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Abstract
The era of “Personalized Medicine,” guided by individual molecular variation in DNA, RNA,
expressed proteins and other forms of high volume molecular data brings new requirements and
challenges to the design and implementation of Electronic Health Records (EHRs). In this article
we describe the characteristics of biomolecular data that differentiate it from other classes of data
commonly found in EHRs, enumerate a set of technical desiderata for its management in
healthcare settings, and offer a candidate technical approach to its compact and efficient
representation in operational systems.
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1. Introduction
High throughput technologies for analyzing DNA, DNA methylation, RNA, proteins and
other biologically important molecules are an essential infrastructure for the nascent era of
clinical care that is tailored to one's unique ‘molecular self.’ The availability of low-cost
complete genome sequences portends a flood of molecular sequence data being generated in
clinical care contexts, and the need to efficiently store, display, and use that data for
healthcare purposes including patient-specific clinical decision support [1,2].

The majority of common diseases have their roots in biomolecular structures and
interactions; although these molecules and interactions that make up human physiology are
highly regular, specialized, redundant and fault-tolerant, their complexity and variety in the
body and within and between individuals is staggering. Approximately 1.5% of the 3 billion
base pairs in the human genome code for proteins [3], and each of those 45 million base
pairs can acquire polymorphisms, many of them non-fatal. Further complicating the picture,
the approximately 50 trillion cells in the body may undergo a total of ten quadrillion cell
divisions during a human lifespan, each carrying with it further risk of genetic damage. Each
of the 200 known cell types has its own gene expression profile in healthy and diseased
states that may also demonstrate secular changes.

While the basic genome of individuals is likely the first, most complex source of data to
challenge current EHR structures, other “omics” data such as gene expression profiles are
already being used in clinical decision-making [4, 5]. The structure of unitary observations
(e.g., single base pairs of DNA) is simple. However, the volume and complexity of the data
and its annotation is large enough to have important implications for its storage and use
within EHR systems. Based on consideration of the nature of the data, and the state of
genomic science and clinical care, we sought to describe a set of desirable functional
characteristics for any EHR that will incorporate individual molecular variation into the
provision of healthcare services.

2. Materials and Methods
The content of this manuscript was assembled for presentation and refined by
interdisciplinary group discussion at an invited workshop on “Integration of Genetic Test
Results into Electronic Medical Records” convened by the National Heart Lung and Blood
Institute, and held in Bethesda, MD on August 2-3, 2011.

3. Results
Table 1 presents a set of seven desiderata for the integration of genomic and other high
volume biomolecular data into EHRs. We offer these functional characteristics both as a
conceptual guideline for the design or extension of EHRs, and for their potential utility as
evaluation criteria for the ‘meaningful use’ of EHRs to manage these types of data. The
explanation and reasoning behind these desiderata are provided here.

1. Maintain separation of primary molecular observations from the clinical interpretations
of those data

A common current practice for the reporting of genetic variation by clinical laboratories is to
acquire a large number of molecular observations via high throughput technologies, such as
solid state chips that measure hundreds to thousands of molecular variants. Laboratories then
deliver into the health record a report in document format on paper, through an electronic
interface between the laboratory and EHR or as open standard for document exchange such
as PDF, that cites only a small number of the observations made combined with professional
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interpretation of the significance of those observations. This parallels the current reporting
practice in diagnostic medicine, pathology and radiology. This practice is potentially
limiting in the emerging era of personalized medicine in three respects. First, it embodies a
lossy sampling approach where only a subset of data is reported via a filter of professional
opinion (albeit guided by then-current scientific evidence), and the remainder of the primary
observation data is either discarded or held inaccessible. Second, it renders the primary data
in a document format that is optimized only for human interpretation and ill-suited to the use
of computer-based decision support rules. Third, it represents a point-in-time interpretation
in an immature field of clinical science that is rapidly changing. The vast majority of
molecular variants are currently of unknown significance, but it can be reasonably expected
that determinations of significance or lack thereof will be assigned to increasing numbers of
variants as genomic science evolves. Thus, the separation of primary observations from their
interpretations, and the ability to update and improve those interpretations at a later date,
will more significantly impact biomolecular data than other common clinical data types.
Novel approaches to dynamic reporting of clinical laboratory genotyping and associated
genomic knowledge bases are currently being developed [6,7]

