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Abstract
The current study tested the accuracy of primary MRI and cerebrospinal fluid (CSF) biomarker
candidates and neuropsychological tests for predicting the conversion from mild cognitive
impairment (MCI) to Alzheimer's disease (AD) dementia. In a cross-validation paradigm,
predictor models were estimated in the training set of AD (N = 81) and elderly control subjects (N
= 101). A combination of CSF t-tau/Aβ1-4 ratio and MRI biomarkers or neuropsychological tests
(free recall and trail making test B (TMT-B)) showed the best statistical fit in the AD vs. HC
comparison, reaching a classification accuracy of up to 64% when applied to the prediction of
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MCI conversion (3.3-year observation interval, mean = 2.3 years). However, several single-
predictor models showed a predictive accuracy of MCI conversion comparable to that of any
multipredictor model. The best single predictors were right entorhinal cortex (prediction accuracy
= 68.5% (95% CI (59.5, 77.4))) and TMT-B test (prediction accuracy 64.6% (95% CI (55.5,
73.4%))). In conclusion, short-term conversion to AD is predicted by single marker models to a
comparable degree as by multimarker models in amnestic MCI subjects.
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1. Introduction
Alzheimer's disease (AD) is a complex chronically progressive neurodegenerative disease
and the most common form of dementia. The prevalence of clinically manifest AD is about
2% at the age of 65 years but increases to about 30% at the age of 85 years (Wimo et al.,
1997).

At the mildest clinical stage of AD pathology, the clinical diagnosis is challenging since
dementia symptoms are not yet fully expressed. Mild cognitive impairment (MCI) with
aging is a clinical syndrome of focal cognitive impairment that has been associated with
increased risk of AD (Petersen et al., 1999). However, MCI may stem from a variety of
different etiologies and pathologies and shows sometimes high rates of reversion back to
normal, suggesting that the clinical symptoms of MCI can occur due to causes other than
underlying AD pathology (Ritchie et al., 2001). Thus, at an early stage, the diagnosis of AD
is inherently difficult when based upon clinical symptoms only.

The biomarker-based assessment of the neuropathological characteristics of AD has been
proposed to enhance the clinical detection of AD in early prodromal stages of the disease
(Dubois et al., 2007). The rationale for the use of biomarkers in diagnostics is that these
biological tests may enable us to detect AD pathology to determine whether the MCI
symptoms are due to AD pathology and represent early stage, prodromal AD. Such an
etiological classification is important for the timely administration of disease modifying
drugs, such as Aβ immunization currently tested in clinical trials, to prevent or slow down
the clinical manifestation of AD-type dementia. Among the primary biomarker candidates
recommended by consensus expert groups on biomarkers (Frank et al., 2003) are
cerebrospinal fluid (CSF) based measures of phosphorylated Tau protein (p-tau), t-tau
protein, beta amyloid peptide (Aβ1-42) (Blennow and Hampel, 2003; Herukka et al., 2005;
Hansson et al., 2006; Ewers et al., 2007) as well as MRI-based assessments of the
hippocampus and entorhinal cortex (Jack et al., 1999; Kantarci and Jack, 2003; Schuff et al.,
2009). The hippocampus shows characteristic global and local subfield structural changes
that are specific for AD in early stages of the disease (Csernansky et al., 2000; Frisoni et al.,
2008; Wang et al., 2009). Entorhinal cortex has been previously reported to be especially
sensitive for AD at the early prodromal stages of the disease (Du et al., 2001; Pennanen et
al., 2004; Tapiola et al., 2008). CSF biomarkers of total tau, p-tau, and Aβ1-42 have also
been shown in numerous studies to predict the conversion from MCI to AD at clinically
relevant levels of accuracy (Ewers et al., 2007; Herukka et al., 2007; Mattsson et al., 2009).

