real time, the first tick of
model time does correspond to stimulus onset, and the end of the model’s processing epoch
corresponds roughly to the end of the N400 and onset of the LPC in the ERPs.
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