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Abstract

Methylation of cytosine at the 5-carbon position (5mC) is observed in both prokaryotes and eukaryotes. In humans, DNA
methylation at CpG sites plays an important role in gene regulation and has been implicated in development, gene
silencing, and cancer. In addition, the CpG dinucleotide is a known hot spot for pathologic mutations genome-wide. CpG
tracts may adopt left-handed Z-DNA conformations, which have also been implicated in gene regulation and genomic
instability. Methylation facilitates this B-Z transition but the underlying mechanism remains unclear. Herein, four structural
models of the dinucleotide d(GC)5 repeat sequence in B-, methylated B-, Z-, and methylated Z-DNA forms were constructed
and an aggregate 100 nanoseconds of molecular dynamics simulations in explicit solvent under physiological conditions
was performed for each model. Both unmethylated and methylated B-DNA were found to be more flexible than Z-DNA.
However, methylation significantly destabilized the BII, relative to the BI, state through the Gp5mC steps. In addition,
methylation decreased the free energy difference between B- and Z-DNA. Comparisons of a/c backbone torsional angles
showed that torsional states changed marginally upon methylation for B-DNA, and Z-DNA. Methylation-induced
conformational changes and lower energy differences may contribute to the transition to Z-DNA by methylated, over
unmethylated, B-DNA and may be a contributing factor to biological function.
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Introduction

DNA methylation is one of the main epigenetic modifications

contributing to gene regulation and a considerable amount of

scientific effort has been devoted to understanding the mecha-

nisms, roles, and effects of methylation in healthy and diseased

states [1]. DNA methylation has been reported to play a role in

development [2], gene silencing [3], and carcinogenesis [4]. In

addition, the CpG dinucleotide, which represents the main target

for methylation in humans, is a known hot spot for pathological

mutations [5,6].

DNA has a flexible backbone structure characterized by

fluctuations in the torsional angles a, c, e, f, and sugar pucker

(d) (See Figure 1). The a, c angles are associated with canonical/

non-canonical backbone states and e, f are associated with BI and

BII substates. B-DNA has been observed to prefer the BI state over

the BII state in crystals and solution [7,8]. These two states are

defined by the backbone torsional angles e and f (Figure 1), where

e2f,0 defines the BI state and e2f.0 defines the BII state.

These conformational ensembles are important since they play a

direct role in shaping the DNA backbone, and consequently

underlie protein-DNA recognition [7,8].

Most repetitive DNA sequences can assume different structures

apart from canonical B-DNA, including cruciforms, triplexes,

hairpins, quadruplexes and Z-DNA [9,10,11]. These ‘‘non-

canonical’’ structural forms have been implicated in genomic

instability and disease [12]. Z-DNA is a left-handed helical

structure where the alternating purine (generally guanine) and

pyrimidine (generally cytosine) base pairs form a zigzagging

pattern [13]. The transition from right-handed B-DNA to left-

handed Z-DNA is accompanied by a shift from the anti to the syn

conformation of the alternating purines and has been shown to

involve base extrusion at both B-Z junctions [14,15]. Although

both unmethylated and methylated CpG runs in B-DNA can

switch to Z-DNA forms, methylation greatly favors this transition

under physiological salt concentrations [16,17,18] or minute

negative supercoiling [19].

Molecular dynamics (MD) simulations have been used exten-

sively to study DNA structure and dynamics [20,21,22]. With the

emergence of improved force fields [23,24] and increasing

computer power, simulations of B-DNA in the microsecond

timescales have been conducted [22,23,25,26]. However, despite

the large number of simulations available, only 10–15 ns

simulations of methylated B-DNA [27,28] or unmethylated Z-
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DNA have been reported [23]. Since a detailed understanding of

the effects of CpG methylation on the dynamics of both B- and Z-

DNA at the molecular level is still lacking, the factors underlying

methylation-assisted B-to-Z DNA transition remain largely

unknown.

In an attempt to bridge this knowledge gap, structural models of

a d(GCNGC)5 repeat sequence were constructed in ideal B-,

methylated B-, Z-, and methylated Z-DNA forms. Two 50 nano-

seconds MD simulations in explicit solvent under physiological

conditions were performed for each, reaching a 0.4 microsecond

aggregate simulation time. An analysis of the trajectories was then

performed to examine the effect of methylation on the BI/BII

stability in B-DNA and the sampling of non-canonical a/c
backbone torsional states (g+/t (gauche+/trans), g2/t (gauche2/

trans), and g+/g2 (gauche+/gauche2)) during the B- and Z-DNA

simulations. The results indicate that methylation lowered the free

energy difference between B- and Z-DNA. This suggests a lower

energetic barrier, which may help explain the more facile change

to Z-DNA by the methylated, rather than unmethylated, B-DNA.