Results of recent studies of smaller sample size have shown that a combination of both MRI-
based assessment of hippocampus volume and CSF based biomarkers may possess additive
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value for enhanced prediction accuracy (Bouwman et al., 2007; Brys et al., 2009b). A recent
study as part of the large-scale multicenter trial of the American Alzheimer's Disease
Neuroimaging Initiative (ADNI) using pattern recognition techniques of structural brain
changes of gray matter, white matter and CSF space in the whole brain (Vemuri et al., 2008)
showed that volumetric changes and CSF markers were associated with higher risk of AD in
MCI when compared with each marker alone (Vemuri et al., 2009). In addition to
biomarkers, measures of both memory and nonmemory related cognitive ability may
contribute to the prediction of AD in subjects with MCI (Jacobs et al., 1995; Devanand et
al., 2007). However, the effective gain in predictive accuracy by combining different
biomarkers or neuropsychological variables for the prediction of AD in MCI has not been
conclusively tested so far. Here, we examined on the basis of the data collected within the
large-scale multicenter ADNI the accuracy of the combination of the automated MRI-
assessed hippocampus and entorhinal measurement, major CSF-biochemical biomarker
candidates, and neuropsychological tests for the prediction of the conversion of subjects
with MCI to clinical AD over an observation time period of up to 3.3 years.

2. Methods
2.1. Patients

Subjects with a complete data set of MRI, CSF and neuropsychological tests were drawn
from the ADNI data set including 81 patients with AD, 130 amnestic MCI subjects, and 101
elderly HC (Figure 1). Neuropsychological assessment and MRI are routinely taken, and—
in a subset of subjects—cerebrospinal fluid samples. Thus, the current sample with a
complete data set was a subsample of the larger sample of subjects with amnestic MCI (N =
397), mild AD (N = 193) and HC (N = 229). The subsample who had completed the full
data assessment was virtually the same in terms of age, Mini Mental State exam (MMSE),
education, ADAS and Ray auditory verbal learning test (AVLT) compared with the
remainder of subjects within the ADNI data sample (data not shown). Thus, no selection
bias was evident based on the variables tested. All collected data are online freely accessible
to researchers (downloaded on 29/9/08 and updated on 8/19/09 at
www.loni.ucla.edu/ADNI). General inclusion criteria included an age between 55 and 90
years, a modified Hachinski score ≤ 4, education of at least 6 grade level, and stable
treatment of at least 4 weeks in case of treatment with permitted medication (for full list see
www.adni-info.org, Procedures Manual). The diagnosis of AD was made according to the
NINCDS-ADRDA criteria (McKhann et al., 1984). Inclusion criteria for AD encompassed
subjective memory complaint, memory impairment as assessed by an education adjusted
score on delayed recall of a single paragraph as tested by the Wechsler Logical Memory II
Subscale as follows: 0–7 years of education: ≤ 2, for 8–15 years: ≤ 4, for 16 years or more: ≤
8, a MMSE score between 20 and 26 and a clinical dementia rating (CDR) score of 0.5 or 1.
For the diagnosis of amnestic MCI, the subjects had to show subjective memory impairment
and objective memory impairment identical to that for AD, a CDR of 0.5 including the
memory box score of 0.5 or greater, and a MMSE score between 24 and 30, with unimpaired
general cognitive ability and functional performance such that they did not meet criteria for
dementia. HC had to show normal performance on the Logical Memory II Subscale adjusted
for education as follows: 0–7 years: ≥ 3, 8–15 years: ≥ 5, 16 or more years: ≥ 9, and absence
of significant impairment on cognitive function or activities of daily living.

2.2. CSF measurement
All CSF samples collected at the different centers were shipped on dry ice to the Penn ADNI
Biomarker Core Laboratory at the University of Pennsylvania, Philadelphia for storage at
−80 °C until further analysis at the laboratory. More details on data collection of the CSF
samples can be found at (www.adni-info.org, under “ADNI study procedures”). The CSF
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concentration of Aβ1-42, t-tau, and p-tau181 were measured in the baseline CSF samples
using Innogenetics reagents (research use only AlzBio3 immunoassay kits, Ghent, Belgium)
and the multiplex xMAP Luminex platform (Lumnix Corporation, Austin, TX) at the Penn
ADNI Biomarker Core Laboratory. For detailed description see (Shaw et al., 2009).