2. Support lossless data compression from primary molecular observations to clinically
manageable subsets

The large volume of each individual's DNA, protein and related data — hundreds of
gigabytes to terabytes in its raw form --- exceeds the capacity of commonly available
network bandwidth and disk storage in healthcare settings. In the absence of a major
advance in data storage and transmission capabilities, this large volume of data will need to
be compressed. Other high volume digital datasets do exist in healthcare, notably digital
radiography and computed tomography, and specialized digital infrastructures (such as
Picture Archiving and Communications Systems – PACS [8]) have been developed to store
and display these data. A variety of data compression algorithms and image representation
formats have been developed to accommodate the efficient transfer and viewing of clinical
digital images. Most of these formats offer ‘lossy’ compression (reduction in file size
associated with removal of data such that the ability to faithfully reconstruct all of the
content of the original large volume source image is sacrificed). Since the key features of
clinical images are often not exquisitely dependent upon single pixel level detail, this is a
robust and useful approach to data compression for many types of health-related images.

In contrast, changing even a single letter of the ‘genetic alphabet’ (i.e. a point mutation) may
dramatically affect human physiology. In some cases the significance of such changes is
well known, as demonstrated by sickle cell disease and other inherited disorders [9].

Therefore, any sufficient data compression approach needs to be able to produce a fully
accurate copy of the original sequence.

3. Maintain linkage of molecular observations to the laboratory methods used to generate
them

Measurement technologies for DNA sequence and expressed proteins are rapidly evolving,
and all are constrained by non-zero error rates and “blind spots” representing biological
phenomena that are not detectable by the method. For the foreseeable future, the laboratory
instruments, chemistry and methods used to obtain high throughput molecular measurements
such as single nucleotide polymorphism (SNP) arrays, exome sequences and full genome
sequences will continue to evolve, with successive generations of instruments having
different strengths and weaknesses. Genomic sequence data representation standards such as
the Genome Variation Format (GVF) [10] and the Human Genome Variation Society's
nomenclature for the description of sequence variants [11] are being proposed to provide
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common coordination across sequencing platforms. For this reason it will be essential that
EHRs maintain provenance that links molecular observations with the laboratory methods
used to generate those observations. This binding of methods with results is a structural
component of widely used laboratory data standards such as LOINC [12], and is a feature of
proposed and evolving data standards such as HL7 [13].

4. Support compact representation of clinically actionable subsets for optimal
performance

An important functionality of EHRs is the ability to rapidly find, assemble, and display the
relevant clinical data for individual patients and groups of patients. Since the amount of
molecular sequence data that currently has demonstrated clinical significance is a tiny
fraction of the full genome and proteome, and it is neither computationally feasible nor
desirable to query or analyze one's entire genome in real time to support healthcare-related
decisions such as drug prescribing or diagnostic test ordering. EHR systems need to access
and display relevant information, and/or recognize and act upon clinically relevant
molecular patterns with sub-second response times [14]. These requirements for speed and
efficiency make the creation of compact, derived forms of data representing the underlying
molecular variation an attractive technical option in EHR systems. These derived
observations can be efficiently represented as short “keywords” or codes representing a
physiologic state. For example, the observation that an individual has a minor allele variant
such as CYP2C19*2, that is associated with altered metabolism of commonly prescribed
drugs, can be represented by a compact code of just a few unique alphanumeric characters or
a global unique identifier from structured vocabulary/ontology such as the Clinical
Bioinformatics Ontology (CBO) [15].

5. Simultaneously support human-viewable formats and machine-readable formats in
order to facilitate implementation of decision support rules

In its simplest form, a single observation such as the value of a single nucleotide
polymorphism, is recognizable upon inspection by a healthcare professional, and as noted
above, genotyping results are commonly displayed as laboratory report documents.

However, molecular variation data introduces into clinical practice volumes of data whose
complexity routinely exceeds the bounds of unaided human cognition [16]. The rapidly
expanding literature on the association between molecular variation patterns and clinical
phenomena [17] makes it difficult for even genetic medicine specialists to stay current, and
far exceeds the interpretive capacity of most non-specialist providers. Consequently, perhaps
more than for any class of clinical data that has preceded it into the EHR, molecular
variation data will benefit from the implementation of clinical decision support rules that are
designed to recognize key patterns (such as DNA variation that predicts altered drug
response) and guide practitioners via patient-specific alerts and reminders at clinically
relevant times. The inherently cryptic nature of genetic polymorphisms lobbies for systems
approaches that guide not only specialists, but also providers who “do not know what they
do not know” with respect to clinically important molecular variation. [18]