Results

B-factors and thermal flexibility
In this study, the effects of cytosine methylation on DNA

dynamics are examined, including flexibility, base pair step

parameters, base pair geometry and backbone torsion angles

(Figure 1) in both the right handed canonical B form, and the left-

handed non-canonical Z form. The flexibility of the structures is

analyzed from the calculated B-factors by estimating the thermal

mobility for each system (Figure 2) over the whole trajectory using

the average structure of each trajectory as the reference. Note that

terminal bases (residues 1, 10, 11 and 20) are excluded from the

analysis. In addition, both methylated and unmethylated B-DNA

display higher B-factors than Z-DNA (compare black, B-DNA,

with red, Z-DNA, lines). Methylation is not seen to affect the

fluctuations of Z-DNA, whereas it appears to slightly lower the B-

factors in B-DNA (compare solid and dashed lines for B-DNA

(black) and Z-DNA (red)).

The average structures of the heavy atoms of non-terminal bases

obtained from the trajectories are used to calculate root mean

square deviations (RMSD) (Figure S1). The results show that the

two independent runs for B- and 5mCB-DNA yield very similar

values (compare the black with red lines). A detailed analysis of the

B-factors and RMSD values indicates that Z-DNA simulations

(Figure S1C and D) have slightly lower values (,1.0–1.3 Å

(0.1 nm) RMSD) than B-DNA simulations (,1.5–1.8 Å (0.15 nm))

(Figure S1A and B), implying that Z-DNA is overall less mobile

than B-DNA.

Effects of CpG methylation on B-DNA base pair and base
pair step geometry

Base pair geometry. The sequence averaged

conformational parameters from the eight independent

simulations for base pairs (Table S1), base pair steps (Table S2),

helix (Table S3) and backbone torsion angles (Table S4) show that,

overall, the B-DNA simulations yield similar values to those

recently reported by the Ascona B-DNA consortium [22] and

those seen in crystal structures (Table S5). There is a marginal

difference (1 degree) between the experimental averages and the

simulations in the base pair parameter buckle (Tables S1 and S5).

The distributions of individual geometric parameters from

representative trajectories for B and 5mCB-DNA are displayed

in Figures S2, S3, S4. Inspection of the data (Figure S2) indicates

that base pair parameters for B and 5mCB-DNA form rather

similar distributions and fall within one standard deviation of the

crystallographically observed means (Table S5). Methylation does

not appear to cause any large effect on the Watson-Crick base

pairing in B-DNA as seen from base pair parameters shear,

stretch, and stagger (Table S1). Nevertheless, the differences

observed for buckle, propeller, opening, shear, stretch and stagger

between the unmethylated and methylated B-DNA simulations

(Table S1 and Figure S2), although marginal, are statistically

significant, with -log(P) values of 16 (two sample paired t-test). This

significance is likely revealed by the large number of data points

used (1.6 million). Likewise, no differences are observed in base

pair parameters when CNG and GNC base pairs were separated

(data not shown).

Base pair step geometry. Base pair step parameters are

within one standard deviation of the experimentally observed

values (vertical dashed lines in Figure S3). The differences from the

crystallographic data are in slide, roll and twist. Slide was positive

(0.19 Å) in the crystallographic data but is negative (with values of

20.3 and 20.44 Å) in these simulations. The experimental mean

of roll was 0.61u, whereas it is around 4u in the simulations.

Figure 2. Theoretical B-factors for the four systems studied
calculated from the simulations. Black lines, B-DNA simulations; red
lines, Z-DNA simulations; solid lines, unmethylated DNA; dahsed lines,
methylated DNA; circles and tirangles, independent simulation results
for each system. Terminal bases not included in the calculatieon. Bases
11 to 20 form the complementary strand.
doi:10.1371/journal.pone.0035558.g002

Figure 1. Schematics of torsional angles in a nucleotide
phosphate backbone. a and c angles determine canonical/non-
canonical backbone conformations; e and f define BI and BII sub-states
of B-DNA.
doi:10.1371/journal.pone.0035558.g001
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Finally, twist was 36u in the crystallographic data, but 33u in the

simulations, similar to the value reported by the Ascona B-DNA

Consortium [22]. Except for shift (P value = 0.11), the

geometrically confined differences observed between the

methylated and unmethylated simulations (Table S2) are also

statistically significant, with –log(P) values of 16. The reason for

the differences noted between methylated and unmethylated base

pair step parameters becomes clear when the distributions for the

GpC and CpG steps are separated (Figure S4). In this case,

methylation is seen to narrow the base pair step distributions shift,

tilt, roll, and to shift the distributions of twist and slide for the GpC

steps relative to unmethylated B-DNA. On the other hand, the

CpG steps are minimally affected, with the exception of slide.