2.3. MRI acquisition and ROI measurement
The data of left and right hippocampus volume and entorhinal cortex thickness were
downloaded from the public ADNI databank (www.loni.ucla.edu/ADNI). All MRI data
were acquired on 1.5 T MRI scanners with 3D T1-weighted sequences optimized for the
different scanners as indicated at www.loni.ucla.edu/ADNI/Research/Cores/index (Jack et
al., 2008). All images were corrected for spatial distortion due to gradient nonlinearity and
normalized for B1 nonuniformity (see also
www.loni.ucla.edu/ADNI/Data/ADNI_Data.shtml). MRI measures of hippocampus volume
and entorhinal cortex were reconstructed with the software program Freesurfer in Dr. Dale's
laboratory at University of California, San Diego as previously described in detail
(Fennema-Notestine et al., 2009). Automated 3D whole-brain segmentation procedure
(Fischl et al., 2002; Fennema-Notestine et al., 2009) was used, which has been shown to be
largely robust to variation in image acquisition including scanner type, software version and
scan protocol (Fischl et al., 2002). Minimal manual editing of the images was applied
(Fennema-Notestine et al., 2009).

2.3.1. Neuropsychological tests—Episodic memory was assessed with the Rey
Auditory Verbal Learning test (RAVLT), which includes a list of 15 words to be recalled
immediately after each of the 5 verbal presentations, as well as after an interference list and
after a 30-minute delay including a free recall and recognition test (Rey, 1964). Tests of
frontal lobe functions included digit span forward and backward (score: total correct
responses) (Wechsler, 1987), and the trail making test A and B (TMT-A and trail making
test b (TMT-B), score: total number of seconds to complete the test) (Reitan and Wolfson,
1985). Verbal fluency was assessed through tests of category fluency including animals and
vegetables (score: number of examples recalled) (Morris et al., 1989). The Boston Naming
test (score: total number of items correctly named) (Kaplan et al., 1983) and Digit Symbol
Substitution test (score: correct number of substitutions) (Wechsler, 1981) were tested in
addition. For details on the administration and scoring see the “Procedures Manual” at
www.adni-info.org/Scientists/AboutADNI.aspx.

2.4. Statistics
All variables were examined for normal distribution within each diagnostic group using QQ
plots. Variables including age, right and left hippocampus volume, and CSF-concentration
levels of t-tau, p-tau181, and Aβ1-42, were log-transformed to achieve normal distribution.

Total intracranial volume (TIV) was not used here as we did not anticipate it as a
confounding factor for diagnostic classification (Fennema-Notestine et al., 2009), although
we appreciate that TIV correction may have reduced further potential nondisease related
variation in ROI volume.

In a first step, logistic regression analysis was used to establish a prediction model for the
discrimination between AD and HC. In order to test the robustness of the model and to
control for potential sample-specific overfitting, the logistic regression analysis was
reiterated 1000 times using random-split resampling. In each trial, a logistic regression
model was constructed on the basis of a subset of randomly chosen portion of two-thirds of
the AD and HC (training set) and the predictive accuracy was tested in the remaining ⅓ of
the AD and HC subjects (test set). The sensitivity and specificity of the regression model for
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the test set was recorded within each resampling trial. The best regression model was
defined as the particular regression model that was generated most frequently during the
resampling trials. For the best model, the average sensitivity and specificity across
resampling test trials and the regression coefficients together with the 95% confidence
interval (95% CI) of the sampling distribution was reported. Predictors tested included left
and right hippocampus volume and entorhinal cortex, CSF-measures of t-tau, p-tau181,
Aβ1-42, ratio of t-tau/Aβ1-42 and p-tau181/Aβ1-42, age, gender and ApoE genotype. ApoE
genotype was binarized into ApoE ε4 allele carrier and ApoE ε4 allele non-carriers. Note
that in the most accurate model across the 1000 resampling trials, age, gender, and ApoE
genotype were not significant predictors and thus did not contribute to the predictive
accuracy of the models reported here. The prediction model derived from the first step was
applied in the second step for the discrimination between MCI-AD converters and MCI-AD
nonconverters.