6. Anticipate fundamental changes in the understanding of human molecular variation
Designing EHR capacity based on the expectation that an individual has a single, unique
genome will be insufficient to accommodate the actual data requirements for EHRs . This
premise, commonly associated with the genome contained in germline (i.e. heritable) DNA,
needs to at a minimum be modified to accommodate diseases such as cancer, in which
somatic mutations occur [1, 19]. Thus, EHR systems need to anticipate circumstances such
as a “unique genome for each metastasis”. The state of the germline DNA is generally
inferred through sampling of leukocyte DNA, generally from blood, and less often from
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saliva. Emerging evidence that the DNA represented in the leukocytes may undergo
structural changes as a result of normal aging [20] also suggests that as genomic science
unfolds, EHRs may need to store multiple genome-scale datasets over an individual's
lifetime. Other cell-, tissue- , organ-, and disease-specific genetic variations over time may
yet be discovered. The oft-cited use case of storing 3 billion bases of DNA (which in reality
is a minimum of 6 billion, since humans are diploid organisms) even when supplemented
with data on copy number and splicing variation is only a starting point for a much larger
universe of person-specific molecular variation data.

7. Support both individual clinical care and discovery science
Historically, the intersection of clinical care and biomedical research has been relatively
minimal, as evidenced by the small fraction of eligible patients who enroll in clinical trials.
[21, 22] Genomic science has unprecedented requirements for large numbers of individuals,
each of whom has available large numbers of molecular observations, in order to confront
the ‘curse of dimensionality’ (i.e. the expected false discovery rate of patterns that arise by
chance when thousands to millions of simultaneous observations are made). Thus, to
advance clinical science as rapidly and robustly as possible, the ability to support genomic
discovery science as a secondary use of data acquired for person-specific care is at least a
compelling opportunity, if not a social obligation to future generations. Such uses will be
modulated by issues of consent and privacy, however a research focus on human molecular
variation, and the emerging capability to measure that variation at all locations where it
occurs in the genome and proteome, makes each individual's genome potentially a uniquely
valuable research resource. Well-structured genomic information within the EHR will
expedite secondary use of that data to support new discovery.

Discussion: A technical approach to lossless data compression for
biomolecular sequences in EHRs

Figure 1 presents a size hierarchy of genomic data types that are of relevance to EHRs and
may need to be stored and analyzed for optimal, individualized care. The current
technologies such as ‘next generation’ (nextgen) DNA sequencing, with automated repeated
observations of a single nucleotide base in order to assemble a consensus DNA sequence,
generates primary data that occupies hundreds of gigabytes or more of disk space. Like the
technology itself, the analytical software that interprets these data to generate a consensus
sequence of a few gigabytes is evolving rapidly, so there is a need to preserve the source
files for potential future re-analysis.

The layered approach to increasingly compact representations of lossless data compression
shown in Figure 1 can benefit from an essential feature of human biology, which is that we
are much more alike than we are different at a molecular level. First approximations of 1 to
4 million differences [23] contained in a roughly 3 billion nucleotide genome suggest that
EHRs can achieve two orders of magnitude (100 fold) data size reduction by representing
personal nucleotide and/or protein sequences as the difference between the individual and
what we propose calling a “Clinical Standard Reference Genome” (CSRG). Such a sequence
would not need to represent any biological reality and would best serve its purpose if it
generated the smallest set of differences across a large number of complete human genomes.
This would be achieved by inclusion of the most common allele at each locus in the CSRG,
without regard to actual clinical, ethnic or racial data. While various groups generating
sequence data use already this mode for data compression, a single standard does not
currently exist. As with the binding of molecular observations to the methods used to
generate them, revisions of the CSRG to reflect evolving knowledge or technology are
easily managed by applying and recording a unique version identifier for each iteration.
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Generation and widespread use of a CSRG would be a boon to the ability to store and
interpret biomolecular sequence data in EHRs without data loss relative to the source
observations.
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• Molecular sequence data will be an important component of EHRs

• The volume and complexity of the data are key features

• Desiderata for representing this data in EHRs are presented

• A technical approach to its efficient representation is offered
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Fig. 1.
Layered classes and data sizes of EHR-relevant genomic data.
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Table 1

Desiderata for the Integration of Genomic and other high volume biomolecular data into EHRs

1. Maintain separation of primary molecular observations from the clinical interpretations of those data

2. Support lossless data compression from primary molecular observations to clinically manageable subsets.

3. Maintain linkage of molecular observations to the laboratory methods used to generate them

4. Support compact representation of clinically actionable subsets for optimal performance

5. Simultaneously support human-viewable formats and machine-readable formats in order to facilitate implementation of decision support
rules.

6. Anticipate fundamental changes in the understanding of human molecular variation

7. Support both individual clinical care and discovery science
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