Z-DNA base pair and base pair step geometry. As with

B-DNA, the sequence averaged conformational parameters for the

Z- and 5mCZ-DNA forms are similar on a gross scale (Tables S1,

S2, S3, S4 and Figures S5, S6, S7, S8). However, statistically

significant differences (2log(P) = 16) are noticed on a finer scale

upon methylation for every geometric parameter, except for shear.

Thus, the mean angle of base pair propeller decreased from 0.19

and 20.14 in Z-DNA to 20.50 and 20.28 in 5mCZ-DNA in the

four independent simulations (Table S1). Similarly, base pair

opening increased from 0.08 to 0.57 degrees upon methylation,

whereas the standard deviation and the range of opening

decreased (Table S1). Finally, in both independent runs,

methylation increased the means of base pair step parameters

tilt and roll, and decreased the standard deviations of tilt and roll

with respect to the unmethylated simulations (Table S2).

Interestingly, inspection of the distributions of the geometric

parameters (Figures S5, S6, S7, S8) indicates that the mean buckle

of the GNC base pairs decreased from 23 to 28 degrees, whereas

that of the CNG base pairs increased from 3 to 8 degrees upon

methylation (Figure S6). A similar shift is also observed in the

distribution of the base pair step parameter rise (Figure S8), where

the GpC step shifts to the left while the CpG step shifts to the right.

Finally, the zigzagging nature of Z-DNA (CpG vs. GpC steps)

results in bimodal distributions for the base pair step parameters

slide and twist. In summary, methylation is seen to constrain

fluctuations for a number of geometric parameters in Z-DNA.

B-DNA backbone dynamics. The effects of methylation on

DNA backbone torsional angles and puckering are also analyzed.

Figure S9 shows the representative density distributions of DNA

backbone torsional angles from the B- and 5mCB-DNA

simulations. Methylation modifies the distributions of the

torsional angles d, e, and f to a certain extent. The a/c and e/f
dynamics (Figure 1) will be discussed in more detail below. With

regards to the puckering of the sugar backbone, Figure S10 shows

the phase and amplitude distributions of the sugar pucker, as well

as the distributions of torsional angles d and x. Overall, the x angle

and amplitude distributions display very similar profiles for the

methylated and unmethylated forms. Minor differences are noted

for the distributions of d (Figure 1) and the phase of the sugar,

which are attributed for the most part to a shift in the populations

of C29 Endo (from 35% in unmethylated B-DNA to 30% in

methylated B-DNA) and O19 Endo (from 16% in unmethylated B-

DNA to 21% in methylated B-DNA) (Table S6). All four

puckering parameters are in close agreement with the previously

reported MD simulation averages [22]. In summary, methylation

resulted in minute changes in sugar pucker dynamics for the B-

DNA backbone.

Z-DNA backbone dynamics. In Z-DNA, changes are

observed upon methylation in the distributions of the backbone

angles a, c, e and d (Figure 1), whereas no changes are detected for

the b and f distributions (Figure S11). The zigzagging nature of Z-

DNA results in two separate distributions for cytosine and guanine

bases. Thus, the x angle exists in syn conformation in guanine

bases, whereas it is in the anti conformation in cytosines (Figure

S12). Methylation also affects the distributions of the torsional

angle d for the guanine backbones.