We reported previously a logistic regression derived formula for the detection of AD based
on ApoE genotype and CSF obtained antemortem tested in autopsy confirmed AD patients
and living cognitive normal HC (Shaw et al., 2009). We tested here whether this algorithm
including CSF-concentration of t-tau, Aβ1-42, and number of ApoE ε4 alleles (designated
LRTAA) could be augmented by the current MRI markers for the prediction of MCI to AD.
To this end, the 2 prediction models (i.e., with and without neuropsychological markers)
were rerun, but this time the separate CSF markers of total tau, p-tau181, and Aβ1-42 and
ApoE genotype were substituted by the LRTAA predictor.

In addition to the biomarker-only models, we tested whether neuropsychological variables
contributed to the predictive power of the biomarker based model. We repeated the random-
split resampling based logistic regression analysis for the discrimination between AD and
HC in the same way as described above, but this time feeding in the regression model also
neuropsychological test scores including AVLT immediate and 30 minute free recall, AVLT
recognition test, TMT-A and TMT-B, category fluency, digit span forward and digit span
backward, Digit Symbol Substitution test and the Boston naming test. A correlation matrix
was between all tests was computed across all subjects to check colinearity, using Pearson
moment correlations.

Note that the model established in AD vs. HC comparison on the basis of the best statistical
fit of the logistic regression model may not necessarily translate into the model with the best
classification accuracy (Schemper, 2003). Therefore, we compared in a second approach the
classification accuracy for each combination of the variables. In a first step, the coefficients
were estimated in the AD vs. HC sample (in the whole sample) and then applied for the MCI
prediction. Models for all possible combination of the 24 predictors including the biomarker
candidates, neuropsychological variables, and demographic variables including age and
gender were estimated, with the restriction of a maximal number of predictors of 4. This
restriction of the maximum number of predictors in a particular model was done for
computational reasons since the total number of possible combinations of 24 variables is
exceedingly high. Moreover, models with high number of predictors are less attractive in
terms of implementation in clinical practice. To keep the follow-up interval consistent across
subjects, the follow-up interval was restricted to at least 1.9 years in MCI stable subjects and
the time to conversion was maximally 2.1 years for MCI converters (n = 128 MCI subjects).
Using bootstrapping with replacement, the classification accuracy for the MCI conversion
prediction was recorded for each model estimated during each of 100 bootstrap trials. In
each bootstrap trial, the different models were ranked according to the overall classification
accuracy. The mean and 95% CI of the sampling distribution of the rank and classification
accuracy indexes (total classification accuracy, sensitivity and specificity) were computed
across bootstrapping trials. The 95% CI of the classification accuracies was used to test for
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statistically significant differences in the classification accuracy between different prediction
models.

Note that in the first cross-validation approach to establish the best prediction model in the
AD vs. HC comparison, Type I error accumulation due to multiple tests or overfitting was
controlled for by random-split resampling. Age and gender were tested as covariates in all
models but were not found to contribute to prediction accuracy. The statistical significance
threshold for variable entry was α = 0.05 and for removal of a variable from the regression
model α = 0.1 was used. In the comparison of systematically varied prediction models on
the basis of the 95% CI, the number of comparisons between models was limited to the
models with the highest ranks of predictive accuracy, thus limiting the number of statistical
tests. Second, as we did not find a significant difference based on the 95% CI, the
conclusion of the current study holds regardless of Bonferroni correction.

Finally, within the MCI sample, time to conversion to AD was tested via Cox regression
analysis.

The analyses were conducted with open source statistical software package R
(www.r-project.org/) and SPSS 16.0 (SPSS, Inc, Chicago, USA).