BI–BII states. Crystallographic analyses have shown that

canonical B-DNA comprises two conformational sub-states, BI

and BII [7]. In the BI state, which is more common, the backbone

phosphate adopts a rather symmetric position between the major

and minor grooves, whereas in the BII state the phosphate groups

are closer to the minor groove as a result of coupled changes in the

two dihedral angles e and f (Figure 1). Indeed, in the BI state e and

f are in the t/g2 conformation, whereas in the BII state they

switch to g2/t. In the present study, e2f,0 and e2f.0 are used

as the cut-offs between the BI and BII states, respectively. Figure 3

shows the time evolution of the fraction of nucleotides in the BI

state (Panel A) for B- (black) and 5mCB-DNA (red). The

simulations for B-DNA are on average 84% in the BI state and

16% in the BII state, in agreement with previously reported results

from a one microsecond B-DNA simulation [25] and with X-ray

and NMR measurements [29,30]. The simulations for 5mCB-

DNA, on the other hand, show a BI population of 92% and,

correspondingly, a BII population of 8%. The results of the time

evolution of e2f for B- and 5mCB-DNA (Figures S13 and S14)

and the cumulative averages of the BI states from the simulations

(Figure S15, top panel) support the conclusion that methylation

stabilizes the BI state [28]. Using a similar approach to Rauch et

al. [28], the free energy profiles for the BI/BII transitions were

calculated from the B- and 5mCB-DNA simulations. Since no

major differences were seen between the two independent runs, for

either the B- or 5mCB-DNA cases, the data for the reaction

coordinate e2f were combined, resulting in 1.6 million

observations. These data were used to plot the histograms for

the e2f distributions using 18 degree bins (20 total bins).

Assuming the simulations were long enough to cover the

available angle space, the partition function Z was calculated

and the free energy at each bin was obtained using G = 2RTln(Z)

[28].

Figure 4A shows the overall free energy profiles for B-DNA

(black) and 5mCB-DNA (red). The free energy differences between

the BI and BII states (DGBI–BII) are 1.6 kcal/mol in B-DNA and

2.08 kcal/mol in 5mCB-DNA. Interestingly, when the free energy

profiles for the CpG versus GpC steps are separated, an increase in

DGBI–BII from 1.02 kcal/mol (B-DNA) to 1.98 kcal/mol (5mCB-

DNA) is revealed for the GpC steps, whereas no effect is observed

for the CpG steps. (DGBI–BII = 0.16 between B-DNA and 5mCB-

Figure 3. Time evolution of the fraction of BI states for B-DNA
and 5mCB-DNA. The fraction of nucleotides in BI (e/f) conformation
are shown as a function of time; black, unmethylated B-DNA; red,
methylated 5mCB-DNA; solid and dashed lines, two independent 50 ns
simulations. The plots are smoothed using a 500 ps sliding window.
doi:10.1371/journal.pone.0035558.g003
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DNA) (Figure 4B). Also, the barrier height of the BI–BII transition

is virtually unchanged after methylation, so the BII-BI transition is

0.46 kcal/mol lower for 5mCB-DNA compared to unmethylated

B-DNA. The differences observed in the free energies for the BI

and BII states (Figure 4) are also documented by the average

residence times in B- and 5mCB-DNA simulations. B-DNA

simulations show an average of 2166395 ps residence time in the

BI state and 28636 ps residence time in BII. 5mCB-DNA

simulations, on the other hand, display 1536518 ps residence

time in the BI state and 10621 ps in BII. The number of passages

between BI and BII states decreases from around 6039–6099 to

4676–4934 upon methylation.

a/c transitions in B-DNA. The effects of methylation on the

BI/BII states suggest that methylation caused significant backbone

torsional rearrangements. In solution, free B-DNA is mostly found

in the canonical (g2/g+) a/c states; in protein-DNA complexes,

on the other hand, DNA exhibits a higher percentage (,15%) of

non-canonical states [31,32], which are believed to assist protein-

DNA interactions [31,32]. Because the simulations used the

parmbsc0 parameter set [23], which corrects the non-canonical

conformers of B-DNA, unmethylated B-DNA is seen to sample

canonical conformations over 99% of the time (Figure 3B, black

lines), as expected [25]. For the methylated 5mCB-DNA

simulations (Figure 3B, red lines), all nucleotides sample

canonical states similarly to unmethylated DNA (Figure S15,

bottom panel). The distribution of the backbone torsions over the

a/c space is shown in Figure 5. Both B-DNA and 5mCB-DNA

almost exclusively prefer the canonical (g2/g+) conformations

(Figure 5A–B and Table S7) with the exception of g+/t (1% in

5mCB-DNA) and t/g+ space (1% in 5mCB-DNA). To address the

question as to whether methylation affected a/c state sampling to

a similar extent for the two types of base pair steps (CpG and

GpC), separate plots were generated for the a/c states based on

the CpG (a/c angles of G) and GpC (a/c angles of C) steps for B-

and 5mCB-DNA simulations (Figure 6). In unmethylated B-DNA,

the GpC steps sample the non-canonical conformations g+/g2,

g+/t, and g+/t (less than 1% of simulation time, Figure 6A),

whereas CpG steps spend all of the simulation time in canonical

g2/g+ conformations (Figure 6B). Upon methylation, Gp5mC

steps sample an increased number of g+/t (greater than 1% of

simulation time, Figure 6C) and t/g+ states (Figure 6C). Thus,

although methylated and unmethylated DNA spend most of the

time in the canonical g2/g+ conformational state (Table S7),

methylation causes the GpC step to sample an increased number

of the non-canonical states g+/t and t/g+. In summary, GpC steps

contribute to the difference in sampling of non-canonical

conformers induced by methylation in 5mCB-DNA.