3. Results
Demographic variables for the different diagnostic groups are displayed in Table 1. Among
the subjects with MCI, 58 out of 130 subjects developed AD within 3.3 years of clinical
follow up, with a mean follow up interval of 2.3 years (SD = 0.6). In order to check for co-
linearity between the predictors, a Pearson-moment correlation matrix was computed among
all predictors within the AD and HC subjects. For no pairing of predictors, the correlation
was higher than r = 0.9 (data not shown).

3.1. Differentiation between AD vs. HC
When only biomarker variables were entered, the logistic regression analysis showed that
the combination of the CSF ratio of t-tau/Aβ1-42 (B = 3.6, 95% CI (2.6, 4.7)), left entorhinal
cortex (B = −2.4, 95% CI (−3.3, −1.5)), and left hippocampus volume (B = −6.8, 95% CI
(−9.7, −3.8)) was the model most frequently chosen as the most accurate classification
model. Potential confounding factors such as age and gender did not contribute to the best
model. The overall classification accuracy of the most frequently yielded best model was
86.7% with a sensitivity of 82.5% and specificity of 90.1% at a cut-off point of the
probability of the predicted probability of p = 0.5 based on the regression equation.

When biomarkers and neuropsychological variables were combined, the model most
frequently chosen as the best model included again the biomarker of CSF t-tau/Aβ1-42 ratio
(B = 5.9, 95% CI (3.4, 8.4)), but this time in combination with the following
neuropsychological predictors: RAVLT immediate free recall (B = −11.7, 95% CI (−7.4,
−16.1)), RAVLT 30-min. delayed recall (B = −2, 95% CI (−1.1, −2.9)), and TMT-B (B =
4.2, 95% CI (2.7, 5.6). The MRI measures were no longer significant in this extended
model. The sensitivity was 93.8% and the specificity 95.6%, with an overall classification
accuracy of 94.8%.

In a recent study, based on CSF samples obtained antemortem from AD patients followed to
autopsy with postmortem confirmed diagnoses of AD, and CSF from living cognitive
normal HC, we reported a logistic regression model based upon CSF-concentration of t-tau,
Aβ1-42, and number of ApoE ε4 alleles (designated LRTAA) (Shaw et al., 2009). When this
LRTAA based formula was fed into the regression analysis in the current study, results
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showed that LRTAA (B = 4.4, 95% CI (2.8, 5.9)) was a significant predictor in addition to
left entorhinal and hippocampus measures. The overall classification accuracy for the
LRTAA plus MRI measures model was 91.1%, with a sensitivity of 90.1% and specificity of
92.1%.

When the analysis was repeated with the LRTAA formula plus neuropsychological tests
entered, the LRTAA was a significant predictor of AD (B = 5.3, 95% CI (3.0, 7.5)) in
addition to the same neuropsychological predictors, i.e., RAVLT immediate free recall,
RAVLT 30-min. delayed recall, and TMT-B. The sensitivity for this model was 92.2% and
the specificity was 97.5% with an overall classification accuracy of 95.2%.

3.2. Prediction of conversion from MCI to AD based upon best classification model
established in the AD vs. HC comparison

For the best biomarker-only model including the combination of the CSF t-tau/Aβ1-42 ratio
and the left entorhinal and hippocampus measures (see above), 80.4% of the 56 MCI-AD
converters were correctly identified by the model, and 48.6% of the MCI-AD nonconverters.
The overall classification accuracy was 62.5% (Fig. 2A,B). For the combination of the
biomarkers plus neuropsychological variables (CSF t-tau/Aβ1-42 ratio, AVLT immediate
and delayed free recall, and TMT-B), the total classification accuracy was 64.1%, with a
sensitivity of 80.4% and specificity of 51.4%.

When the LRTAA plus MRI based regression model derived above was used for the
classification of the MCI conversion, the classification accuracy was 64.8%, with a
sensitivity of 76.8% and specificity of 55.6%. For the combination of the LRTAA with
neuropsychological predictors, the overall classification accuracy was 68.0%, with a
sensitivity of 82.1% and specificity of 57.0%.

3.3. Cox regression analysis of the prediction of time to conversion from MCI to AD
When biomarkers and demographic variables were entered in a feedforward manner, the
combination of right hippocampus volume (B = −2.9, SE = 0.7, p < 0.001) and CSF P-tau181
(B = 0.7, SE = 0.3, p = 0.01) significantly predicted time to conversion from MCI to AD.

When neuropsychological test scores in addition to biomarkers and demographic variables
were fed into the model, the combination of right hippocampus volume (B = −3.6, SE = 0.8,
p < 0.001), ApoE genotype (B = 0.6, SE = 0.3, p = 0.04), AVLT immediate recall (B = −1.5,
SE = 0.4, p < 0.001), and Digit span (B = −1.8, SE = 0.4, p < 0.001) predicted time to
conversion.

3.4. Statistical test of the difference in the accuracy of predicting MCI conversion between
different prediction models

It is possible that a regression model that yields the highest classification accuracy for the
discrimination between AD vs. HC may not necessarily select the best model for the
prediction of conversion form MCI to AD. Moreover, model selection based on the
statistical fit may not always result in statistically significant improvement of actual
classification of subjects into clinical diagnostic categories, such as MCI-AD converters and
MCI nonconverters. Therefore, we tested in a bootstrapping approach the difference in
classification accuracy for the discrimination between MCI-AD converters and MCI-AD
nonconverters between all possible combinations of the 24 predictors. The maximum
number of variables in a particular model was set to 4.

For the single-predictor model, the biomarker and neuropsychological predictors for which
the total prediction accuracy exceeded 50% are listed in Table 2. The top ranked single-
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predictor was the right entorhinal cortex (mean total CAC = 68.5% (95% CI = 59.6, 77.4)).
For neuropsychological predictors, the top ranked predictor was TMT-B (mean total CAC =
64.6% (95% CI = 55.8, 73.5)). The 95% CI of the total classification accuracy overlapped
among single predictor models, indicating comparable prediction accuracy between different
biomarkers or neuropsychological variables (Fig. 3, Table 2).

We asked the question whether any combination of biomarkers or neuropsychological
variables shows a significant gain over the single-predictor model in terms of classification
accuracy. Bootstrapped classification accuracy was compared among all possible
combinations of predictors, with the restriction of no more than 4 predictors being included
in a particular model. Figure 3 shows classification accuracy of the best 24 models for 2-, 3-,
and 4 predictor models vs. each single predictor model (for model identification see
supplementary Table 1). Tables 3 and 4 display the total classification accuracy, sensitivity
and specificity along with the 95% CI of the best 1-, 2-, 3-, or 4-predictor models for the
biomarker-only models (Table 3) and the biomarker-plus-neuropsychology models (Table
4). For the biomarker-only models, there was a numerical but statistically nonsignificant
increase in total classification accuracy from the best single marker model of the entorhinal
cortex thickness (68.5%, 95% CI (59.5, 77.4)) to best for the 4-predictor model including
right hippocampus volume, CSF total-tau/Aβ1-42 ratio, ApoE genotype, and age (overall
classification accuracy = 70.9% (95% CI (63.1, 78.6), Table 3)).

For the models combining biomarker and neuropsychological test performance, a numerical
increase of the overall classification accuracy by 11.7% in total classification accuracy was
observed in favor of the best 4-predictor model (TMT-B, right hippocampus volume, CSF p-
tau181/Aβ1-42 and age, classification accuracy = 76.3% (95% CI (68.4, 84.2)) when
compared with the best single neuropsychological predictor (TMT-B, classification accuracy
= 64.6%, 95% CI (55.8, 73.5), see above and Table 4). However, the mean difference
between the best predictor model and best 4-predictor model was not statistically significant,
as the 95% CI of the classification accuracy of both models was overlapping (see Table 4).