a/c transitions In Z-DNA. Although on a gross scale the a/

c torsions show similar distributions in the Z- and 5mCZ-DNA

simulations (Figure 5C and D), a number of differences are

observed upon methylation. These include a shift from g2/g+ to

t/g+ and an increase in the number of conformations in the g+/t

state (Figure 5C and D). The increase in the g+/t populations

could unambiguously be attributed to the GpC step, whereas the

shift from g2/g+ to t/g+ is mainly caused by the CpG step (Figure

S16). The a torsions consistently lost the trans conformations in the

cytosine backbone (GpC steps) after methylation, thereby

switching to g+ (Figure S16A and C). The c torsions, on the

other hand, lost g+ states and increased the trans population, thus

compensating for the changes in the a torsion angle. In the CpG

steps, the a torsions shift to trans, whereas the c torsions remain

unchanged (Figure S16B and D). In summary, methylation caused

shifts in backbone torsional preferences in Z-DNA.

Discussion

In this study, MD simulations are conducted to assess the role of

methylation in the intrinsic dynamics of a 10 base paired

d(GCNGC)5 repeat, both in the canonical B-DNA and non-

canonical left-handed Z-DNA forms. The work is motivated by

the critical role that 5mCpG methylation plays in human

development and cancer [2,3,4] and by the fact that methylated

d(GCNGC)n sequences facilitate B- to Z-DNA structural transitions

[17,33] by mechanisms that are not fully understood, leading to

genetic instability [10,12].

Figure 4. Relative free energy profiles across the e2f reaction coordinates in B- and 5mCB-DNA. The plots show the changes in free
energy (y-axis) across the e2f coordinate range (x-axis) that define the BI and BII sub-states. (A) Overall relative free energy profiles for unmethylated
B-DNA (black) and methylated 5mCB-DNA (red). (B) Relative free energy profiles for unmethylated and methylated CpG and GpC steps. Black, CpG
steps of B-DNA; red, 5mCpG steps of 5mCB-DNA; blue, GpC steps of B-DNA; green, Gp5mC steps of 5mCB-DNA.
doi:10.1371/journal.pone.0035558.g004
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Our results confirm that unmethylated B-DNA almost exclu-

sively samples canonical a/c states and methylation only

marginally increases sampling of non-canonical states, particularly

for the Gp5mCp steps. By contrast, unmethylated and methylated

Z-DNA sample non-canonical conformations extensively (,30–

50% of the time) (Figure S15 and Table S7). It has been shown

that Z-DNA exists in substates, ZI and ZII, using FT-IR

spectroscopy [34]. ZI and ZII states are defined mainly by a
and f torsional angles. In our simulations, we did not see any effect

of methylation on the structure or free energy difference of these

states (data not shown).

MM/PBSA [35,36,37] methods have been extensively used to

study conformational stability of nucleic acids [36,37], and ligand-

DNA interactions [35]. Here, simple MM/PBSA analyses were

performed to infer the free energies and stability of the systems

studied (Table 1). To have a second estimate for configurational

entropy we used ACCENT-MM [38], but 50 nanoseconds of

simulation time was not sufficient for convergence for the B- and

Z-DNA models (data not shown). Both methylated and unmethy-

lated B-DNA are more stable than their Z-DNA counterparts. The

calculated free energy difference between B- and Z-DNA is

21.6 kcal/mol and between methylated B- and Z-DNA is

14.4 kcal/mol. A recent targeted molecular dynamics study of a

B-Z junction has reported a barrier of 13 kcal/mol and a free

energy difference of 4.7 kcal/mol for a 10 base pair DNA

sequence, proposing a sequential zipping mechanism for Z-DNA

formation [39]. Although our numbers are higher than those of

Lee et al. [39], they are close to the experimental free energy range

for B-Z (12–17 kcal/mol) and methylated B-Z (9 kcal/mol)

transitions [19,40]. The differences in the calculated free energies

are found to be statistically significant using a two sample t-test

with -log(P).23, implying that the B-Z transition barrier is lower

for the methylated than the unmethylated system, in agreement

with experimental observations [19,40].