4. Discussion
The major results show that a combination of MRI and CSF or neuropsychological markers
contributed independently to the discrimination between AD and HC subjects. However, the
comparison of the classification accuracy between different models with increasing numbers
of predictors showed that the combination of multiple biomarkers and neuropsychological
tests did not significantly augment the overall classification accuracy when compared with
the best single-predictor models.

We used a widely applied method of cross-validation, determining the best logistic
regression model in the training sample consisting of AD and HC subjects. Based on such a
best-statistical-fit approach, CSF total tau/Aβ1-42 ratio, left entorhinal cortex and
hippocampus volume were found to independently contribute to the classification of AD vs.
HC subjects. When neuropsychological predictors were introduced, a combination of CSF
total tau/Aβ1-42 ratio with performance on tests of immediate and delayed recall was found
to yield the best model. This finding of independent contribution of different biomarkers to
the prediction of risk of AD is consistent with previous results.

For the prediction of time to conversion from MCI to AD, Cox regression analysis showed
significant contribution of a combination of multiple variables to predict time to conversion
from MCI to AD. Previous studies reported that a combination of hippocampus rating
(Bouwman et al., 2007) or manual hippocampus volumetry (de Leon et al., 2006)
contributed independently from CSF based core biomarkers (de Leon et al., 2006; Bouwman
et al., 2007; Brys et al., 2009a) to the the prediction of AD in MCI subjects. Similarly, a
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combination of WAIS-R Digit Span, Selective Reminding Test (SRT) Immediate Recall and
functional assessment measures and biomarkers including MRI based measures of
entorhinal cortex and hippocampus were found to best predict the time to conversion from
MCI to AD within 3 years of clinical follow up (Devanand et al., 2007). In larger
multicenter studies including the ADNI trial, previous studies with a mean follow up
interval of 1.5 years reported that MRI and CSF biomarkers may contribute independently to
the prediction of AD (Vemuri et al., 2009). However, the clinical utility in terms of
prediction accuracy was not evaluated for this relatively short follow-up interval used in that
earlier study (Vemuri et al., 2009). In a similar vein, Landau et al. recently reported that the
combination of a decrease in FDG-PET uptake and impaired free recall shows a
significantly elevated hazard ratio to develop AD dementia within 2 years (Landau et al.,
2010). These studies support the notion that biomarker and neuropsychological predictors
are independently associated with the risk of AD. However, such results based on explained
variance leave considerable uncertainty to what extent the actual predictive accuracy is
enhanced by the addition of a particular marker in multipredictor models (Schemper, 2003).

In the current study, the systematic combination of each of the 24 predictor variables in
models with a number of maximally 4 predictors allowed for the direct comparison of single
predictor models and more complex models based upon the 95% CI of the predictive
accuracy. Our results showed that although there was a numerical increase by up to 11.7% in
total prediction accuracy from the best single-predictor model to the best four-predictor
model, this difference was not robust based on the bootstrapped 95% CI of the prediction
accuracy. Although it is possible that a test of the same model in a larger sample or a
combination of even more predictors may eventually lead to a significant improvement, the
current results support the notion that some sparser and economic single-predictor models
may be as good as any more complex model for the prediction of the clinical course to the
progression from MCI to AD within a short time interval.