MD simulations have been extensively employed to study

nucleic acids dynamics [41]. Although these analyses can now

reach millisecond time scales [25], artifacts have been found in the

Amber parm99 force field in the form of extensive a/c transitions

[42,43,44]. The Parmbsc0 force field [23] was introduced to correct

for these artifacts. Thus, despite perceived limitations to large-scale

Figure 5. The a/c distributions in B- and Z-DNA. Landscape of the combined distributions of phosphate torsion angles along the a/c
space. (A) B-DNA; (B) 5mCB-DNA; (C) Z-DNA; (D) 5mCZ-DNA. The plots are color-coded based on the density of points. The results from the two
independent simulations for each state are combined, giving 1.6 million points. The color bars on panels B and D show the density values for B-
(panels A and B) and Z-DNA (panels C and D) simulations.
doi:10.1371/journal.pone.0035558.g005

Methylation and Its Effects on DNA Structure
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Figure 6. Scatter plots of a vs. c for CpG and GpC steps. (A) GpC steps in B-DNA; (B) CpG steps in B-DNA; (C) Gp5mC steps in 5mCB-DNA; (D)
5mCpG steps in 5mCB-DNA. The plots are color-coded based on the density of points.
doi:10.1371/journal.pone.0035558.g006

Table 1. MM/PBSA analysis of B, methylated B (BM), Z and methylated Z (ZM) DNA.

B SEB
1 Z SEZ

1 DB-Z BM SEBM
1 ZM SEZM

1 DBM-ZM

ÆEELEæ2 2777.4 1.15 2207.3 2.34 570.1 2880.0 5.49 2302.5 2.29 577.56

ÆEVDWæ 2165.7 0.29 2192.2 0.30 226.5 2172.1 0.29 2202.7 0.29 230.59

ÆEINTæ 932.7 0.64 968.4 0.63 35.7 974.2 0.63 1016.4 0.65 42.14

ÆEMMæ 210.4 1.19 568.8 2.34 579.3 294.0 1.24 511.2 2.31 605.24

ÆEPBSURæ 22.9 0.01 21.0 0.01 21.9 23.3 0.01 21.0 0.01 22.26

ÆEPBCALæ 24655.9 1.05 25219.6 2.20 2563.6 24627.9 1.13 25226.0 2.18 2598.09

ÆEPBSOLæ 24633.0 1.05 25198.5 2.20 2565.5 24604.6 1.14 25204.9 2.19 2600.34

ÆEPBELEæ 25433.4 0.38 25426.9 0.43 6.5 25524.0 0.40 25528.4 0.40 24.40

ÆEPBTOTæ 24643.4 0.59 24629.7 0.61 13.8 24698.6 0.58 24693.7 0.65 4.89

-TÆ Sæ 2524.6 0.21 2516.8 0.20 7.9 538.2 0.22 528.8 0.20 9.46

ÆGæ 25168.1 0.64 25146.4 0.64 21.6 25236.8 0.63 25222.5 0.67 14.36

1SE, standard error.
2All energy values are in kcal/mol.
doi:10.1371/journal.pone.0035558.t001
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conformational predictions [22], our results support the use of MD

simulation studies as a means to predict DNA dynamics.

The overlapping conformational states by concerted phosphate

backbone torsional angle switches observed in both methylated B-

and unmethylated/methylated Z-DNA (Figure 6) agree with

recent NMR [45] and single molecule fluorescence data [18].

In summary, MD simulations were used to further understand

the role of cytosine methylation on both the canonical B-DNA and

non-canonical left-handed Z-DNA structures. The results show

that methylation lowers the free energy difference between B and

Z-DNA resulting in the increased population of Z-DNA. We

suggest that methylation-induced differences in the CpG and GpC

steps’ backbone dynamics may facilitate the initial step in the

mechanism of B to Z transitions.

Methods

Model Building
Four structural models of 10 base paired d(GCNGC)5 repeats

were built using the canonical B- and Z-DNA settings in w3DNA

[46]. The cytosine bases of two model structures (one Z- and one

B-DNA) were then manually methylated at the 5-carbon position

using UCSF Chimera [47] at all positions except the terminal

bases. Therefore, the procedure resulted in an overall 80%

methylation of the cytosines (8 out of 10) simulating a

hypermethylated state [48]. The model structures are named B,

5mCB, Z, and 5mCZ for B-DNA, methylated B-DNA, and Z-

DNA and methylated Z-DNA, respectively.