A second finding of the current analysis is that a broad range of both biomarker and
neuropsychological predictors yield comparable results. Previous studies have provided
evidence for the utility of CSF and MRI markers of hippocampus and entorhinal cortex for
the prediction of AD (Schmand et al., 2010). We found that some neuropsychological
predictors achieved a predictive accuracy that was comparable to that of biomarkers. Note
that the best neuropsychological predictors included both memory measures (free recall) and
nonmemory measures (TMT-B, digit span, and fluency). Free and cued recall of verbal list
learning has been previously shown to be highly sensitive towards mild AD (Tierney et al.,
1996; Tabert et al., 2006; Sarazin et al., 2007; Devanand et al., 2008; Fleisher et al., 2008),
even 10 years before the clinical manifestation of AD (Tierney et al., 2005). Both immediate
free recall and digit span were reported to be associated with the risk of development of AD
in MCI in a previous study (Devanand et al., 2007). Our current finding suggests that
executive functions such as tapped by TMT-B (Arbuthnott and Frank, 2000) showed
significant predictive value for the development of AD in amnestic MCI. In summary, both
free recall measures are strong predictors of Alzheimer's disease in MCI (Sarazin et al.,
2007), and fronal nonmemory neuropsychological measures (Jacobs et al., 1995; Tierney et
al., 1996; Backman et al., 2005; Tierney et al., 2005; Tabert et al., 2006; Rozzini et al.,
2007) show predictive value for the conversion from MCI to AD. It should be noted that the
use of psychometric memory tests is somewhat controversial, since such tests were also used
for the diagnosis of AD, thus posing the risk of circularity. On the other hand, one may
argue that the inclusion of neuropsychologically impaired subjects such as in the case of
amnestic MCI may render the test of neuropsychological prediction of progression harder
since the variability in neuropsychological performance is reduced in such a clinical group.
Eventually, the utility of any predictor will need to be validated in neuropathologically
confirmed AD cases.
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The current results also demonstrate that the predictive accuracy of the current biomarker
models is not yet clinically sufficient within a follow-up interval of up to 3.3 years in the
ADNI study. The limited predictive accuracy may be partially explainable by censoring
effects. Although our results do not show an improvement of predictive accuracy between a
2-year and 3-year follow-up interval, the predictive accuracy of the current model is likely to
improve with extended follow-up time and may reach a plateau only many years later. This
hypothesis is consistent with findings of a meta-analysis showing a trend towards
increasingly higher effect sizes of CSF biomarkers including t-tau, p-tau and Aβ1-42 during
at least 6 years of clinical follow-up (Schmand et al., 2010).

The current biomarker based model did take advantage of a clinical characterization, as a
preselection of subjects in terms of presence of amnestic MCI was used. Thus, the results
need to be interpreted in view of the clinical concept of MCI that may be supplemented by
biomarker and neuropsychology based prediction of AD. An evaluation of biomarker and
neuropsychological predictor supported models in subjects with nonamnestic subtype of
MCI, which was not included in the current study, is desirable in the future. Previous studies
have shown that the frequency of AD-like CSF-patterns composed of the concentration of
tau and Aβ1-42 is significantly elevated not only in amnestic MCI subjects, but also in the
nonamnestic subtype of MCI or subjective memory impairment when compared with normal
controls (Visser et al., 2009). Presence of the AD like CSF pattern was associated with
stronger cognitive decline in these groups (Visser et al., 2009). Thus, it will need to be tested
whether the current result pattern holds also in the nonamnestic type of MCI.
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Fig. 1.
Flow chart of number of patients undergoing the test under evaluation (index test) and the
reference test. HCV, Hippocampus volume; ERC, Entorhinal cortical thickness.
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Fig. 2.
Distribution of MCI-AD converters (green triangles) vs. MCI nonAD (red circles) as a
function of left hippocampus volume (ln) and CSF tau/Aβ1-42 ratio (A) and for the
entorhinal cortex (mm3) vs. CSF tau/Aβ1-42 ratio (B). The lines show the risk zones for
classification as MCI converters or MCI nonconverters. The risk of MCI conversion
associated with the left hippocampus volume (A) or left entorhinal cortical thickness (B) is
labeled as percentages on each line. The arrow points in the direction of risk increase
associated with a decrease in the MRI measures (inset in A and B). Note that an increase in
the CSF tau/Aβ1-42 ratio as indicated by the slope of the lines, but a decrease in left
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hippocampus volume (A) or left entorhinal cortical thickness (B) indicated by the height of
the lines is associated with an increased risk of MCI-AD conversion.
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Fig. 3.
Bootstrapped mean of the total overall classification accuracy and 95% CI for the 24 rank
ordered models of highest CAC each of 1-, 2-, 3-, and 4-predictor models for the
classification of MCI conversion within a 2-year interval. For identification of models see
supplementary Table 1, where the models are identified by their corresponding rank.
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