MD Simulations
MD simulations were performed using the AMBER 10

simulation package [49]. The AMBER parm99 [24] with parmbsc0

corrections [23] and TIP3P water molecules [50] were used to

represent molecular interactions. Parameters for 5-methyl-cytosine

(5mC) were taken from Rauch et al., 2005 [27], who also

employed parm99 [24]. Each system was neutralized with 18 Na+

ions and solvated with approximately 5000 water molecules for the

B-DNA models and 5450 water molecules for the Z-DNA models

in truncated octahedral boxes. Additional Na+ and Cl2 ions were

added by randomly replacing water molecules, to bring the system

to 150 mM salt concentration (34 and 32 ions to the Z-DNA and

B-DNA models, respectively). The radial distribution functions of

counterions around DNA for all simulations (data not shown)

agree well with the previously published distributions [51,52,53].

A 10 Å cut-off was used for non-bonded interactions, along with

the Particle Mesh Ewald [54] method. SHAKE [55] was used for

hydrogen atoms. A 2 femtoseconds time step was used for the

simulations. The systems were energy minimized and then heated

to 300 K in 20 picoseconds (ps) at constant volume with 100 kcal/

mol/Å2 harmonic restraints on all solute atoms. The harmonic

restraints were then reduced to 50, 10, 5, and 1 kcal/mol/Å2 in

20 ps intervals, followed by 380 ps of unrestrained equilibration at

constant pressure and temperature. Two independent 50 ns-long

production runs were performed for each system starting with

different initial velocities. The aggregate simulation time was

400 nanoseconds. Trajectories were analyzed using the MM/

PBSA and PTRAJ modules of AMBER 10, as well as Curves+
[56], and custom R [57] scripts. To avoid end effects, the terminal

base pairs were removed from the analyses of geometric

parameters and torsional angles. The density distributions of the

various parameters were calculated using the kernel density

function of R, which estimates the probability density function

of the variables.

MM/PBSA analysis
Conformational free energies were calculated by the MM/

PBSA method using the perl scripts available within the AMBER

10 [49] simulation package. Snapshots for the MM/PBSA analysis

were extracted from all eight simulations in 100 ps intervals,

yielding 500 snapshots per independent trajectory. Absolute free

energies were calculated using the equation G = EMM+EPB+
ESA2TS, where EMM is the molecular mechanics energy, EPB is

Poisson Boltzmann energy, ESA is the nonpolar solvation free

energy and TS is the entropic contribution. ESA was assumed to be

proportional to the solvent accessible surface area (SA), i.e.

ESA = cSA+b, with the coefficients set to default c= 0.00542 kcal/

Å2 mol and b = 0.92 kcal/mol. The AMBER nmode program was

used to estimate the vibrational entropies after one thousand step

energy minimization [58]. The results were averaged over the 500

snapshots for each system.

Supporting Information

Figure S1 Time evolution of root mean square deviation

(RMSD) of the heavy atoms from their mean positions during

the simulations. A. B-DNA B. 5mCB-DNA C. Z-DNA D. 5mCZ-

DNA. Black and red lines represent the two independent runs for

each system. The terminal bases are excluded.

(PNG)

Figure S2 Representative distributions of base pair parameters

in B-DNA (black) and 5mCB-DNA (red) simulations. Vertical

dashed lines indicate the mean 6 one standard deviation of the

crystallographically determined values (see Table S5). Top row x-

axes (buckle, propel, opening) are in degrees and bottom row x-

axes (shear, stretch, stagger) are in Angstroms. Y-axes show the

densities.

(PNG)

Figure S3 Representative distributions of base pair step

parameters in B-DNA (black) and 5mCB-DNA (red) simulations.

Vertical dashed lines indicate the mean 6 one standard deviation

of the crystallographically determined values (see Table S5). Top

row x-axes (shift, slide, rise) are in Angstroms and bottom row x-

axes (tilt, roll, twist) are in degrees. Y-axes show the densities.

(PNG)

Figure S4 Representative distributions of base pair step

parameters for GpC and CpG steps in B-DNA and 5mCB-DNA

simulations. Black and green lines show the CpG steps, whereas

red and blue lines show the GpC steps for the B-DNA and 5mCB-

DNA simulations, respectively. Y-axes show the counts. X-axes are

in Angstroms in the top row (shift, slide, rise) and degrees in the

bottom row (tilt, roll, twist).

(PNG)

Figure S5 Representative distributions of base pair parameters

in Z-DNA (black) and 5mCZ-DNA (red) simulations. Y-axes show

the densities. X-axes are in degrees in the top row (buckle, propel,

opening) and Angstroms in the bottom row (shear, stretch,

stagger).

(PNG)

Figure S6 Representative distributions of base pair parameters

for GpC and CpG steps in Z-DNA and 5mCZ-DNA simulations.

Black and green lines show the CpG steps, whereas red and blue

lines show the GpC steps for the Z-DNA and 5mCZ-DNA

simulations, respectively. Y-axes show the densities. X-axes are in

Angstroms in the top row (buckle, propel, opening) and degrees in

the bottom row (shear, stretch, stagger).

(PNG)
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Figure S7 Representative distributions of base pair step

parameters in Z-DNA (black) and 5mCZ-DNA (red) simulations.

Note that the two bimodal distributions in slide and twist

correspond to GpC vs. CpG steps (see Figure 7). y-axes show

the densities. x-axes are in Angstroms in the top row (shift, slide,

rise) and degrees in the bottom row (tilt, roll, twist).

(PNG)

Figure S8 Representative distributions of base pair step

parameters for GpC and CpG steps in Z-DNA and 5mCZ-

DNA simulations. Black and green lines show the CpG steps,

whereas red and blue lines show the GpC steps for the Z-DNA

and 5mCZ-DNA simulations, respectively. Y-axes show the

densities. X-axes are in Angstroms in the top row (shift, slide,

rise) and degrees in the bottom row (tilt, roll, twist).

(PNG)

Figure S9 Representative distributions of sugar phosphate

backbone torsional angles in B-DNA (black) and 5mCB-DNA

(red) simulations. The x axes are in degrees.

(PNG)

Figure S10 Representative distributions of sugar pucker param-

eters in B-DNA (black) and 5mCB-DNA (red) simulations. The x

axes are in degrees.

(PNG)

Figure S11 Representative distributions of sugar phosphate

backbone torsional angles in Z-DNA (black) and 5mCZ-DNA

(red) simulations. The x axes are in degrees.

(PNG)

Figure S12 Representative distributions of sugar pucker param-

eters in Z-DNA (black) and 5mCZ-DNA (red) simulations. The x

axes are in degrees.

(PNG)

Figure S13 Time evolution of e- f for individual bases in

representative unmethylated B-DNA (blue) and methylated

5mCB-DNA (red) simulations for base pairs 2–4 showing the

jumps between BI and BII states. Left columns are Watson strand,

and right columns are Crick strand. A e-f,0 indicates that the

base is in the BI conformation.

(PNG)

Figure S14 Time evolution of e- f for individual bases in

representative B-DNA (blue) and 5mCB-DNA (red) simulations

for base pairs 6–9 showing the jumps between BI and BII states.

Left columns are Watson strand, and right columns are Crick

strand. A e-f,0 indicates that the base is in BI conformation.

(PNG)

Figure S15 Cumulative means of the fraction of BI conforma-

tions (top) and the fraction of canonical conformations (bottom) in

B-DNA (black) and 5mCB-DNA (red) simulations. Solid and

dashed lines indicate the two independent MD runs. Note that in

one methylated B-DNA trajectory the 39 terminal base pair breaks

and reforms around 20–25 ns.

(PNG)

Figure S16 Scatter plots of a vs. c for CpG and GpC steps of Z-

DNA simulations. (A) Z-DNA GpC steps; (B) Z-DNA CpG steps;

(C) 5mCZ-DNA Gp5mC steps; (D) 5mCZ-DNA 5mCpG steps.

The plots are color-coded based on the density of points.

(PNG)

Table S1 Sequence-averaged conformational parameters I: Base

pair parameters

(DOC)

Table S2 Sequence-averaged conformational parameters II:

Base pair step parameters

(DOCX)

Table S3 Sequence-averaged conformational parameters III:

Helical parameters

(DOCX)

Table S4 Sequence-averaged conformational parameters IV:

Backbone torsions

(DOCX)

Table S5 Average geometric parameters from high resolution

X-ray structures

(DOCX)

Table S6 Percent of sugar pucker values from the eight

simulations.

(DOCX)

Table S7 Percent of a/c conformational states for the 8

composite MD simulations.

(DOCX)
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